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1 Introduction

This paper illustrates stochastic simulation and optimal control of a model
using WinSolve (Pierse 2000). The tutorial and exercises make use of a
small model of the Philippines developed by the Asian Development Bank
(ADB) and described in Cagas et al. (2006). Section 2 presents a general
discussion of the uses of stochastic simulation and the facilities available in
WinSolve while Section 3 is a tutorial, illustrating the application of some
of the techniques to the ADB model of the Philippines. Similarly, Section
4 presents a general discussion of optimal control while Section 5 illustrates
the techniques on the ADB model.

2 Stochastic Simulation

Economic models are intrinsically stochastic (random). Empirical models
with econometrically estimated parameter values will have uncertainty asso-
ciated with the parameter estimates, in addition to the econometric distur-
bances assumed in the original model. Most modern theoretical models, such
as real business cycle (RBC ) models and dynamic stochastc general equilib-
rium (DSGE ) models are also stochastic by construction because they involve

∗This paper was prepared for a HKIMR Workshop held at HKMA, Hong Kong, April
11-12 2006. The author is grateful to Duo Qin of ADB for providing the model on which
the tutorial is based. All errors are the sole responsibility of the author.

1



agents forming rational expectations of future variables and predetermined
variables being driven by exogenous random shocks.

Despite the intrinsic stochastic nature of economic models, most models
are solved deterministically, with all the shocks set to their expected value of
zero. When models involve agents who are forming rational expectations of
the future, these are generally replaced by model consistent expectations in
which the expectational shocks are dropped, which is equivalent to assuming
that the agents have perfect foresight.

2.1 Certainty equivalence

Certainty equivalence is a property of a stochastic model which means that
its deterministic solution is an unbiased estimator of the expected values of
its model variables. When the conditions for certainty equivalence hold, then
a deterministic solution is sufficient, provided that only the expected value
and not the higher order moments are of interest.

Certainty equivalence holds in the case where a model is completely linear
in both variables and shocks and the stochastic shocks have zero mean. (It
also holds in a few other narrowly defined situations). However, in practice,
most economic models are non-linear and do not satisfy the conditions for
certainty equivalence. In the DGSE literature, it is common to construct a
linear approximation to a model, generally around the deterministic steady-
state, and then solve the approximate model deterministically, making use of
the property of certainty equivalence. This approximation will be adequate
for the expected values of the variables in a neighbourhood of the approxi-
mation point but, if the model is very non-linear, then this neighbourhood
may be very small and still, higher order moments such as variance may be
of interest.

2.2 What is stochastic simulation?

Stochastic simulation of a model is a technique whereby a model is solved
repeatedly, each solution or replication adding pseudo-random shocks drawn
from some probability distribution. The resulting set of replications can then
be used to compute estimates of the empirical distribution of the solution
values for the endogenous variables including moments of the distribution
such as the expected value, variance etc. As the number of replications
increases, these approximations will converge to the true (generally unknown)
population values of the moments.
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2.3 When to use stochastic simulation

When the conditions of certainty equivalence hold, then stochastic simulation
is not necessary to find the expected value of the model variables. Even then,
if higher order moments are of interest, then stochastic simulation provides
a simple and consistent way to estimate them. In all other situations, then
stochastic simulation should be employed.

2.4 Ways of generating shocks

In order to do stochastic simulation, some way is needed to determine how
the shocks should be generated. In a theoretical model, some assumption
may be made about which equations have shocks and what the form of the
distribution should be (generally univariate normal with some specified vari-
ance). In an empirical model, the econometric estimation residuals provide
a good basis for generating shocks, either by the Cholesky method or by
bootstrapping.

2.4.1 Cholesky method

The Cholesky method uses the empirical data moment

Σ̂ =
E′E

T − k

as a consistent estimator of the covariance matrix of shocks, where E is
the T × n matrix of single equation residuals from the n model equations
with T observations where k is an optional degrees-of-freedom correction.
The shocks are assumed to be normally distributed with covariance matrix
Σ̂. This estimator will only be positive-definite when T > n and if this
condition is not satisfied, then the method is not feasible. (Note that since
some equations such as identities will have zero residuals, a slight relaxation
of the condition of positive-definiteness is required to allow for some zero
rows and columns in Σ̂).

In the case where T < n, the McCarthy method is available. This can be
considered as an approximation to the Cholesky method that can be applied
even when there are insufficient time observations to apply the Cholesky
method directly.

2.4.2 Bootstrap method

In this method, shocks are drawn from repeated re-sampling of rows of the
matrix of single equation residuals of the model equations E. The distribu-
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tion of these shocks is a consistent estimate of the empirical distribution of
the single equation residuals. In particular, there is no guarantee that the re-
sulting shock distribution will be symmetric or even mean zero, although the
method of course does rely on an implicit assumption that the distribution
is time-invariant. .

2.4.3 User Covariance

This method is useful for theoretical models where the shock covariance ma-
trix can be assumed a prori. Shocks are assumed to be multivariate normal
with zero mean. The user specifies the non-zero elements of (one triangle
of) the covariance matrix. A check is made to ensure that the specified
covariance matrix is (semi-)positive definite.

2.4.4 General distributions

In principle it is possible to generate shocks using any user-specified dis-
tribution, allowing the shocks to be non-symmetric and to have any other
desired properties including non-invariance over time. In practice it is quite
difficult to generate sets of correlated pseudo-random shocks except from the
normal distribution, but independent shocks from arbitrary distributions are
certainly possible. WinSolve has a facility where the user can specify a file of
shocks to be used in stochastic simulation. Each row of the file needs to de-
fine the shocks for all model variables in a time period/replication. Because
of the possibility that the model may fail to solve in a certain time period for
a particular drawing of random shocks (in which case the replication will be
abandoned and a new drawing will be taken), the number of rows in the file
should exceed T ∗ R where R is the number of replications. In view of this
problem of non-convergence, it is impossible to guarantee that the shocks
will be applied in the desired time periods, which is a potential problem for
non-time-invariant distributions.

2.4.5 Antithetic shocks

This is not a method of generating shocks as such but is a way of reducing
the simulation variance involved in stochastic simulation and will improve the
resulting estimates provided that the assumption that the shock distribution
is symmetric is appropriate. The idea is that, for every vector of random
shocks drawn in replication r, εrt , a corresponding antithetic vector of shocks
−εrt is used for replication r + 1. Thus shocks are generated in pairs that
cancel out exactly and the shock distribution is forced to be exactly symmet-
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ric. In a linear model, the average of the replications (the expected value of
model variables) will be identical to the deterministic model solution.

2.4.6 Unanticipated shocks

In models including forward rational expectations, there is an issue in stochas-
tic simulation of whether or not agents anticipate future shocks. Certainly,
expectational shocks should be unobservable by agents (unless they are as-
sumed to have perfect foresight). In WinSolve, it is possible to specify either
that all future shocks are anticipated or no future shocks are anticipated.
In the latter case, the computational problem to be solved is considerably
increased and the cost of stochastic simulation increases pro rata.

3 Stochastic Simulation with the Philippines

model

In this section we use stochastic simulation to explore the properties of the
small model of the Philippinnes, built at the Asian Development Bank and
described in Cagas et al. (2006). Since this is an empirically estimated
model with historical data available from 1997:4 to 2004:4, an appropriate
shock generation method is the bootstrap method. This method has the
advantage of not assuming a normal distribution for shocks. However, it
will also not guarantee a symmetric distribution unless the antithetic shock
option is also checked.

Figure 1: Adjustment type dialog box
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The model to be opened is the file phi model-Nov 2005.txt and the data
file is the base forecast simulation data base saved in the previous tuto-
rial. (If this is no longer available, then read in the forecast data base,
phi data Nov2005.xls, do a dynamic simulation to recreate the base forecast
and set the run you have just done as the simulation base using the option
Set last solution as base on the Solve menu).

Before starting a stochastic simulation with the ADB model it is im-
portant to ensure that all model adjustments are set as additive. This is
because, in stochastic simulation, some large shocks may be generated (with
low probability), which if applied multiplicatively could cause the model to
fail to converge. All the adjustments can be set to be additive in the Change
adjustment type option on the Assumptions menu. In the dialog box (Figure
1) select Default type as Additive and click on the Reset all button. Then
click OK to accept the changes and exit.

3.1 The stochastic simulation dialog box

Figure 2: Stochastic simulation dialog box

To start stochastic simulation, click on the Stochastic simulation icon
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or select the Stochastic simulation option from the Solve menu. This opens
the stochastic simulation dialog box (Figure 2). This dialog box is quite com-
plicated and is worthy of some detailed explanation. The key selection is the
shock generation method, which here should be specified as Bootstrap method.
For the bootstrap method (and other empirical shock generation methods)
it is necessary to specify the historical data period to use for generating the
shocks, usually corresponding to the econometric estimation period. Here it
is set to the period 1997:4 to 2004:4. The solution period for the stochastic
simulation is set to the forecast period 2005:1 to 2010:4.

It is possible to restrict the period over which stochastic shocks are ap-
plied. This is particularly important for models with rational expectations
where the terminal condition is a long run steady state condition. If shocks
are applied right up to the terminal date, it is difficult for the model to satisfy
the terminal condition and convergence will be a problem. In the case of the
Philippine model under consideration, this is not an issue and so the period
to apply shocks can be set to the solution period 2005:1 to 2010:4.

The number of replications has been kept at the default value of 100. This
is quite a small number of replications and, in serious simulations, should
probably be increased for higher precision at the cost of greater execution
time. The use antithetic variables box has been checked. This forces the
distribution of generated shocks to be (exactly) symmetric. However, in a
non-linear model, it does not guarantee that the distribution of the model
variables will be symmetric.

The random number seed initialises the random number generator used
for generating pseudo-random shocks. Two stochastic simulations, over the
same period and using the same random number seed, will generate the same
results. This is useful when a simulation needs to be repeated at a later date.
Changing the seed will result in a new set of random drawings. It is useful
to make a note of the random number seed used in important simulations.

The stochastic simulation box has the option to specify that simulation
quantiles are to computed. These allow a complete probability distribution
to be estimated (and graphed in a fan chart). This option is not set by
default since it can be expensive, because it necessitates that all replications
are written to a temporary file and then read back to compute the necessary
quantiles. The input box specifies the number of quantiles to be computed.
The value of 20 allows quantiles in 5% intervals from 5% to 95%. The save
replications to a file option may be used in conjunction with the quantiles
option to save replications permanently for use outside WinSolve. Note that
if only a single variable is required, it is considerably cheaper to specify the
variable name than accept the default of all variables.

Once all the desired options have been set in the dialog box, click the
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Figure 3: Fan chart for real investment

OK button to exit which opens the status box and starts the simulation.
WinSolve will allow a maximum number of failed replications before giving
up on a stochastic simulation. By default this number is set to 10 but it can
be increased if necessary using the maximum errors control in the solution
options dialog box. This dialog is accessible from the stochastic simulation
dialog box through the Options button.

When the stochastic simulation has finished, the results are available to
view in the usual way through the New table/graph box on the Results menu.
After a stochastic simulation, various additional statistics are available to
view: the simulation mean, standard deviation, skewness, mode and the
±5% simulation bands. In addition to these, if quantiles were requested,
these are also available (the median of course is the 50% quantile) as well
as two fan chart options. The quantile fanchart is a standard fanchart of
quantiles, centred on the median of the distribution. The modal fanchart is
an alternative fanchart, centred on the estimated mode of the distribution
(the sort of fanchart reported by the Bank of England). Figure 3 presents
a quantile fanchart for real investment. The bands represent 5% quantile
intervals with the darkest central band showing the 45% to 55% interval
including the median and the outermost bands the 5% and 95% bands. Notice
that although the bands tend to fan out from the start of the simulation in
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2005:1, they eventually tend to stabilise. This is as expected since the bands
should asymptotically approach the unconditional error bands.

4 Optimal Control

In optimal control, a policy-maker (for example the government) aims to
achieve a set of objectives, defined by the maximisation of a welfare func-
tion (or the minimisation of a loss function), subject to the equations that
define the economic model.. The welfare or loss function depends on certain
endogenous variables in the economic model that are known as the targets.
The policy-maker is assumed to be able to set certain exogenous variables
(the controls) in order to achieve its objectives.

There may be more than one policy-maker (for example two countries or
government and consumers), each trying to achieve its own objectives. In
this case, the optimisers play a game with each other and may choose either
to co-operate or to act independently. When the optimisers co-operate, a a
joint welfare or loss function is negotiated that reflects the negotiating power
of the agents. When the agents act independently, there may be a dominant
agent that takes the lead (Stackleberg leader) or the agents may play a Nash
game, each taking the moves of all other agents as given.

Apart from these formal considerations, optimal control can also be thought
of as an interesting way to explore the properties of a model. It can answer
hypothetical questions such as: suppose the government wanted to achieve
a particular set of targets, what would it need to do in setting the variables
under its control?

4.1 The Optimal Regulator problem

The optimal regulator problem solves

min
ut

T∑
t=1

βt(yt − y∗t )
′Wt(yt − y∗t ) (4.1)

subject to the (non-linear) model equations

f(y,x) = 0

where yt is a vector of endogenous model variables and xt is a vector of
exogenous variables, both at time t, y∗t is a vector of target values for yt, Wt is
a matrix of weights, β is a (scalar) time discount factor and the minimisation
is with respect to a set of controls ut that is a subset of xt. When the model is
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linear and Wt is time invariant, this is known as the optimal linear regulator
problem and the solution is a linear rule for the control variables.

In the loss function (4.1), there is nothing to prevent the control variables
ut from fluctuating wildly from period to period. Clearly, this may be con-
sidered an undesireable property, in which case it is possible to incorporate
an extra term into the loss function to penalise changes in the controls as in

min
ut

T∑
t=1

βt [(yt − y∗t )
′Wt(yt − y∗t ) + (ut − ut−1)

′Pt(ut − ut−1)] . (4.2)

The relative scale of the weighting matrices Wt and Pt in (4.2) determines
the importance of the secondary objective of desiring smooth movements
in the control variables compared to the primary objective of achieving its
targets.

In many cases, the optimiser will not want to change the values of the con-
trol variables in every period, but only at discrete intervals. For example, the
Monetary Policy Committee of a Central Bank, targetting inflation through
control of interest rates, will typically only meet once a month to discuss
whether rates need to be changed. Thus the interest rate control variable
will never change more frequently than once a month, and will remain fixed
in all intervening periods. This discrete response can be incorporated into
the control problem. In the extreme case, when the interval between control
adjustments is equal to or greater than T , the control is set once and for all
over all time periods and becomes a scalar value rather than a time path. As
will be discussed below, this can be used as a way to estimate optimal simple
rules where the parameters of the rule are treated as scalar control variables.

4.2 The Linear Quadratic Control Problem

The linear quadratic (LQ) control problem solves

min
ut

∞∑
t=0

βt1

2
(y′tQyt + 2y′tSut + u′tRut) (4.3)

subject to the linear model equations

Ayt + Byt−1 + Cxt = 0

where yt is a vector of endogenous model variables and xt is a vector of
exogenous variables, both at time t, Q, S and R are matrices of weights, β
is a (scalar) time discount factor and the minimisation is with respect to a
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set of controls ut that is a subset of xt. The solution to this problem is a
linear control rule

ut = Fyt.

Note that the loss function (4.3) includes a quadratic term u′tRut in the
controls, ut. This makes it possible to incorporate a penalty on changes in
the controls if some degree of smoothness is desired.

4.3 Time consistent control

In models in which agents have rational expectations, there is an issue that
the optimal control solution is not always time consistent. The forward-
looking agents in the economy will be aware of the optimal policy being
pursued by the optimisor (the government) from the first period, and will
make their own plans accordingly. However, in subsequent periods, there
will often be an incentive for the government to deviate from its original
policy, since what it did in previous periods is no longer of interest and,
from the point of view of the present period, it can often do better than the
original announced optimal policy. The problem is that, if the government
does choose to renage on its original announced policy, then rational agents
will see this and the government policy will lack all credibility.

There are two possible solutions to this problem. It may be possible for
the government to be made to commit to its original policy, for example by
entering into a legal contract whereby it will be penalised for any deviation
from its original policy. However, a commitment made by the current govern-
ment will not necessarily be binding on future governments. The alternative
solution is to design a policy from which there will never be an incentive to
renage. Such a policy is known as a time consistent policy. The time con-
sistent policy will be credible but will not be as good as the optimal policy
under commitment.

In the linear quadratic control problem, several methods have been pro-
posed for finding time consistent control solutions. Some, such as the dy-
namic programming method of Oudiz and Sachs (1985), give closed-loop
solutions in the form of a decision rule for the control variables and have the
desireable property of also being sub-game perfect. Other solutions only give
open-loop paths for the control variables and are not sub-game perfect. In
non-linear control problems, time consistent solutions are less easy to find
and only open-loop solutions will be available.

Time consistent control for the linear quadratic control problem will be
available in the next release (version 4) of WinSolve.
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4.4 Optimal simple rules

Sometimes, rather than pursuing a full optimal control policy, the policy-
maker is assumed instead to set the instruments under its control by following
a simple rule, such as the Taylor rule, Taylor (1993),

rt = α + β(πt − π∗) + γ(yt − y∗t ) (4.4)

where rt is the interest rate, πt is inflation with target rate π∗ and yt is output
with target (potential output) y∗t . The Taylor rule has three parameters α, β,
and γ and, in Taylor’s original formulation (in which the inflation target was
assumed to be 2%), these were set to the values 4%, 1.5 and 0.5 respectively.
These values, however are just arbitrary, and may not reflect the true weights
in the policy-maker’s loss function.

Instead of just imposing parameter values, it is possible to use optimal
control to find optimal values of the parameters of a simple rule like (4.4) that
minimise the policy-maker’s loss function (4.1). In this control problem, the
control variables are simply the scalar parameters α, β, and γ of the simple
rule, so these control variables are assumed to be set once in the first solution
period and thereafter to remain constant.

5 Optimal Control with the Philippine model

In this exercise, optimal control will be used to revisit the fiscal problem
considered in the previous tutorial to explore how the Philippine govern-
ment could tackle its budget deficit by reducing government expenditure or
increasing tax collection.

It will be assumed that the objective of the government is to achieve
a particular target path for the debt to GDP ratio of the previous year
(TDEBTr PHI ) and that, in order to achieve this objective, it is able to effect
cuts in government non-interest payment expenditure GPAY PHI and/or in-
creases in government tax collection GTAX PHI. Since these variables are
endogenous in the model, new alternative equations will need to be spec-
ified, based on the original model equations but including the additional
new exogenous variables GPAYEX and GTAXEX which will be the control
variables of the optimal control problem. When these control variables are
zero, the equation will revert to the standard model equation but when non-
zero, GPAY PHI or GTAX PHI will be multiplied by a factor determined
by the control variable. The original model equations for GPAY PHI and
GTAX PHI are given in Figure (4) and the new equations in Figure (5). De-
scription lines (starting with the code ‘*C’) have been included before each
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Figure 4: Original equations for GPAY PHI and GTAX PHI

new equation so that, when these alternative equations are switched in, they
can be easily identified.

Note that, because of the logarithmic nature of the original equations,
the level of GPAY PHI and GTAX PHI in the new equations will actually
be multiplied by the anti-logarithm of the control variable GPAYEX and
GTAXEX respectively. Of course, it would have been possible to specify
the new equations using the logarithm of the control variable instead of the
level. However, this would not have been a good idea since, in the search
for a solution to the the optimal control problem, it is quite possible that
the control variables may take on negative values. In this case, had the
equations been specified using the logarithms of the control variables, the
solution would have broken down. By specifying the equations using the
control variable in levels, this problem is avoided since the anti-logarithm of
course is guaranteed to be positive.

However, since it is the anti-logarithm in which we are really interested, it
is a good idea to include extra equations explicitly defining the anti-logarithm
of the controls such as

EXPGPAYEX = exp(GPAYEX );

EXPGTAXEX = exp(GTAXEX);

so that these variables will be available to view, once the solution has been
found.
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Figure 5: New control equations for GPAY PHI and GTAX PHI

Figure 6: The model object

5.1 Defining the problem

As in the previous exercise in Section 3, the model to be opened is the file
phi model-Nov 2005.txt and the data file is the base forecast simulation data
base saved in the previous tutorial. (As before, if this is no longer available,
then read in the forecast data base, phi data Nov2005.xls, do a dynamic
simulation to recreate the base forecast and set the run you have just done
as the simulation base using the option Set last solution as base on the Solve
menu).

The new equations can be added to the text file by double clicking on the
icon in the model object window (Figure 6) or selecting Edit model from the
File menu, which opens the text editor. Add the new equations at the end
of the file (so that they will not be the default equations) and then save the
file. WinSolve will compile the new version of the model.

The new equations can now be switched in through the switch alternate
equations option on the Assumptions menu as shown in Figure (7). Select
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Figure 7: Alternative equations box

Figure 8: Data required warning message

each of the two variables GPAY PHI and GTAX PHI and choose the alter-
native equation labelled ‘control equation’. Then click Done to exit. The
warning message in Figure (8) will appear. This is because no data val-
ues have yet been defined for the new exogenous variables GPAYEX and
GTAXEX. (Note that no data is required for EXPGPAYEX and EXPG-
TAXEX because these are working variables). The data on these variables
can simply be set to zero. Use the Edit data/adjustments option on the

Data menu or the icon to edit the data and project zero values for these
variables.

Before setting up the optimal control problem to be solved, it is necessary
to solve the model once dynamically and set this solution as a new simulation
base. Click on the Solve model icon or select the Solve model option from
the Solve menu. Select the solution period as 200501 to 201004 and make
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sure that the data has precedence over equations box is unchecked. Select
the dynamic model solution option and click OK to start solution. When
the solution has finished, select the option Set last solution as base from the
Solve menu.

Figure 9: Optimal control setup dialog

The optimal control problem can now be defined. Select the set up new
control game option on the Control menu. The dialog in Figure 9 is displayed.
This defines maximum dimensions for the size of the problem and allows the
rate of time discount β to be chosen. It also allows us to choose to penalise
changes to the control variables as in the loss function (4.2). For the present
though, we will leave the default settings unchanged.

Click on the Continue button to bring up the next dialog, Figure 10,
which allows us to specify the target and control variables for the optimal
control problem. Select the variable TDEBTr PHI and add it to the list
of target variables. Select the variable GPAYEX and add it to the list of
control variables. Then click on the Continue button.

Finally, target values (and weights) need to be defined for all the target
variables in the problem. In this case, since there is only one target variable
(TDEBTr PHI ), the weights can be left at their default values of unity. The
target value for the debt to GDP ratio, TDEBTr PHI is assumed to be 0.75.
Choose the project level/growth rate option and set a constant value of 0.75
in the projection dialog box (Figure 11). Click OK to return to the edit
dialog and then Update to accept the changes. Finally, click Close to finish.
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Figure 10: Defining targets and controls

Figure 11: Control target projection box

The optimal control information box will appear (Figure 12 ) to sum-
marise the properties of the control game that has been defined. Click OK
to exit. At this stage, the control game can be saved to file from the Control
menu.

5.2 Solving the problem

The optimal control problem has now been defined and so can now be solved.
Select the Optimal control option from the Control menu or click on the
optimal control icon, , which should now be ungreyed. The optimal con-
trol dialog box Figure 13 will be displayed. By default, WinSolve uses the
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Figure 12: Control information box

Figure 13: Optimal control dialog box

Powell conjugate directions algorithm for solving optimal control problems.
Although this algorithm is very robust, it also tends to be very slow. It is
generally better to switch to the BFGS algorithm, which is normally con-
siderably faster. Click on the Options box to bring up the optimal control
options dialog box (Figure 14) and select the BFGS algorithm from the list.
Note that the options dialog box also has an option labelled Time aggrega-
tion. This controls the frequency with which control variables are updated.
The default is 1, so that controls are updated every period. By increasing
this value to a value m, it is possible to specify that control variables are only
updated every m periods. In the limit, when the value is set to be equal to
or greater than the number of solution periods, the control variables will be
set once and for all, and so become scalar controls.
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Figure 14: Optimal control options dialog

Click OK to return to the previous dialog box and select the solution
period to be 200501 to 201004. Finally, click OK to start the control solution.

The results of the simulation are illustrated in Figures 15 and 16. The first
shows optimal values of the target variable TDEBTr PHI. Note that because
this variable is the annual debt to GDP ratio for the previous year, the control
variable is unable to affect it until the start of 2006. After this, the target
ratio of 0.75 comes quite close to being achieved. The second figure shows the
path of the (anti-logarithm of the) control variable, exp(GPAYEX ). When
this variable is below one, then government pay is being kept below what it
would otherwise be. From 2009:4, exp(GPAYEX ) is above one so that pay
is being kept above what it would otherwise be. This illustrates a drawback
to the control exercise since, in practice, the government should be happy to
accept a debt to GDP ratio below its threshold target, but not above. This
problem could be solved by changing the target variable to be

max(TDEBTr PHI, 0.75) (5.1)

since this new target is automatically met whenever TDEBTr PHI is below
the threshold of 0.75.

5.3 Exercises

Several other interesting optimal control exercises can be performed with this
model. Most of these problems can be set up by simply editing the control
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Figure 15: Optimal values of debt to GDP ratio

game defined above through the edit control game option on the Control
menu.. The exception is control with penalties on changes to the controls
which requires redefining a completely new control game.

1. Add a second target variable GDEFr PHI with target value 0.04 and
experiment with the weighting of the two targets

2. Add a second control variable GTAX EX

3. Create new targets

max(TDEBTr PHI, 0.75)

and
max(GDEFr PHI, 0.04)

so as not to penalise being below the thresholds

4. Experiment with the time discount factor β in the control options dialog
to change the relative weighting of present and future

5. Experiment with the aggregation parameter in the control options di-
alog to change how frequently controls get updated
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Figure 16: Optimal values of GPAYEX expenditure instrument

6. Impose a smooth path on the controls by penalising changes in the
controls (this requires creating a new control game)
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