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1 Introduction

This paper discusses the solution of Dynamic Stochastic General Equilibrium
(DSGE ) models using WinSolve (Pierse 2000). DSGE models present a
number of challenges since in general they are non-linear stochastic rational
expectations models. Traditionally, these models have been solved either
by approximating the original problem by an equivalent linear quadratic
(LQ) optimisation problem, or by linearising the first order conditions of the
problem around the deterministic steady state and then solving the resulting
linear rational expectations problem.

Recently, there has been some criticism in the literature of these popular
approaches. Firstly, Judd (1996, 1998) has pointed out that the standard
LQ approximation (first used by Kydland and Prescott (1982) and then
copied by numerous other researchers) is not valid when the model is non-
linear. A correct approximation, (first appearing in the economics literature
in Magill (1977)), involves the computation of extra terms involving second
order model derivatives. Levine, Pearlman and Pierse (2006) show that an
alternative approach, due to Benigno and Woodford (2003) is equivalent
to Magill. Secondly, there has been some question about the validity of
first order approximations. These imply linear decision rules and certainty
equivalence so that uncertainty does not affect decisions. Kim and Kim
(2003) show that conventional first order approximation can lead to spurious
welfare reversals where an incomplete-markets economy produces a higher

∗This paper was prepared for a HKIMR Workshop held at HKMA, Hong Kong, April
11-12 2006.

1



level of welfare than the complete-markets economy. An alternative approach
is to use perturbation methods. Widely used in the physical sciences for many
years, these can be used to produce high order Taylor series approximations
to non-linear decision rules that can incorporate the effects of uncertainty.

An alternative approach is to solve the non-linear problem directly, with-
out using linear approximation. Non-linear solution methods (stacked-Newton
or Fair-Taylor) produce time-paths of model variables (over a finite horizon)
but do not produce decison rules explicitly. The assumption of perfect fore-
sight (model-consistent expectations) sets errors on forward expectations to
zero so that the problem becomes deterministic. However, the mean and
higher moments of the distribution of the variables of the full stochastic
model can be calculated through stochastic simulation. One non-linear so-
lution method, the parameterised expectations method of den Haan and
Marcet (1990), involves the approximation of forward expectations by gen-
eral non-linear functions. This is similar to the perturbation method and
does produce non-linear approximations to decision rules.

The curent version of WinSolve allows DSGE models to be solved either
using non-linear methods (including the parameterised expectations method)
or by linear (or log-linear) approximation. The next release of WinSolve
will add perturbation methods (first and second order) and also correct LQ
approximation using the Magill approach. Both these new methods will make
use of automatic methods to compute high order derivatives using analytic
formulae.

Section 2 of this paper discusses the alternative solution methods in gen-
eral and Section 3 applies them to a simple stochastic growth model. The tu-
torial illustrates solving DSGE models in WinSolve using a stochastic growth
model.

2 DSGE models

Dynamic Stochastic General Equilibrium (DSGE ) models are consistently
micro-founded economic models in which all agents are explicitly optimising
and are forming rational expectations of the future. Technically, the models
are non-linear stochastic rational expectations models.

Formally, a DGSE model can be defined by

maxEt

T∑
t=0

wt(yt,ut, εt) s.t. ft(yt,yt−1,y
e
t+1,ut, εt) = 0 (2.1)

where yt is a vector of endogenous variables, ut is a vector of exogenous
(control) variables and εt is a vector of stochastic disturbances. wt is a scalar-
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valued welfare function and ft is a vector-valued set of functions defining the
model. Note that the model equations depend on lagged values of yt and
rational expectations of future values of yt as well as exogenous variables and
stochastic shocks.

The first order conditions of the maximisation problem (2.1) are given by

gt(yt,yt−1,y
e
t+1,ut, εt) = 0. (2.2)

These will include Euler equations corresponding to the first order conditions
with respect to yt, ut and εt as well as the equations ft() = 0 which are the
first order conditions with respect to the Lagrange multipliers.

The solution to the problem will be a decision rule for the endogenous
variables of the form

yet+1 = h(yt,ut, εt). (2.3)

2.1 Linear Quadratic Approximation

The traditional approach to solving DSGE models is to approximate the
original problem (2.1) by a linear-quadratic (LQ) problem

min
ut

T∑
t=0

1

2
(y′tQyt + 2y′tSut + u′tRut) (2.4)

subject to the linear model equations

Ayt = Byt−1 + Cut

where Q, S and R are matrices of weights. Note that in the approximate
LQ problem, the stochastic disturbances have been dropped since the model
displays certainty equivalence and the model equations ft() have been re-
placed by a linear state-space system. The solution to this problem is a
linear decision rule

yt = Nyt−1 + Mut

and a control rule
ut = Fyt.

In the standard application of this approximation, due to Kydland and
Prescott (1982), the matrices Q, S, and R are derived from the second order
derivatives of wt() and the matrices A, B, and C from the first order deriva-
tives of ft(). The derivatives are calculated at the deterministic steady-state
solution of the model equations ft(). While this was correct in the original
application by Kydland and Prescott, since in their model ft() happened to
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be linear, in general this is not correct, as has been pointed out repeatedly
by Judd (see for example Judd (1998)).

The correct approach, first stated (in the continuous time case) by Magill
(1977), is to derive the approximation as a second order approximation to
the Lagrangian (2.1). In this case, the matrices Q, S, and R also depend
on the second-order derivatives of ft() as well as the deterministic steady-
state Lagrangian multpliers. The approximation should be calculated at
the deterministic steady-state solution to the Lagrangian problem, which is
not the same point as the approximation to the deterministic steady-state
solution of the model equations ft().

Benigno and Woodford (2003) derive a linear-quadratic approximation
to a DSGE model in which, because of the inefficiency of the steady-state,
linear terms appear in the objective function. Recognising that this implies
that their quadratic objective function will not be second-order accurate,
they substitute second-order approximations to the model equations into the
objective function, transforming it into a function of quadratic terms only.
Levine, Pearlman and Pierse (2006) show that the method of Benigno and
Woodford is equivalent to the more general method of Magill.

2.2 Linear and Log-Linear Approximation

An alternative approach is to linearise (or log-linearise) the first-order con-
ditions (2.2) of the original problem (2.1) around the deterministic steady
state of the model. The resulting equations can be expressed in the linear
state space form

Ayet+1 = Byt + Cut. (2.5)

When the matrix A is non-singular, then the model can also be re-expressed
as

yet+1 = A−1Byt + A−1Cut. (2.6)

This linear rational expectations model can be solved using linear methods.
In the non-singular case, (2.6), the method of Blanchard and Kahn (1980),
can be applied. The condition for a unique solution is that the number
of unstable roots of A−1B is equal to the number of non-predetermined
(jump) variables in the system. In the singular case, a generalised Schur
qz decomposition can be applied, as described in Klein (2000) and Sims
(2002). An alternative approach for singular models by system reduction is
proposed by King and Watson (1998) and (2002) and matlab code is available
in reds/solds.

In the linearised (or log-linearised) model, certainty equivalence applied.
Certainty equivalence is a property of a stochastic model which means that
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its deterministic solution is an unbiased estimator of the expected values
of its model variables. When the conditions for certainty equivalence hold,
then a deterministic solution is sufficient, provided that only the expected
value and not the higher order moments are of interest. The approximation
will be adequate for the expected values of the variables in a neighbourhood
of the approximation point but, if the model is very non-linear, then this
neighbourhood may be very small.

2.3 Non-linear solution methods

Non-linear solution methods solve the first order conditions (2.2) explicitly for
a solution over a finite time horizon t = 1, · · · , T . The assumption of perfect
foresight is made to reduce the problem to a deterministic one. However,
the mean and higher moments of the distribution of the variables of the
full stochastic model can be calculated through stochastic simulation. Two
general approaches are possible: a standard algorithm for solving non-linear
rational expectations problems such as stacked-Newton or Fair-Taylor, or the
parameterised expectations algorithm.

2.4 Parameterising expectations

The principle of the parameterised expectations method of den Haan and
Marcet (1990) is to approximate the non-linear decision rule

yet+1 = h(yt,ut, εt)

by a known function of a set of parameters that can be estimated.

yet+1 = ψt(xt; δ)

where xt is the k × 1 set of predetermined state variables. Typically the
functional form chosen is a power function which is the antilogarithm of a
polynomial and can approximate a positive variable to arbitrary accuracy.

The model solution is an estimation procedure to find δ to minimise

(yt+1 − ψt(xt; δ))2.

Given a choice of δ , the model is no longer forward-looking and can be solved
using any non-linear solution technique.

A test of the accuracy of the approximation is proposed in den Haan and
Marcet (1994). This is implemented by increasing the degree of the power
function and testing the significance of the additional coefficients.
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2.5 Perturbation Methods

Perturbation is a general method for providing accurate approximations to
nonlinear problems, based on the application of Taylor’s theorem and the
implicit function theorem. When analyic derivatives can be computed auto-
matically, these approximations can be generated recursively, involving only
the solution of linear sets of equations. While these methods have been
widely used in the physical sciences for many years, it is only recently that
their importance in economics has come to be recognised. Judd (1996) pro-
vides a survey of these methods applied to economic problems. He shows
how traditional ad hoc methods of linear-quadratic approximation do not
always produce locally valid Taylor series for equilibrium behaviour rules.
In contrast, perturbation methods always produce valid approximations of
the chosen order. Furthermore, such approximations are easy to compute
recursively to any order of accuracy.

One problem with standard linear-quadratic approximations is that they
impose the assumption of certainty equivalence, even when the true problem
is generally not certainty equivalent. Judd and Guu (1993), Collard and Jul-
liard (2001) and Schmitt-Grohé and Uribe (2004) extend perturbation meth-
ods to a stochastic environment, avoiding the assumption of certainty equiv-
alence. Kim and Kim (2003) show that conventional linearisation can lead to
spurious welfare reversals where an incomplete-markets economy produces a
higher level of welfare than the complete-markets economy. These problems
are avoided by using second-order perturbation methods to approximate wel-
fare.Various applications of perturbation methods are suggested by Collard
and Julliard (2001), Jin and Judd (2002), Kim and Kim (2003) and Schmitt-
Grohé and Uribe (2004). Matlab code (requiring the symbolic toolbox for
analytic differentiation) is provided by Judd and also by Schmitt-Grohé and
Uribe.

3 A simple example

In this section, a simple stochastic growth model will be used to illustrate
some of the different methods of solution of DGSE models. This model is
of interest because: (a) although it is extremely simple, it does not admit to
analytic solution and (b) it has been extensively discussed in the literature,
in particular in a special issue of the Journal of Business and Economic
Statistics (see Taylor and Uhlig (1990) and subsequent articles).
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The problem to be solved is:

maxE0

∞∑
t=0

βt(1− τ)−1c1−τt (3.1)

subject to

ct + kt = θtk
α
t−1 + µkt−1 (3.2)

ln θt = ρ ln θt−1 + εt, (3.3)

where ct is consumption, kt is the end of period capital stock, and θt is tech-
nology. Technology θt is assumed to be stochastic, following an autoregressive
process with coefficient ρ, |ρ| < 1, where the shock εt is a serially uncorrelated
normally distributed random variable with zero mean and constant variance
σ2. The other parameters of the model are: τ , the coefficient of relative risk
aversion 0 < τ < 1, µ, (one minus) the rate of capital depreciation, 0 ≤ µ ≤ 1
and β, the rate of time discount, 0 < β < 1.

The Lagrangian of the problem is

L = maxE0

∞∑
t=0

βt
[

(1− τ)−1c1−τt + λ1t(ct + kt − θtkαt−1 − µkt−1)
+λ2t(ln θt − ρ ln θt−1 − εt)

]
. (3.4)

First order conditions for a maximum are

∂Lt
∂ct

= βt(c−τt + λ1t) = 0 (3.5)

∂(Lt + Lt+1)

∂kt
= βtλ1t − βt+1Et[λ1t+1(θt+1αk

α−1
t + µ)] = 0 (3.6)

∂(Lt + Lt+1)

∂θt
= βt(λ2tθ

−1
t − λ1tkαt−1)− βt+1λ2t+1ρθ

−1
t = 0 (3.7)

∂Lt
∂λ1t

= ct + kt − θtkαt−1 − µkt−1 = 0 (3.8)

∂Lt
∂λ2t

= ln θt − ρ ln θt−1 − εt = 0 (3.9)

Substituting (3.5) into (3.6) and rearranging gives the Euler equation

c−τt = βEt[c
−τ
t+1(θt+1αk

α−1
t + µ)]. (3.10)

Solving the model is achieved either by explicitly solving the optimisation
problem (3.4) or by solving the first order conditions defined by the set of
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equations (3.10) together with (3.8) and (3.9). (Note that the equation (3.7)
that serves to determine λ2t can be neglected since λ2t doesn’t appear in any
other equation.)

The solution of the problem will be a pair of nonlinear decision rules

ct = h1(kt−1, θt)

kt = h2(kt−1, θt).

A deterministic steady state of the model is given by

c∗ = (
αβ

1− βµ
)α/(1−α) + (µ− 1)(

αβ

1− βµ
)1/(1−α)

k∗ = (
αβ

1− βµ
)1/(1−α) (3.11)

θ∗ = 1.

3.1 Linear Quadratic Approximation

McGratten (1990) derives a linear quadratic approximation to the nonlin-
ear optimisation problem (3.4) around the deterministic steady state (3.11).
However, her solution, which follows the approach of Kydland and Prescott
(1982), has been criticised by Judd (1998), because it neglects the second or-
der terms arising from the curvature of the model equations (3.2) and (3.3) at
the steady state. The correct linear quadratic approximation follows Magill
(1977). Levine, Pearlman and Pierse (2006) show that this is identical to the
approach used by Benigno and Woodford (2003) in the context of a different
model.

The Magill approach is equivalent to taking a second order Taylor expan-
sion of the Lagrangian around the steady state solution of the deterministic
optimisation problem. Computing second order derivatives at the steady
state we have

∂2Lt
∂c2t

= −τβtc−τ−1∗ = Q11,
∂2Lt
∂ct∂kt

= 0 = Q12

∂2(Lt + Lt+1)

∂k2t
= −βt+1[λ1∗α(α− 1)kα−2∗ ] = Q22

∂2(Lt + Lt+1)

∂kt∂θt
= −βtλ1∗αkα−1∗ = Q23

∂2(Lt + Lt+1)

∂θ2t
= βtλ2∗ − βt+1λ2∗ρ = Q33
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∂2L

∂λ1t∂ct
= 1 = J11

∂2(Lt + Lt+1)

∂λ1t∂kt
= 1− αkα−1∗ − µ = J12

∂2Lt
∂λ1t∂θt

= −kα∗ = J13

∂2Lt
∂λ2t∂ct

= 0 = J21,
∂2Lt
∂λ2t∂kt

= 0 = J22

∂2(Lt + Lt+1)

∂λ2t∂θt
= (1− ρ) = J23.

This gives rise to a second order approximation of the Lagrangian

Lt(ct, kt, θt) ' Lt(c∗, k∗, 1) +
1

2

 ct − c∗
kt − k∗
θt − 1

′  Q11 0 0
0 Q22 Q23

0 Q′23 Q33

 ct − c∗
kt − k∗
θt − 1


+

(
λ1t − λ∗1
λ2t − λ∗2

)′(
1 J12 J13
0 0 J23

) ct − c∗
kt − k∗
θt − 1

 .

3.2 Linear and Log-Linear Approximation

Christiano (1990) discusses solving the stochastic growth model by linear and
log-linear approximation. He derives explicit formulae for the linear (3.12)
and log-linear (3.13) approximations to the decision rule for kt taken around
the deterministic steady state values k∗ and c∗:

b0 = (1− λ)k∗, b1 = λ, b2 =
qλ

1− βρλ
kt = b0 + b1θt + b2kt−1 (3.12)

a0 = (1− λ) log k∗, a1 =
q

k∗

λ

1− βρλ
, a2 = λ

log kt = a0 + a1 log θt + a2 log kt−1 (3.13)

where

q = β

[
(1− ρ)

(
c∗
k∗

+ 1− µ
)

+
ρβ

τ
(β−1 − µ)

c∗
k∗

]
k∗

ψ = 1 + β−1 +
(1− α)(1− βµ)

τ

c∗
k∗

and

λ =
ψ −

√
ψ2 − 4/β

2
.
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3.3 Non-linear solution methods

Non-linear solution methods solve the first order conditions (3.10) , (3.8) and
(3.9) explicitly for a solution over a finite time horizon t = 1, · · · , T . The
assumption of perfect foresight is made to reduce the problem to a deter-
ministic one. Two general approaches are possible: a standard algorithm for
solving non-linear rational expectations problems such as stacked-Newton or
Fair-Taylor, or the parameterised expectations algorithm.

General first-order solution methods such as Fair-Taylor require that the
equations are normalised, with a different endogenous variable on the left-
hand side of each equation. One such normalisation is

ct = [βc−τt+1(θt+1αk
α−1
t + µ)]−1/τ (3.14)

kt = θtk
α
t−1 + µkt−1 − ct.

An alternative normalisation is

ct = θtk
α
t−1 + µkt−1 − kt

kt = kt + (θtk
α
t−1 + µkt−1 − kt)−τ − β(µ+ θet+1αk

α−1
t )(θt+1k

α
t + µkt − kt+1)

−τ .
(3.15)

Note that in the first normalisation, ct is the jump variable. In the second,
there are two jump variables, kt and θt.

One important consideration in the solution of finite horizon non-linear
RE models, is the setting of terminal conditions for the jump variables. In
the first normalisation, a value needs to be set for cT+1. In the second normal-
isation, terminal values are needed for kT+1 and θT+1. Terminal conditions
can help pin down a solution, even in cases where no steady state or multiple
steady states may exist.

3.4 Parameterising expectations

The problem in solving the stochastic growth model is in finding the expec-
tation

cet+1 (3.16)

in (3.10) where

cet+1 = ct[β(αθtk
α−1
t−1 + µ)]

1
τ .

This expectation is a function of the state variables xt = {kt−1, θt} but its
form is unknown. Note that on the assumption of model consistent expecta-
tions,

cet+1 = ct+1 .
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den Haan and Marcet (1990) propose a general method for solving models
by approximating expectations such as (3.16) using a functional form

ψt(xt; δ)

where xt is a p × 1 vector of state variables and δ is a k × 1 vector of
parameters. These parameters are chosen such as to minimise the sum of
squared residuals

min
δ

T∑
t=1

(ct+1 − ψt(xt; δ))2 .

This is simply a nonlinear least squares problem and can be solved using
Newton’s method by iterating on

δs = δs−1 + (Ψ′s−1Ψs−1)
−1Ψ′s−1(c+1 − ψ(x; δs−1))

where

Ψs−1=
∂ψ

∂δ′

is the T × k matrix of derivatives of ψ with respect to the parameters δ
evaluated at iteration s− 1.

The functional form of ψ should be chosen so as to be able to approximate
the expectation as closely as possible. den Haan and Marcet suggest the class
of power functions

expPn(ln(x))

where Pn is a polynomial function of degree n. With large enough n, this
class of functions can approximate any function Rp

+ → R+ arbitrarily well.
For the stochastic growth model they suggest

ψt(kt−1, θt; δ) = δ1k
δ2
t−1θ

δ3
t = expP1(ln kt−1, ln θt)

but also consider higher order power functions.

4 WinSolve tutorial on DSGE models

WinSolve provides several algorithms for solving DSGE models. The stacked-
Newton and Fair-Taylor algorithms allow direct solution of the non-linear
first-order conditions or the expectations can be parameterised using the den
Haan and Marcet algorithm. Alternatively, an automatic linear or non-linear
approximation can be done and the linearised model solved via the qz algo-
rithm. This tutorial demonstrates these different solution methods on the
stochastic growth model developed in Section 3.
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4.1 Non-linear methods

In the WinSolve model definition language the stochastic growth model can
be written as

ltheta = rho*ltheta(-1)+norm(sigma2); theta=exp(ltheta);

c = (beta*c(1)ˆ(-tau)*(theta(1)*alpha*kˆ (alpha-1)+mu))ˆ(-1/tau); (4.1)

k = theta*k(-1)ˆalpha + mu*k(-1) - c;

where the model parameters ρ, α, β, µ, τ , and σ have been coded as WinSolve
parameters rho, alpha, beta, mu, tau and sigma respectively. The equation
on the second line corresponds to the Euler condition (3.10). The model
parameters have been set to the values ρ = .95, α = .33, β = .95, µ = 1.0,
τ = 0.5, and σ = .1 corresponding to case 1 in Taylor and Uhlig (1990),
which is a high variance case.

Figure 4.1: The model object

The model to be opened is file rbcnl.txt. The equations can seen by double
clicking on the icon in the model object window (Figure 4.1) or selecting Edit
model from the File menu, which opens the text editor.

The first step is to solve numerically for the deterministic steady state
of the model. In order to do this, we first need to create a new data file of
2500 undated observations that will be replaced by the steady state solution.

Click on the Create new data file icon , or select the Create new data file...
option from the Data menu. In the dialog box, select frequency Undated and
data period 1 to 2500. Finally, check the Initialise data box to initialise all
observations to zero. These options are illustrated in Figure 4.2. Click on
the OK box to exit.

Before solving for the steady state, the variables c and k must be reset
to a positive value, otherwise, the solution will fail. Go into the Edit data /
adjustments dialog box and reset the data values for c and k to 1.

Now we can solve for the deterministic steady state of the model. Click

on the Solve model icon or select Solve model ... from the Solve menu.
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Figure 4.2: Create new data file dialog box

Choose Steady state solution from the Solution mode list as in Figure ?? and
click OK. Viewing the results, it will be seen that the deterministic steady
state values of k and c are 15.4864 and 2.46993 respectively. It can be verified
that these values indeed correspond to the analytic solutions given in (3.11).
Having found the deterministic steady state, this will now be used as the
data base for further runs of the model. From the Solve menu, select the
option Set last solution as base. A popup box will warn you that ”this will
overwrite your current base values”. Click on Yes to agree to the change.

The model can now be solved dynamically, using the deterministic steady

state as base values. Click on the Solve model icon or select Solve model
... from the Solve menu. This time, choose Dynamic model solution from
the Solution mode list. The non-linear model equations will be solved dy-
namically using the stacked Newton algorithm and the assumption of perfect
foresight.

The model will now be solved again, this time using the parameterised ex-
pectations algorithm of den Haan and Marcet (1990). WinSolve implements
the parameterised expectations algorithm through a function defined in the
model definition language. For the case of the stochastic growth model, the
expected value c(1) can be parameterised by replacing the original equation
for c in (4.1) with

cexp=cˆtau*(alpha*theta*k(-1)ˆ(alpha-1)+mu);

c = (beta*parexp(cexp(1),k(-1),theta,1,2))ˆ(1/tau); (4.2)

The WinSolve function parexp() takes arguments defined by

parexp(y, x1, · · · , xp [, δ1, · · · , δk] , n, p)
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Figure 4.3: Model solution dialog box

where y is the expectation to be parameterised, x1, · · · , xp are the state
variables, n is the order of the power function and p is the number of state
variables. δ1, · · · , δk represent optional initial values for the parameters of the
power function. Good initial values will improve the speed of convergence of
the method. Once a model has been solved with parameterised expectations,
WinSolve will save the solution values of the parameter vector δ and will
use these as starting values in subsequent solutions. This will speed up
convergence in these subsequent runs.

Note that parameterising expectations does not require a separate solu-
tion algorithm in WinSolve. The Fair-Taylor method will be automatically
selected but the parameterised expectations algorithm will be doing all the
work since, apart from the function parexp(), the model is completely back-
ward looking.

The equations (4.2) have already been included in the file rbcnl.txt as
an alternative equation for c. To activate the parameterised expectations
algorithm, all we need to do is to switch to the alternative equation. Select the
Switch alternative equations option in the Assumptions menu which brings
up the dialog box in Figure (4.4). Choose the equation with description ‘1st
order parameterised equation’ from the Description list box, and click Done.

Now the model must be solved again. WinSolve will automatically select
an appropriate solution method for the parameterised expectation equation.

Simply click on the Solve model icon or select the Solve model option
from the Solve menu, and then click on OK to commence model solution.

The three solutions to the model for variable c are graphed in Figure 4.5.
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Figure 4.4: Switch alternative equations dialog box

It can be seen that there is very little difference between the stacked Newton
and parameterised expectations solutions. (Both were solved using the same
drawing of shocks to technology).

4.2 Approximation methods

We now want to solve the stochastic growth model using linear and log-linear
approximation of the non-linear model equations (4.1). It will be demon-
strated that the approximate linear decision rules computed analytically by
Christiano (1990) can be replicated in WinSolve using an automatic lineari-
sation (or log-linearisation) procedure computed at the deterministic steady
state.

In order to proceed, the model needs to be written in a slightly different
way, based on equation (3.15), where the variable c has been subsituted out
so that the only variables are k and θ. The rewritten model is given by

log(theta) = rho*log(theta(-1)) + norm(sigma*sigma);

k = k+(theta(-1)*k(-1) ˆ alpha + mu*k(-1)-k)ˆ(-tau)

-beta*(mu+theta*alpha*kˆ(alpha-1))*(theta*kˆ alpha+mu*k-k(1))ˆ(-tau);

and the model equations are in file rbclin.txt.
As before, the first step is to solve for the deterministic steady state. Open

the model and create a new data file of 2500 undated observations, initialised
this time to 1. Then solve for the steady state and set this solution as the
data base. It should be verified that the steady state solution for k is 15.4864
as before.

To compute a linearisation around the deterministic steady state, select
Linear solution options... from the Solve menu. The Model linearisation
dialog box shown in Figure 4.6 will open. Choose Data base as the run to
use and choose observation 4 (3 or greater) as the point at which to linearise.
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Figure 4.5: Nonlinear solutions of stochastic growth model

Select linearise or log-linearise as appropriate and uncheck all boxes except
Compute Blanchard-Kahn solution.Then click OK to finish.

The output is presented in a table. Firstly, the (generalised) eigenvalues of
the state space representation are shown and the Blanchard-Kahn conditions
checked. Then the decision matrices are displayed. For the linear case, the
eigenvalues are

1.14, 0.95, 0.92

so that there is one unstable eigenvalue and two stable eigenvalues and the
conditions for a unique solution are satisfied. In this case there are no infinite
eigenvalues so that the state space representation is non-singular. The slope
coefficients of the decision rule are given in the table:

θt kt−1
kt 1.88723 0.923547

The present version of WinSolve does not display the intercept in the
decision rule (the next release will do so). Nevertheless, the slope coefficients
are identical with those computed from the analytical formulae derived by
Christiano in (3.12) which gives the rule as

kt = 1.18398 + 1.88723θt + 0.923547kt−1.
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Figure 4.6: Model linearisation dialog box

Similarly, for the log-linear approximation, the eigenvalues are

1.14, 0.95, 0.92

as before and the coefficients of the decision rule are

θt kt−1
kt 0.121863 0.923547

The Christiano decision rule in this case is

log kt = 0.209478 + 0.121863 log θt + 0.923547 log kt−1

so that, as before, the slope coefficients produced by WinSolve are identical
with those derived by Christiano. Note that it is only possible to derive deci-
sion rules analytically in very simple cases, whereas the numerical procedure
used by WinSolve can be applied for any model, however large.
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