
Stability of a U. K. Money Demand Equation: a Bayesian

Approach to Testing Exogeneity∗

M. Lubrano
GREQE, Université d’Aix-Marseille
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Abstract

The paper analyses an M3 demand for money equation for the United Kingdom. Attention is paid to
the policy change that occurred in 1971 with the introduction of the measure known as Competition
and Credit Control. Classical and Bayesian single equation instrumental variables procedures are
developed to investigate the exogeneity of the short-term interest rate and the constancy of the
parameters of the underlying relationships. The parameters of the short-term equation have changed
as well as the exogeneity status of the interest rate variable but the parameters of the long-run
equation appear to be less affected by the policy change.

1 Introduction

A large number of demand for money equations in the United Kingdom exhibit parameter instability
across the major policy change that occurred in 1971 with the introduction of the measures known as
Competition and Credit Control (CCC).1 Their instability has been attributed to a structural break on
the (implicit) justification that the CCC changes were specifically directed to changing the competitive
structure of the banking system. We note, however, that these equations are often estimated by Ordinary
Least Squares (OLS) though it has occasionally been argued that the interest rate should be treated as an
endogenous variable— see e.g. Artis and Lewis (1976). Furthermore, as we shall see below, the interest
rate setting process was indeed fundamentally modified with the introduction of CCC. Following Engle
et al. (1983) these are precisely the circumstances under which an invalid exogeneity assumption entails
instability of OLS estimators. This issue, which is central to our paper, is developed further in Section
3.1 below.

The main object of our paper is, therefore, to develop operational classical and Bayesian Instrumental
Variables (IV) procedures for analysing the exogeneity of a variable in a single structural equation. These
procedures atre then used to investigate whether the instability of a demand for money equation has
been induced by the invalid assumption that the interest rate is exogenous or whether it corresponds to a

∗Published in Review of Economic Studies (1986), Vol. 53, pp. 603–634. This paper has benefitted from numerous
discussions with L. Bauwens, J. H. Drèze, J. P. Florens, V. Ginsburgh, G. E. Mizon and M. Mouchart. Three referees have
made a number of insightful and constructive comments. Special thanks are due to D. F. Hendry for his constant willingness
to comment on our findings and to suggest new routes of investigation. (some of which are yet to be tested!) and also
to B. Govaerts for her invaluable assistance in the development of the Bayesian numerical algorithms we have been using.
Obviously we claim full responsibility for errors and shortcomings. The support of “Les Services de la Programmation de
la Politique Scientifique” of the Belgian Government through the “Projet d’Action Concertée No. 80.85-12” is gratefully
acknowledged. Part of the work was done when M. Lubrano and R. Pierse visited CORE whose support is gratefully
acknowledged.

1 A noticeable exception is the M1 demand for money equation estimated by Hendry (1980) and updated in Hendry
and Richard (1983), whose coefficients are stable over the period 1963(i)–1980(ii).
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genuine structural break. These alternativesd whose policy implications are quite different are formalised
in Section 3.1 below.

The paper is organised as follows. In Section 2 we discuss the specification of an M3 demand for
money equation that is first estimated by OLS under the working assumption that the interest rate is
exogenous; multiplicative dummies are then introduced and the equation is reestimated by Weighted
Least Squares (WLS) in order to obtain a parsimonious description of parameter insdtability; in Section
3 we develop calssical and Bayesian IV procedures for investigating the exogeneity of a variable within
a bivariate linear model; these procedures are described in general terms in Section 3.1 while Sections
3.2 to 3.5 regroup the more technical material; in Section 4 our money demand equation is imbedded
with an interest rate equation in a two-equation model and the exogeneity of the interest variable is
then formally analysed; conclusions are drawn in Section 5 and the technical details are presented in an
appendix.

Sections 2 and 3 are largely autonomous with respect to each other and the reader may consider
skipping Sections 3.2 to 3.5 that contain the more technical material. Those whose interest lies in the
algebra of an exogeneity analysis may wish to read first Section 3 that provides the theoretical background
for the empirical analysis.

2 Single Equation Analysis of the Demand for Money

2.1 The institution background: competition and credit control

The introduction of the measures known as Competition and Control (CCC) in October 1971 was an
attempt by the monetary authorities to move from a regime where the primary objective was to restrain
movements in short term interest rates, to a regime in which control over the monetary aggregates could
be achieved through the free operation of market forces. To this end, restrictive practices in the banking
sector were swept away, the clearing bank cartel (which had previously linked the rates on Advances
and time deposits to the administered “Bank Rate”) was abolished and the banks were encouraged to
compete for funds by offering competitive rates. In 1972 the Bank Rate was replaced by a “Minimum
Lending Rate” that was market determined, being related to the Treasury bill rate.

Part of the rationale for the policy change was evidence from published studies of the demand for
monet in the U.K. (Fisher (1968), Laidler and Parkin (1970), Goodhart and Crockett (1970)) of a
stable behavioural relationship that could be exploited to achieve the objectives of monetary control.
However, the immediate result of the switch to the new regime weas an upsurge in holdings of interest
earning deposits that was unpredicted by these demand functions and Hacche (1974) reported a complete
breakdown of the Bank of England’s own forecasting equations for M3 after 1971. The operation of the
CCC regime proved difficult as Goodhart (1980) describes and some of the direct control mechanisms
abolished in 1971 were later reintroduced before the regime finally came to an end on 20th August 1981.

The breakdown of M3 equations with CCC have several alternative explanations. One possibility
is that the equations were misspecified because of omitted variables and the obvious candidate here is
the own-rate of interest on money. We discuss this further below. However, money demand equations
estimated by OLS implicitly assume that it is legitimate to treat the rate of interest as an exogenous
variable. Since the introduction of CCC has moved the economy from a regime of administered interest
rates to a regime where interest rates are market determined, we have to consider the possibility that
the exogeneity status of the interest rate has changed. Finally, we must also consider the possibility that
a demand for money function may not be invariant to a change in the process generating interest rates
even if, within each regime, the interest rate is a valid exogenous variable. The Lucas (1976) critique
would suggest that agents might modify their behaviour in response to an attempt by the authorities to
control it in this way.

2.2 Specification search

Our discussion of the institutional background suggests that we should, ideally, conduct a joint search for
the money demand and for the interest rate equations. Such a search would, however, prove computation-
ally ery demanding and, anyway, hard to conduct given the difficulties encountered in the specification of
the interest rate equation. Therefore, on grounds of tractability, we have adopted the following sequen-
tial procedure: in this section, we conduct a single equation specification search for the money demand
equatioon equation by means of OLS and WLS estimation under the working assumption that interest
rates, as well as the other current dated regressors are weakly exogenous in the terminology of Engle
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Figure 1: Actual and fitted (Table III Col 4) values of ∆ ln(M/P ), 1963(i)–1981(ii)

et al. (1983); the specification that emerges from this analysis is then used as such in Section 4, where it
is embedded within a bivariate model for the purpose of investigating the exogeneity of the interest rate.

As discussed further in Section 5, the empirical evidence relative to the present application seems to
suggest that our final conclusions about the exogeneity of the interest rate are unlikely to be severely
biased by the adoption of this operational stepwise seach procedure.

2.3 The data

The data consists of 79 seasonally adjusted quarterly observations (1961(iv)–1981(ii)), for which the
first five are used for the initialisation of the lagged variables and the last four for predictive tests.
The remaining 70 observations are eventually divided into the subperiods A{1963(i)–1971(iii)} and B
{1971(iv)–1980(ii)}. The variables relevant to our analysis are:

M : the M3 personal sector monetary aggregate;
Y : real personal disposable income;
P : the deflator of Y
R: the local authorities short-term interest rate

The sources are described in Appendix A. Graphs of ∆ ln(M/P ), ∆ ln(1 +Rt) and ln(M/(PY )) are
reproduced in Figures 1–3. Our choice of variables calls for a number of comments.

The choice of personal sector M3 as the approproiate money aggregate follows from our discussion of
the institutional background. Some initial work was done using total M3 but proved unsatisfactory in
many respects probably reflecting different behaviour by individuals and companies. That led us to look
at the sectoral disaggregation of M3 following, thereby, the Bank of England practice. A complete study
of M3 would then require the specification of separate personal and company sectors demand equations
typically depending on different interest rates. An exogeneity analysis within this joint context would
prove computationally very demanding, espaecially within a Bayesian framework and goes beyond the
objectives of the present paper. Therefore, we restricted ourselves to looking at the personal sector only.

The choice of the interest rate variables raises a number of issues. On theoretical grounds our equation
should include the opportunity cost of holding M3, a substantial part of which is non-interest bearing.
It should, therefore, include the differential between an outside interest arte and the own-rate on the
interedst bearing component of M3 as well as that outside rate itself. Before 1971, since all short-term
interest rates were closely liked to the Bank Rate, the own-rate differential is essentially constant so
that its impact is only estimible in the second subperiod. The Local Authority rtae was chosen as a
representative outside rate. WE included both rates in initial empirical work over the whole period but
found the own rate wholly insignificant.2 This seems to indicate that the motivation for holding bank

2An F -test of the specification corresponding to column 1 in Table I against a specification that included in addition
lags of the own interest rate up to 5th gave an F value of 0.24 with degrees of freedom 6 and 37.
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Figure 2: Actual and fitted (Table III Col 4) values of ∆ ln(1 +Rt), 1963(i)–1981(ii)

Figure 3: Actual and fitted (Table III Col 4) values of ln(M/(PY ), 1963(i)–1981(ii)

time-deposit accounts instead of such substitutes as Building Socity accounts, etc., lies elsewhere than
in the interest rate differential. We therefore kept only the Local Authority rate, while wishing to stress
that the issue of the substitution effect of interest rates is not thereby closed.

2.4 Notation

The following mnemonics are used throughout the paper: MP for Mt/Pt, MPY for Mt/(PtYt), D for
the difference operator (∆ when conventional notation is used), i for the i-th lag operator, Di for the
i-th difference operator (∆i), DD for the squared difference operator (∆2). L for natural logarithms (ln)
and R for 1 + Rt. For example , DDLP2 reads as ∆2 lnPt−2, D4LY as ∆4 lnYt, LR5 as ln(1 + Rt−5),
and so on. Also C stands for the constant term and Ci for the i-th quarter seasonal dummy (i = 1, 2, 3).

Other notations are: SSR for the sum of squared residuals (these sums are instrumental in the
computation of several F -test statistics), SDR for the unbiased standard deviation of the regression
error, R2 for the unadjusted squared multiple correlation coefficient and DW for the conventional Durbin-
Watson statistic. Following Kiviet (1985) no formal significance is attached to the DW statistic. However,
values well within the du critical interval are at least not worrying.
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The following statistics are reported when available:
η1(4) is a forecast test (see Hendry (1979)) asymptotically distributed as χ2

4 on the null of no predictive
failure;
η2(4, k) is the Chow (1970) test for parameter constancy for four periods approximately distributed as
F4,k on the null of parameter constancy;
η3(1) is the squared h-test for first-order autocorrelation, asymptotically distributed as χ2

1 on the null of
serial independence;
η4(8) is the Box and Pierce (1970) test statistic for 8th-order residual autocorrelation, asymptotically
distributed as χ2

8 on the null of serial independence;
η5(4) is a Lagrange multiplier test for 4th-order autocorrelation and
η5(4, j) is an F -version thereof (see Godfrey (1978)), approximately distributed as χ2

4 and F4,j on the
null of serial independence;
η7(1) is the test for first-order ARCH (see Engle (1982a)) asymptotically distributed as χ2

1 on the null
of no ARCH effect.

2.5 Results

The specification search has been conducted along the principles described in Hendry and Richard (1982,
1983) and consists of three main steps.

Step 1. Independent specification searches over the pre- and post-1971 periods, each of which consists
of 35 observations only, cannot be envisaged because of lack of degrees of freedom. Therefore, the
starting point of our analysis is an unrestricted OLS regression over the 70 observations of DLMP—i.e.
∆ ln(Mt/Pt)—on 27 regressors consisting of a constant term, three seasonal dummies, current and lagged
values up to the fifth-order of LP , LY , LR and lagged values of LM . THis equation serves essentially
to calibrate the error standard deviation, which equals here 0.0095 and to ensure that the error process
is a mean innovation process (MIP) relative to our data base. The individual coefficient values are of
little interest and are not reported here.

Successsive simplifications lead to equation (2.1)

∆ ln(M/P )t = β0 + β1∆ ln(M/P )t−1 + β2∆ lnPt + β3∆2 lnPt−2 + β4 ln(M/(PY ))t−5 (2.1)

+ β5∆4 lnYt + β6∆ ln(1 +Rt) + β7∆2 ln(1 +Rt−3) + β8 lnRt−5 + ut

or, in our notation,

DLMP = C + β1DLMP1 + β2DLP + β3DDLP2 + β4LMPY 5

+ β5D4LY + β6DLR+ β7DDLR3 + β8LR5

whose coefficients are reported in column 1 of Table I. In short, equation (2.1) takes the form of an
error correction mechanism (ECM) for real money balance. Its steady-state equilibrium solution is
characterised by a constant velocity of circulation of money. The disequilibrium feedback coefficient
(LMPY 5) exhibits an unusually long lag of 15 months though the time-lag is in fact poorly identified
and equation (2.1) is only marginally better than those in which LMPY 5 is replaced by any one of the
other LMPY ivariables.3 The coefficient of the interest rate DLR has the “wrong” sign according to
conventional wisdom, an issue to which we shall pay further attention below.

Step 2. Equation (2.1) is then reestimated over the subperiods A and B separately. The results are
found in columns 2A and 2B of Table I. Four salient features emerge from the comparison between those
two regressions:

(i) The sample variance is substantially larger in period B than it is in period A with a variance ratio of
about 3. While this could be a symptom of model misspecification arising from changes in omitted
variables orthogonal to those included, we know of no such variables and have treated the problem
as one of changes in the market structure;

(ii) the coefficient of DLR changes sign with the introduction of CCC and the explanation for the
overall positive coefficient of DLR in equation (2.1) lies in the post-1971 period. Though at this
stage of our analysis the difference is not yet statistically significant, it will prove critical for our
purpose and has obvious policy implications, some of which are discussed in Section 5;

3 In connection with this issue of time lag, note also the significance of the coefficient LR5.Throughout the simplification
search we have run auxiliary regressions to test for the inclusion of additional lags but none has turned out significant.
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Table I: OLS and WLS estimators for the UK money demand equation
Dependent variable: DLMP

Case 1 2A 2B 3 4
estimator OLS OLS OLS WLS WLS
periods A+B A B A+B A+B

DLMP1 0.28(0.10) 0.11(0.16) 0.36(0.15) 0.27(0.10) 0.29(0.10)
DLP −0.36(0.13) −0.48(0.24) −0.44(0.22) −0.45(0.15) −0.38(0.13)
DDLP2 −0.16(0.12) −0.36(0.20) −0.16(0.18) −0.21(0.13) −0.23(0.12)
LMPY 5 −0.04(0.01) −0.09(0.06) −0.03(0.02) −0.03(0.02) −0.04(0.01)
D4LY 0.08(0.05) 0.11(0.06) 0.01(0.08) 0.07(0.05) 0.08(0.05)

DLR 0.12(0.10) −0.08(0.18) 0.17(0.15)

{
-0.17 (0.18)
0.16 (0.13)

{
-0.13 (0.17)
0.16 (0.12)

DDLR3 −0.06(0.07) −0.28(0.15) −0.04(0.10)

{
-0.30 (0.15)
-0.01 (0.09)

{
-0.34 (0.14)

—

LR5 −0.17(0.08) −0.13(0.11) −0.12(0.13) −0.14(0.07) −0.16(0.07)

SSR 0.0586 0.00115 0.00368 0.00405 0.00419
SDR 0.0100 0.0071 0.0126 0.0088 0.0086
R2 0.78 0.73 0.83 0.77 0.77
DW 1.92 2.45 2.00 2.11 2.06
Fp,q 1.50 — — 0.89 0.65
p, q 15, 43 — — 6, 46 11, 46
η1(4) 5.69 2.77 4.03 2.96 3.48
η2(4, k) 0.98 0.54 0.54 0.53 0.64
k 58 23 23 52 57
η3(1) 0.15 8.06 0.10 0.12 0.01
η4(8) 5.63 28.78 4.81 11.43 10.67
η5(4) 2.48 18.98 1.07 5.38 3.71
η6(4, j) 0.50 5.63 0.15 1.00 0.74
j 54 19 19 48 53
η7(1) 0.007 3.292 0.593 0.907 0.245

Notes
1 The numbers in parentheses are standard errors (corrected for degrees of freedom)
2 Joint F -test of linear restrictions against the following alternatives: OLS: unrestricted initial
equation. WLS: no common coefficient across the two subperiods (conditional on a variance
ratio equal to 2.8).

(iii) The coefficient of LR5, which determines the direction of the long-run impact of interest rate on
the velocity of circulation of money, has the “right” sign and is remarkably constant across the
change of regimes;

(iv) None of the differences between the other coefficients appear to be statistically significant suggesting
that we can impose common coefficient restrictions across the two regimes, gaining thereby precision
on the point estimates.

Step 3. Equation (2.1) is finally reestimated by WLS over the entire sample period with multiplicative
dummies accounting for the major coefficient changes. The results are reported in columns 3 and 4 of
Table I. In both columns common coefficients for the variablesDLMP1, DLP , DDLP2, LMPY 5, D4LY
and LR5 have been imposed while in column 4 we have also imposed common seasonal coefficients and
have deleted DDLR3 in the second subperiod.

The specification in Column 4 is the one that will be used for the exogeneity analysis. It contains
13 unrestricted coefficients (namely the 9 reported in Table I Column 4, togther with constant term
C = −0.15(0.05) and seasonals C1 = −0.03(0.004), C2 = m − 0.001(0.004) and C3 = −0.01(0.003))
leaving 57 degrees of freedom. Our analysis does not seem to provide significant statistical evidence
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against this equation. Despite data, period and adjustment differences, the actual values for M3 are
in accordance with those in Hendry and Mizon (1979), except for the tiny ECM coefficient and for
the long term unit elasticity of income (Hendry and Mizon (1979) found 1.6 while in the course of our
specification search we have set it equal to 1). A discussion of some of the intriguing features of our
equation is postponed until Section 5 since we first have to investigate whether our results suffer from
simultaneous biases.

3 Bivariate Instrumental Variables Analysis and Exogeneity

3.1 Introduction

Let us first indicate how the framework developed in Engle et al. (1983) applies within the present
context. For the sake of simplicity, we can restrict our attention to a stylised version4 of the bivariate
model we shall construct below for the variables ṁt = ∆(M/P )t and ṙt = ∆ ln(1 + Rt). It consists of
the money demand equation

ṁt = βṙt + ut (3.1)

paired with the interest rate reaction function

ṙt = ρzt + vt (3.2)

where zt is an exogenous (instrumental) variable. It is assumed further that (ut, vt) are jointly identically
and independently normally distributed with mean zero and covariance matrix(

ut
vt

)
∼ IN(0,Σ) with Σ =

(
σ2
u σuw

σvu σ2
v

)
. (3.3)

Let β̂ denote the OLS estimator of β in (3.1).
The joint distribution of (ṁt, ṙt|zt) factorises5 into the product of the marginal distribution of (ṙt|zt),

as characterised by (3.1), and the conditional distribution of (ṁt|ṙt, zt), which is normal with conditional
expectation

E(ṁt|ṙt, zt) = (β + µ)ṙt − µρzt (3.4)

with µ = σuv σ
2
v and conditional variance τ2 = σ2

u − µ2σ2
v . Therefore, if σuv = 0 and if, furthermore, β

and (ρ, σ2
v) are not subject to cross-restrictions, then the conditional distribution of (ṁt|ṙt, zt) is fully

characterised by the structural equation (3.1) on its own and the OLS estimator β̂ is BLUE. Equally,
importantly, as long as β is invariant with respect to intervention affecting (ρ, σ2

v) or, more generally, the

distribution of zt, the OLS estimator β̂ is not affected by these interventions.
The situation changes dramatically if σuv differs from zero since the sampling distribution of β̂

depends heavily on the distribution of ṙt and zt. To take the simplest case, let us assume that zt is
identically and independently normally distributed with zero mean and variance σ2

z . In such a case, the

distribution of ṁt|ṙt (which is marginalised with respect to zt since we are discussing the properties β̂,
the OLS estimator of ṁt on ṙt only) is normal with conditional expectation

E(ṁt|ṙt) = (β + µ∗)ṙt (3.5)

with µ∗ = σuv(σ
2
v+ρ2σ2

z)−1 and conditional variance τ2∗ = σ2
u−µ2

∗(σ
2
v+ρ2σ2

z). In such a case, interventions

affecting the “nuisance” parameters (ρ, σ2
v , σ

2
z) will induce changes in the sampling properties of β̂, even

when the underlying “structural” coefficient is invariant with respect to these interventions.
In our application we are confronted with the empirical finding that β̂ has changed with the intro-

duction of CCC in 1971. Our analysis suggests immediately three possiible explanations for the lack of
invariance:

4 All the regressors that are inessential to the argument are deleted for notational convenience. Therefore we are left
with the simple model described by equations (3.1) and (3.2), which is, however, meant to be interpreted as a stylised
version of a short run dynamic model (not to be confused with the static long run solution of the model we shall discuss
in Section 5 below). Our discussion of weak exogeneity specifically refers to a property of (short term) dynamic model.

5 Our more general model being dynamic it is essential to view this factorisation as a sequential one (t : 1 → T ) in
the sense that, at time t, it is conditional on the past of all the variables in the model. Therefore, the concept under
consideration here is that of weak exogeneity. Strong exogeneity requires in addition that ṁt does not Granger-cause ṙt
(e.g. through zt).
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(i) β itself has changed, a possibility that cannot be ruled out since a declared objective of the policy
change was precisely to modify the market structure and since, more generally, the Lucas (1976)
critique obviously requires our attention in the present context;

(ii) σuv 6= 0 and the interest rate setting process has changed;

(iii) the interest rate setting process has not changed but σuv has (the institutional background suggests,
in particular, that σuv might be zero before the introduction of CCC and non-zero after that).

Obviously, these three possibilities are not mutually exclusive.
The analysis of our empirical findings relies heavily upon a correct interpretation of the “behavioural”

content of the weak exogeneity assumption σuv = 0. Let, therefore, equation (3.1) be reformulated in
terms of expectations, as in Florens et al. (1974, 1979):

E(ṁt|zt) = β E(ṙt|zt). (3.6)

It appears that the condition σuv = 0 is necessary and sufficient for the equivalence of equation (3.4) as

E(ṁt|ṙt, zt) = βρzt + (β + µ)(ṙt − ρzt) (3.7)

where ρzt and ṙ − ρzt are the “anticipated” and “unanticipated” components of ṙt. This indicates that
when σuv = 0 (µ = 0) economic agents treat in exactly the same way the anticipated and unanticipated
components of ṙt. We shall describe such a situation as one of “effective” control to be contrasted
with situations where economic agents might find ways of countering the (restrictive) measures that are
enforced upon them.

Having set the basic framework, let us now outline the algebra of the exogeneity analysis for the
simple model (3.1)–(3.3). Doing so enables us to motivate the introduction of the auxiliary parameters
on which our analysis focuses and leaves the reader with the possibility of skipping the more technical
details in the sections that follow. Unless we restrict our attention to deriving Lagrange Multiplier (LM)
test-statistics for weak exogeneity, e.g. as in Engle (1982b), we need an operational factorisation of the
llikelihood function that works even when σuv 6= 0 and that, as much as possible, enables us to deal
analytically with the nuisance parameters (ρ, σ2

v) in equation (3.2) and to draw inference on σuv or on
appropriate functions thereof.

As is often the case with likelihood functions, it proves convenient to set the factorisation in terms
of the distribution of the unobservable disturbance terms (ut, vt). This can be done by using either of
the following two auxiliary regression functions:

(i) the regression of vt on ut:
vt = λut + ε1t, ε1t ∼ IN(0, ω2) (3.8)

with λ = σuv σ
−2
u and ω2 = σ2

v − λ2σ2
u; or

(ii) the regression of ut on vt:
ut = µvt + ε2t, ε2t ∼ IN(0, τ2) (3.9)

where µ and τ2 are defined as in (3.4).

The correspondence between Σ and the two sets of parameters (σ2
u, λ, ω

2) and (σ2
v , µ, τ

2) is one-to-one
and is characterised by the identitites

Σ =

(
σ2
u λσ2

u

λσ2
u ω2 + λ2σ2

u

)
=

(
τ + µ2σ2

v µσ2
v

µσ2
v σ2

v

)
. (3.10)

Starting with Wu (1973) most exogeneity tests are based on the auxiliary regression (3.9), whether
implicitly or explicitly when, in a Lagrange Multiplier (LM) framework as described e.g. in Engle
(1982b), they amount to including an estimated residual v̂t as an additional regessor in (3.1) and testing
for its significance. In fact, as indicated by (3.4), the associated factorisation coincides with the sequential
factorisation of the joint distribution of (ṁt, ṙt|zt) into the conditional distribution of (ṁt|ṙt, zt) and the
marginal distribution of (ṙt|zt). However, when σuv 6= 0 this factorisation does not meet our requirements
since, in particular, the nuisance parameters (ρ, σ2

u) appear on both sides. This is not the case in the
factorisation associated with the auxiliary regression (3.8). This explains why our subsequent analysis is
based on the following factorisation of the likelihood function

L(Y;θ) = L1(Y;θ1) · L2(Y;θ2), (3.11)
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with

L1(Y;θ1) =

T∏
t=1

f1N (ut|0, σ2) (3.12)

L2(Y;θ2) =

T∏
t=1

f1N (vt|λut, ω2) (3.13)

where Y denotes the T × 2 matrix of observations on (ṁt, ṙt), ut and vt are given in (3.1) and (3.2)
respectively, θ1

′ = (β, σ2) and θ2
′ = (β, ρ, λ, ω2). Also f1N (x|µ, ν2) denotes a univariate normal density

function with mean µ and variance ν2, Its expression is given in Appendix B.
Conditionally on β, the submodel (3.13) takes the form of a standard regression model to which we

can apply the usual classical and Bayesian techniques in order to derive analytical expressions for the
conditional point estimates and posterior distributions of (ρ, λ, ω2). They are to be marginalised with
respect to β at the final stage of the analysis. Technical details are provided in Sections 4.2 and 4.3.
Note that λ = 0 if and only if σuv = 0 so that inference on the exogeneity of rt is a direct byproduct of
our analysis.

The covariance matrix of (ṁt, ṙt|zt), say V, is related to β and Σ through the following identity:

V = Q′ΣQ with Q =

(
1 0
β 1

)
= (b : s) say (3.14)

so that λ, as defined via (3.8), may be written as

λ = b′Vs(b′Vb)−1. (3.15)

The question then arises of deciding whether prior information on λ should be thought in terms of
Σ or in terms of β and V. Technically, it makes little difference, in the present case at least, since,
conditionally on β, the correspondence between Σ and V is one-to-one and bilinear and since such prior
densities as the inverted-Wishart are functionally invariant with respect to such transformations, Simply
Σ and V cannot be both a priori independent of β. We have a definite preference for reasoning in terms
of V since, from a statistical point of view, disturbances are merely “derived” unobservable quantities
which de facto regroup all factors that have been omitted from the equations under consideration.6 It
seems, therefore, difficult to assume for example, prior independence between β and Σ, while we have
no conceptual problems in doing so between β and V.

Three important issues remain to be clarified before we can concentrate on the more technical issues.

1. The interest rate equation (3.2), as well as the more general equation we shall introduce below,
takes the form of an Instrumental Variables (IV) equation whereby the current value of money ṁt is
excluded from the list of regressors. The point is that we lack economic theories to support a complete
specification search towards a genuine “structural” equation for the interest rate and that we are faced
with limited sample sizes (35 observations in each regime). Considerations of robustness against the
specification of the interest rate equation are, therefore, critical since the latter is only instrumental
in the construction of the exogeneity tests.

2. Conventional Limited Information Maximum Likelihood (LIML) procedures, or approximations thereof
such as Two-Stage Least Squares (2SLS), require that all the predetermined variables in the money
demand equation should be included in zt, viewing thereby equation (3.2) as an “unrestricted reduced
form” equation. This requirement will not be imposed here since it renders a parsimonious selection
of instruments impossible taking into account the facts that zt already includes 12 variables and that
sample size is limited. Also hypotheses of interest such as the non-causality of money on interest rate
cannot be dealt within an LI framework since, as we have seen, the money demand equation includes
lagged values of money. In the present application instruments will, therefore, be selected on their
own merits.

3. As discussed e.g. in Leamer (1978) there are a number of ways in which a Bayesian can approach
the problem of “testing” a (point) hypothesis. A central issue is that of whether or not he should

6 Furthermore, as discussed e.g. in Florens et al. (1979) or Richard (1984), the distribution of the disturbances no
longer uniquely characterises the distribution of the observables as soon as the number of relationships under consideration
is strictly less than the number of endogenous variables as is naturally the case with general linear models such as errors-
in-variables models or so-called “incomplete” simultaneous equations models.
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use continuous density functions whereby zero prior and posterior probabilities are attached to zero
measure subsets of the parameter space. One route consists of attaching non-zero prior (discrete)
probabilities to the hypothesis of interest and in analysing how the corresponding “prior odds” are
revised into “posterior odds” in the light of sample evidence. In the specific context of exogeneity
tests, this route has been adopted e.g. by Reynolds (1982) within an LI framework. It is our view that
this approach can occasionally lead to questionable empirical results for example when it produces
posterior odds which are much more extreme than one should be willing to accept on the basis of
limited sample evidence. In fact, as argued e.g. by Kiefer and Richard (1979), it can easily lead
to paradoxes when the (informative) prior odds are paired with prior densities which are otherwise
“non-informative” within each hypothesis. We shall adopt here a “smoother” procedure whereby
we rely upon continuous prior densities. Prior beliefs that a variable might be exogenous are then
expressed in the form of an informative prior density for λ which is centred around zero. Sample
evidence will then either tighten the corresponding posterior density around zero (confirmation) or
shift it away from zero (refutation). The complete posterior distribution of λ is obviously far more
informative than the scalar posterior odds and, for example, one can always examine whether or not
an appropriate 95% posterior probability interval for λ contains the origin.

Evidently conducting inference about a quantity such as λ requires the choice of a metric whereby one
can attach meaning to a non-zero value of λ. We see two ways of approaching this problem within the
present context. Note first that, following its definition in (3.8), λ is subject to the inequality constraint
|λ (σu/σv)| < 1. Though λ and σu/σv are not independent this inequality can serve to have a rough
appreciation of how far λ is from zero. (The ratio of the OLS point estimates of σu and σv is of the
order of 1.1 to 1.2 in both regimes.) We shall follow an alternative route, which seems more relevant to
the object of our paper, whereby we shall compute the prior and posterior correlations bewteen β and λ
since these enable us to translate approximately shifts in λ into shifts in β within a metric of standard
deviations.

3.2 Sampling theory analysis

The money demand equation we have obtained in Section 2.4 is rewritten as

b′yt + c′xt + ut (3.16)

where b′ = (1 : β), yt
′ = (ṁt : ṙt) and xt ∈ Rm regroups all the other variables entering the equation

including lagged y’s. The interest rate IV equation is written as

ṙt + p′zt + vt (3.17)

where zt ∈ Rk represents the set of instruments. In order to single out the variables that are common
to xt and zt let the corresponding data matrices be partitioned as

X = (X1 : X2), Z = (X2 : X3) (3.18)

where X1 is T ×m1 with m1 +m2 = m and m2 +m3 = k. Under a bivariate normality assumption the
model consisting of equations (3.16) and (3.17) is rewritten as

yt|xt, zt ∼ N(ξt,V) (3.19)

b′ξt + c′xt = 0 (3.20)

s′ξt + p′zt = 0, t = 1→ T (3.21)

where s′ = (0 : 1) has been introduced for notational convenience. The model (3.19)–(3.21) belongs to a
class of linear models discussed in Florens et al. (1974, 1979), Lubrano and Richard (1981) and Richard
(1984) whose derivations serve as the basis of our analysis. The likelihood function associated with the
model (3.19)–(3.21) factorises as in (3.11)–(3.13) except that ut and vt are now given by (3.16) and (3.17)
respectively. Also θ1 and θ2 now include the additional parameter vector c. Let c′ be partitioned into
(c1
′ : c2

′) conformably with X in (3.18). Additional notation is:

M2 = IT −X2(X2
′X2)−1X2

′, MZ = IT − Z(Z ′Z)−1Z ′ (3.22)
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u1 = Yb + X1c1. (3.23)

The superscripts ˜ and ̂ denote IV and OLS estimators respectively.
The concentrated log-likelihood function of (β, c1) and the corresponding stepwise IVML estimator

of λ are derived in Appendix C:

L∗IV (Y;β, c1) = −T
2

log

[
u1
′M2u1

u1
′Mzu1

∣∣∣∣(u1 : Ys)′Mz(u1 : Ys)

∣∣∣∣] (3.24)

λ̃(β, c1) = (u1
′Mzu1)−1u1

′MzYs (3.25)

where use has been made of the following identities:

Mzu = Mzu1 and min
ε2

u′u = u1
′M2u1. (3.26)

Numerical optimisation of (3.24) yields the IVML estimators of (β, c1) and, by subsitution in (3.25),
that of λ. Under the null hypothesis of λ = 0, the equations (3.16) and (3.17) are estimated by OLS
independently of each other and the corresponding log-likelihood function is given by

L∗OLS = −T
2

log
(
b̂′Y′MxYb̂ · s′Y′MzYs

)
(3.27)

with b̂′ = (1 : β̂). The log-likelihood ratio (LR) test statistic for the null hypothesis λ = 0 is

η8(1) = 2
[
L∗IV (Y; β̃, c̃1)− L∗OLS

]
L−−−→
λ=0

χ2
1. (3.28)

3.3 Bayesian analysis

As usual we have to find a compromise between flexibility and tractability in the choice of a prior density.
We wish to specify a prior density which is information on (V, β) and, thereby on λ. We might also
think of useful prior information as regards c although, as discussed below, taking it into account would
substantially increase the computational burden. It is anyway convenient to think of V and (β, c) as
being a priori independent.7 We have little grounds for assessing an informative prior density in the
form

D(β, c, p,V) = D(β, c) ·D(p|V) ·D(V) (3.29)

where D(β, c) is left unspecified at the moment, D(V) is an inverted-Wishart density

D(V) = f2iw(V|V0, ν0) (3.30)

whose functional expression is given in Appendix B and D(p|V) is a limiting non-informative natural
conjugate prior density

D(p|V) ∝ ω−k (3.31)

with ω2 being the variance associated with the partial likelihood function (3.13). A number of alternative
forms of the prior densities (3.30) and (3.31) are discussed in Lubrano and Richard (1981).

Conditionally on β, the prior density of Σ is also inverted-Wishart

D(Σ|β) = f2iw(Σ|Q′V0Q, ν0) (3.32)

where Q is defined in (3.14). The conditional distribution of λ given β is, therefore, a univariate t-density

D(λ|β) = f1t

(
λ|λ0,

h0
ω2
0

, ν0

)
(3.33)

whose functional expression in given in Appendix B. The hyperparameters λ0, h0 and ω2
0 are functions

of β and are defined by the identity

Q′V0Q =

(
h0 h0λ0
h0λ0 ω2

0 + h0λ0λ
2
0

)
. (3.34)

7 We could accomodate prior dependence between V and (β, c) by letting V0 in (3.30) be a function of β and c since
the analytical derivations in our analysis are mostly conditional on them. In particular, an independent prior density on
Σ leads to replacing Q′V0Q in (3.32) by, say, Σ0. The final numerical analysis of the posterior density of (β, c, λ) as well
as the elicitation procedure described in Section 3.4 would have to be adapted in consequence.
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The posterior densities of (β, c) and (λ|β, c1) are derived in Appendix D

D(β, c|Y) ∝
(
h∗
ω2
∗

)(1/2)(ν−1)

|Ω|−(1/2)ν∗ ·D(β, c) (3.35)

D(λ|β, c1,Y) = f1t

(
λ

∣∣∣∣λ∗, h∗ω2
∗
, ν∗

)
(3.36)

where ν∗ = ν0 + T and
σ2
∗ = b′V0b + u′u (3.37)

Ω∗ =

(
h∗ h∗λ∗
h∗λ∗ ω2

∗ + h∗λ
2
∗

)
= Q′V0Q + (u1 : Ys)

′MZ(u1 : Ys). (3.38)

If D(β, c) is a mutivariate Student, then the posterior density (3.35) belongs to a class of so-called
3-1 poly-t densities for which, as discussed in Richard and Tompa (1980), there exist efficient numerical
methods of analysis. The evaluation of the marginal posterior denity (3.36) jointly with respect to β
and c1 proves tedious to implement. An operational alternative consists first in multiplying together
the posterior densities (3.35) and (3.36), obtaining thereby the joint posterior density of β, c and λ and
taking advantage of a number of cancellations in the product. The evaluation of the posterior density
of (β, λ) at any given point then requires numerical integration with respect to c but, dince D(c|β, λ)
is also poly-t, can be organised in such a way that the cost of computation does not critically depend
on the dimension of c. Finally, the marginal posterior densities of β and λ are obtained by means of
coneventional bivariate numerical integration procedures paying attention to the fact that these densities
can be extremely skewed. The details of this implementation are given in Appendix E where it is also
shown that the use of a non-informative prior density on c

D(c|β) ∝ 1 (3.39)

results in a major reduction of the cost of computation. In contrast we can be fully flexible in the choice
of D(β).

3.4 Elicitation of the prior density

The prior density of V and β has to be assessed in such a way that it reflects ones prior beliefs on the
exogeneity of ṙt. the first and second order moments of (λ|β) are central to this discussion. Following
(3.33) they can be written as

E(λ|β) = λ0 = φ0f1(βφ0, ρ0), ν0 > 1 (3.40)

V(λ|β) =
1

ν0 − 2

ω2
0

h0
=

1

ν0 − 2
[φ0 · f2(βφ0, ρ0)]2, ν0 > 2 (3.41)

together with
f1(x, ρ) = (ρ− x) · (1− 2ρx+ x2)−1 (3.42)

f2(x, ρ) = (1− ρ2)1/2 · (1− 2ρx+ x2)−1 (3.43)

φ0 = (ν022/ν
0
11)1/2, ρ0 = ν012(ν011 · ν022)−1/2. (3.44)

Figure 4 and 5 reproduce charts of the functions f1 and f2 for different values of ρ and x > 0. Their
values for x < 0 are obtained by symmetry since f1(−x, ρ) = −f1(x, ρ) and f2(−x, ρ) = −f2(x, ρ). We
note that f1 and f2 are bounded functions of x for any given ρ such that |ρ| < 1.

|f1(x, ρ)| < 1

2
(1− ρ2)−1/2 and 0 < f2(x, ρ) < (1− ρ2)−1/2. (3.45)

It follows that the marginal prior and posterior moments of λ are finite (up to the order ν0 and ν∗
respectively) on the sole condition that the prior distribution of β is integrable even if the prior and
posterior moments of β themselves do not exist, as with the Cauchy prior used below. In contrast the
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Figure 4: Function f1(x, ρ) in (3.42) for different ρ.

Figure 5: Function f2(x, ρ) in (3.43) for different ρ.

existence of prior and posterior moments of µ, as defined in (3.9), require sharper prior information
on β (as discussed e.g. in Dréze and Richard (1983), the sample information itself typically does not
contribute to the existence of moments for β). This is, in our view, a major argument for conducting
inference on the exogeneity of ṙt in terms of λ instead of µ.

The above discussion suggests the following procedure for specifying a prior density on V and β
which approximately reflects our prior beliefs on the exogeneity of ṙt:

1. We first specify a proper prior density D(β), e.g. in the form of a Cauchy density or of a more
“informative” t-density;

2. The prior expectations of v11 and v22, the diagonal elements of V, are then elicitated on such heuristic
considerations as the expected “goodness of fit” of our model. The choice of ν0 determines the prior
squared variation coefficient E2(vii)/Var(σii) for i = 1, 2;

3. ρ0 is then selected in such a way that E(λ) takes the desired value, possibly at the cost of trying
different values and computing the corresponding E(λ). If, in particular, ρ0 = φ0M(β), where M(β)
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denotes the prior median of β, we expect E(λ) to be near zero given the symmetry of D(β) and the
shape of f1, as depicted in Figure 4.

3.5 Shifts of regime

The above analysis can be applied as such to the pre- and post-1971 periods separately. However,
hypotheses about the constancy of the coefficients of the demand for money equation over the complete
sample period are of major interest to us. Joint tests for the exogeneity of subsets of variables can be
conducted within a sampling theory framework along the lines discussed in Richard (1980) by means of
the computer program PERSEUS developed by Pierse (1982). The sampling theory results which are
reported in Section 4 have been computed with PERSEUS.

However, PERSEUS has no Bayesian counterpart since it is obvious from the discussion in Section 3.3
that the analysis of posterior densities combining together sample information from the two subperiods
would prove analytically tedious and numerically very costly. This explains why the Bayesian results
which are reported in Section 4 have been computed for each period separately.

4 Bivariate Analysis of the Demand for Money

4.1 Specification of the reaction functions

We have already mentioned in Section 3.1 the difficulties we encountered in the specification of the
interest rate reaction function. For each subperiod, the selection of instruments has been conducted
by OLS estimation. The choice is restricted to lagged values of money (LM) and interest rate (LR)
together with current and lagged values of prices (LP ), reserves (LB) and unemployment (LU) since
these are likely targets of monetary policies. The results which are reported in Table II are less than
fully satisfactory though the signs are generally in accordance with common sense. Neither of the two
equations has a constant growth long-run solution and, in line with our description of the institutional
background, money does not enter significantly into the first period reaction function.

Table II: OLS estimators of the interest rate equations
Dependent variable DLR

Period A
DLR2 : −0.28 (0.16) D2LU : −0.013 (0.007)
DLR4 : −0.21 (0.18) DDLU3 : −0.035 (0.013)
DDLP2 : 0.27 (0.18) D4LB : −0.017 (0.007)
DLM2 : 0.10 (0.16) DDLB1 : −0.021 (0.011)

SSR = 0.00083 SDR = 0.0060 R2 = 0.59 DW = 1.67
η1(4) = 32.13 η2(4, 23) = 3.33 η3(1) = 1.65 η4(8) = 9.09

η5(4) = 3.44 η6(4, 19) = 0.52 η7(1) = 3.66

Period B
D4LR1 : −0.13 (0.10) DLPU : 0.74 (0.26)
LR2 : −0.19 (0.10) DLM1 : 0.60 (0.21)
DLR3 : 0.28 (0.15) DLB : −0.028 (0.008)
DDLP : −0.38 (0.15) DLB4 : −0.012 (0.007)
DLP2 : −0.31 (0.21) D2LU1 : −0.051 (0.019)

SSR = 0.00257 SDR = 0.111 R2 = 0.80 DW = 2.22
η1(4) = 16.60 η2(4, 23) = 1.66 η3(1) = 2.24 η4(8) = 7.47

η5(4) = 6.78 η6(4, 19) = 1.02 η7(1) = 2.80
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4.2 IVML estimation and exogeneity tests

The IVML estimators of the coefficients of the demand for money equation have been obtained with
PERSEUS. Some of our empirical findings in section 3 have been reexamined within this framework
including evaluating the constancy of several coefficients, particularly those of LMPY 5 and LR5. the
main results are reported in Table III except for the seasonal coefficients and are numbered conformably
with their OLS equivalents in Table I.

Table III: FIML (PERSEUS) estimation

Case 2A 2B 3 4

Period A B A B A B

Demand for money equation

DLMP1 0.04 (0.088) 0.29 (0.085) 0.19 (0.061) 0.17 (0.061)
DLP −0.49 (0.131) −0.41 (0.124) −0.44 (0.093) −0.39 (0.082)
DDLP2 −0.29 (0.131) −0.11 (0.105) −0.15 (0.084) −0.18 (0.076)
LMPY 5 −0.06 (0.034) −0.04 (0.010) −0.04 (0.010) −0.04 (0.008)
D4LY 0.17 (0.036) 0.01 (0.048) 0.11 (0.029) 0.11 (0.028)
DLR −0.51 (0.125) 0.30 (0.099) −0.55 (0.125) 0.24 (0.092) −0.41 (0.120) 0.23 (0.088)
DDLR3 −0.25 (0.088) −0.25 (0.076) −0.28 (0.089) −0.03 (0.058) −0.32 (0.086) —
LR5 −0.13 (0.062) −0.12 (0.044) −0.15 (0.045) −0.17 (0.044)

Reaction functions

DLR2 −0.25 (0.081) −0.23 (0.082) −0.25 (0.085)
DLR4 −0.18 (0.094) −0.18 (0.094) −0.18 (0.097)
DDLP2 0.26 (0.101) 0.31 (0.093) 0.32 (0.095)
D2LU −0.02 (0.004) −0.02 (0.004) −0.02 (0.004)
DDLU3 −0.03 (0.007) −0.03 (0.007) −0.04 (0.007)
D4LB −0.01 (0.004) −0.02 (0.004) −0.02 (0.004)
DDLB1 −0.01 (0.006) −0.01 (0.006) −0.01 (0.006)
DLM2 0.03 (0.075) 0.05 (0.077) 0.06 (0.081)

D4LR1 −0.14 (0.055) −0.13 (0.054) −0.13 (0.054)
LR2 −0.19 (0.055) −0.19 (0.054) −0.20 (0.054)
DLR3 0.28 (0.083) 0.29 (0.083) 0.29 (0.080)
DDLP −0.43 (0.078) −0.42 (0.077) −0.42 (0.077)
DLP2 −0.26 (0.112) −0.24 (0.110) −0.23 (0.110)
DLP4 0.71 (0.138) 0.70 (0.137) 0.70 (0.136)
DLM1 0.62 (0.111) 0.62 (0.109) 0.62 (0.109)
DLB −0.03 (0.004) −0.03 (0.004) −0.03 (0.004)
DLB4 −0.01 (0.004) −0.01 (0.004) −0.01 (0.004)
D2LU1 −0.06 (0.010) −0.06 (0.010) −0.06 (0.010)

Log-likelihood −48.29 −51.78 −53.39
Joint ex. tests 5.3 6.0 5.1
Indiv. ex. tests 3.5 1.8 5.0 1.0 3.9 1.2
|Σ| 7.1E − 10 7.3E − 9 8.0E − 10 8.1E − 9 8.3E − 10 8.8E − 9
σu 0.0066 0.0105 0.0067 0.0110 0.0064 0.0114
σv 0.0050 0.0087 0.0050 0.0087 0.0050 0.0087
σuv 1.9E − 5 −3.2E − 5 1.8E − 5 −3.4E − 5 1.4E − 5 −3.5E − 5

Note: The numbers in parentheses are asymptotic standard errors (uncorrected for degrees of freedom)

These results clearly indicate that the shift in the OLS estimate of β is not caused by simultaneity
biases since the IVML estimate of β exhibits an even larger shift with the introduction of CCC! Also the
weak exogenity of the interest rate suffers a borderline rejection at the 5% level in the first period while
it is accepted in the second period. We shall elaborate upon these results in our conclusions. In the
meantime we should take due account of the fact that the small sample properties of the LR test statistic
(3.26) for weak exogeneity are largely unknown. We might of course use degree of freedom adjustments
as in Kiviet (1985) but the application of the Bayesian procedures we have developed in Section 3.3
and 3.4 should provide us with more useful information as regards the exact (finite sample) information
content of our data set.
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4.3 Elicitation of the prior densities

The elicitation procedure described in Section 3.4 is now applied separately to the pre- and post-1971
period. In both cases, several specifications, including “non-informative” ones, are considered in order
to conduct a sensitivity analysis. All the informative prior densities are constructed in such a way that
E(λ) = 0.

4.3.1 The period 1963(i)–1971(iii)

Our prior beliefs are that β, the short-term elasticity of ṁt with respect to ṙt, probably lies between
−1.0 and 0. Since inferences on λ are likely to be sensitive to the choice of D(β)—see Figures 4 and
5—two different specifications are considered:

(i) The Cauchy density:
D(β) ∝ [1.0 + 4.0(β + 0.5)2]−1 (4.1)

is invariant with respect to the normalisation of the money demand equation and is relatively
“non-informative” with Pr(−1 ≤ β ≤ 0) = 0.5;

(ii) The Student density:
D(β) ∝ [1.0 + 0.75(β + 0.5)2]−1/2 (4.2)

is more informative with standard deviation σβ ' 0.41 and Pr(−1 ≤ β ≤ 0) = 0.8. The prior means
of v11 and v22, the conditional variances of (ṁt, ṙt|xt, zt), can usefully be thought of as fractions
of the corresponding unconditional variances. For the first period, E(v11) is set equal at 20% of
the sampling variance of ṁt and E(v22) at 40% of the sampling variance of ṙt. The corresponding
numerical values are:

E(v11) = 0.243× 10−4, E(v22) = 0.233× 10−4. (4.3)

We have little grounds on which to select ν0, which can be interpreted as the size of the “hypothetical
sample” on which prior beliefs are based. Three different values will be considered: ν0 = 0 (non-
informative on V), ν0 = 15 and ν0 = 30. Note that φ0 and ρ0, as defined in (3.45) are invariant with
respect to the choice of ν0 > 0 and so is E(λ|β) in (3.40).

The discussion in Section 3.4 suggests taking ρ0 = −0.5φ0 so that, following (3.42), v012 = −0.5 v022.
This completes the first period elicitation of V0 which is set at zero if ν0 = 0 and is otherwise given by

V0 = (ν0 − 2)

(
0.243 −0.117
−0.117 0.233

)
× 10−4, ν0 = 15, 30 (4.4)

Numerical integration of the bivariate prior density D(λ, β)—with ν0 > 0—reveals that in all cases
|E(λ)| < 0.01σ(λ) as intended (see Table IV).

4.3.2 The period 1971(iv)–1980(ii)

The fact that we already know that β has changed sign after the introduction of CCC creates an obvious
problem in our assessment of the “prior” density of β. In order to cope with this problem two different
sets of prior densities are introduced.

(i) It is unlikely that in 1971 many economists would have predicted the change in the sign of β. The
prior densities (4.1) and (4.2) are taken as representative of such “pre-1971” prior beliefs:

(ii) As an alternative we can put ourselves in the in the position of an economist who would have
correctly inferred the positive sign of β after 1971, e.g. on the grounds that the initial impact of
an unexpected rise in interest rates will be to increase money holdings if money is a buffer financial
asset and if agents take time to adjust towards long-run equilibrium. Changing the sign of the
median of β in the prior densities (4.1) and (4.2) yields densities which are representative of such
“post-1971” prior beliefs.

For the rest the elicitation procedure is conducted as in Section 4.3.1, except that E(v11) is now set
equal at 10% of the sampling variance of ṁt. V0b is then given by

V0 = (ν0 − 2)

(
0.647 0.716S

0.716S 1.432

)
10−4, ν0 = 15, 30 (4.5)
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Table IV: First period prior and posterior moments of β and λ

D(β) ν0 β λ ρβλ

Prior

S 15 −0.50 0.00 −0.74
(0.41) (0.44)

S 30 −0.50 0.00 −0.84
(0.41) (0.39)

Posterior (DLM2 included)

C 0 — 0.37 —
(0.11)

S 0 −0.80 0.41 −0.25
(0.35) (0.11)

S 15 −0.67 0.35 −0.60
(0.33) (0.15)

S 30 −0.56 0.27 −0.77
(0.31) (0.19)

Posterior (DLM2 excluded)

S 0 −0.67 0.41 −0.31
(0.25) (0.11)

S 15 −0.61 0.36 −0.60
(0.24) (0.14)

S 30 −0.54 0.28 −0.75
(0.23) (0.17)

Figure 6: First period prior and posterior densities of β

with S = sign(M(β)). In the rest of the paper we use a two-character notation to identify the prior
sign on β and V: the first character refers to the prior density on β (C for a Cauchy-density and S for
a t-density) and the second one indicates the value of ν0.

4.4 Posterior densities

4.4.1 The period 1963(i)-1971(iii)

Two sets of posterior densities have been computed. In the first set, DLM2 is included in the reaction
function and it is, therefore the weak exogeneity of ṙt which is under investigation. In the second set
DLM2 is excluded on the basis of the results given by the OLS specification search, in which case the
weak exogeneity of ṙt implies its strong exogeneity. The posterior means of β and λ are reported in Table
IV together with prior moments. Graphs of the prior and posterior densities of β and λ are reproduced
in Figures 6 and 7. The results obtained under a non-informative prior density for V (ν0 = 0) confirm
the rejection of the exogeneity of ṙt. The C-O graph of the posterior densities of β reveals that the
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Figure 7: First period prior and posterior densities of λ

(marginal) likelihood function is highly skewed towards large negative values of β. Note, furthermore
that β and λ are negatively correlated. the introduction of prior information on β in the form of the
t-density (4.2) reduces the skewness and its impact increases with ν0.

4.4.2 The period 1971(iv)-1980(ii)

Table V: Second period prior and posterior moments of β and λ

(a): β0 = 0.5 (b): β0 = −0.5

D(β) ν0 β λ ρβλ
D(β) ν0 β λ ρβλ

Prior Prior

S 15 0.50 0.00 −0.76 S 15 −0.50 0.00 −0.76
(0.41) (0.97) (0.41) (0.97)

S 30 0.50 0.00 −0.81 S 30 −0.50 0.00 −0.81
(0.41) (0.91) (0.41) (0.91)

Posterior Posterior

C 0 — −0.29
(0.18)

S 0 0.45 −0.30 −0.54 S 0 0.16 −0.12 −0.73
(0.21) (0.17) (0.26) (0.26)

S 15 0.34 −0.12 −0.78 S 15 0.33 −0.45 −0.49
(0.20) (0.26) (0.20) (0.14)

S 30 0.25 0.13 −0.84 S 30 0.38 −0.59 −0.22
(0.20) (0.31) (0.19) (0.10)

The posterior means and variances of β and λ under the two sets of prior densities we have introduced
in Section 4.3.2 are reported in Tables V(a) and V(b) together with prior moments. Graphs of the
posterior densities of β and λ are found in Figures 8 to 11.

The results in Table V(a) are essentially unambiguous and lead to the acceptance of the weak ex-
ogeneity of ṙt under minimal prior information. We note simply that the second period sample is
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Figure 8: Second period prior and posterior densities of β (β0 = 0.5)

Figure 9: Second period prior and posterior densities of λ (β0 = 0.5)

comparatively more informative on β and less informative on λ than the first period sample. Also the
negative correlation between β and λ is more pronounced.

The results in Table V(b) have been derived under a prior density which is in conflict with the sample
evidence. The introduction of a prior density for β centred around −0.5 shifts the posterior density of β
towards negative values and the posterior density of λ towards positive values (in accordance with the
negative correlation between β and λ). It is, therefore, a mere coincidence that the posterior expectation
of λ is close to zero when ν0 = 0. The cases where ν0 = 15 or 30 clearly indicate that a conflict between
the prior and sample information can totally distort the evidence relative to exogeneity.
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Figure 10: Second period prior and posterior densities of β (β0 = −0.5)

Figure 11: Second period prior and posterior densities of λ (β0 = −0.5)

5 Conclusions

A first set of conclusions concerns the applicability of the Bayesian methods to the class of problems
we have discussed and, more specifically, to inference on exogeneity. The limited information maximum
likelihood framework whereby all the explanatory variables in the structural equation of interest have
to be included in the list of “instrumental variables” has proved inpractical for the sample sizes we
were confronted with. This has led us to develop instead an “instrumental variables” approach whereby
the instrumental variables are selected solely on their own contribution to the reaction function. We



M. Lubrano, R. G. Pierse, J.-F. Richard / Stability of a UK money demand equation 21

have demonstrated that this more general approach remains fully tractable. Prior information on the
exogeneity of a variable is easily taken into account.

The second set of conclusions concerns our money demand equation itself.

1. The evidence on the weak exogeneity of the interest rate is, at first sight, counterintuitive since it leads
to rejection in the first period and acceptance in the second period while we might have expected just
the opposite in the light of our description of the institutional background. However, as discussed in
Section 3.1, weak exogeneity measures the effectiveness of a control policy. Situations in which agents
find ways of bypassing the restrictions which are enforced upon them naturally lead to a rejection of
the weak exogeneity assumption either by linking together the coefficients in the relevant equations
or by inducing a significant correlation between the corresponding disturbances. Such may well have
been the case in the pre-CCC period where changes in the Bank Rate were rare and carried important
signalling effects (hence the presence of a term such as DDLR3 in our money demand equation) and
where banks could probably find ways of countering the restrictive “requests” they were confronted
with. In contrast the more erratic behaviour of interest rates after the introduction of CCC might have
made it more difficult for the economic agents to react differently to anticipated and non-anticipated
variations in the interest rates. These are, however, mere conjectures that would have to be supported
by a more detailed analysis of the economic background.

2. In Section 3.1 we proposed three alternative explanations for the shift in the OLS estimate of β, the
impact coefficient of the interest rate on money. Sample evidence unambiguously suggests that the
introduction of CCC has jointly induced a large shift in the structural coefficient β, a shift from a
significantly positive σuv to a moderately negative one and a substantial change in the interest equation
itself. The last two effects combine together in such a way that the OLS estimate underestimates
the shift in β! It is, however, comforting to discover that simultaneity biases do not seem to have
much effect on the other coefficients in the money demand equation, including those of LMPY 5 and
LR5 which determines the long-term impact of interest rate on the velocity of circulation of money.
This empirical finding also seems to suggest that the preliminary specification search based on OLS
estimation in Section 2 is unlikely to have severely biased our choice of a functional form for the money
demand equation and, therefore, to have distorted the evidence on the exogeneity of the interest rate
variable.

3. Our money demand equation presents a number of intriguing features which might deserve further
investigation. Two which are specific to the second subperiod are the positive sign of the impact
coefficient of interest rate, for which we have ventured a possible explanation in the course of Section
4.3.2, and the lack of significance of the own rate for which we have no explanation. A number of
problems probably hinge around the existence of a long-term solution characterised by a constant
velocity of circulation of money: the long lag associated with the disequilibrium feedback variable
LMPY (though the precise lag is essentially unidentified), the tiny ECM coefficient of LMPY 5 itself
and possibly also the unit income elasticity8

In fact we suspect that the two subperiods are probably more distinct than our analysis seems to
suggest. The functional form we have selected originates from an overall specification search which may
have been heavily influenced by the second subperiod, hence the overall positive sign of β. It did prove
convenient for our purposes to have a common functional form across the two regimes for the ease of
comparison and, more importantly, in order to gain degrees of freedom that were critically needed. With
larger sample sizes we might have conducted independent specification searches over the two regimes
but CCC has been abolished since 1981 and we might well be faced since with new coefficient changes
(though the 1982 data and our reading of recent economic indicators seem to confirm the positive impact
coefficient of interest rate on M3).

We would guess that the problem lies mostly with the CCC regime and that we need an ECM
formulation which is coherent both in level, as the present one is, and in differences, the latter requirement

8 We did compute t-test statistics for the addition of LY 5 to the first equations in Table I. The results are
Column 1 2A 2B 3 4
t-value: 2.18 0.22 0.53 1.72 1.89
This variable LY 5 is clearly not significant for runs on separate periods but the imposition of coefficient restrictions across

the two periods increases its significance. This might contribute towards explaining the non-unit elasticity found by Hendry
and Mizon (1979) and suggests (ex post) that we might usefully consider deleting the common coefficient restrictions for
D4LY . Such a modificatoion would, however, not affect our findings as regards the exogeneity of interest rates (compare
cases 2 and 4 in Table III).
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being critical with such money aggregates as M3, a substantial part of which is now bearing interest.9

Also the concept of cointegrability recently developed by Granger and Engle (1985) provides us with
another route of investigation worth exploring for the second regime.10

The comforting message in our analysis is that such additional investigation can probably be con-
ducted by means of OLS estimation if one’s attention is restricted to the CCC regime as it should be at
this level of investigation. Also the procedures we have developed in our paper are now fully operational
and could easily be applied in these and other contexts.

A The Data Sources

All data are quarterly and seasonally unadjusted. The following abbreviations are used:

ETAS Economic Trends Annual Supplement (1982 edition)
BESA1 Bank of England Statistical Abstract No. 1 (1970)
BESA2 Bank of England Statistical Abstract No. 2 (1975)
FS Financial Statistics (various issues)

M Personal Sector M3. Cumulated from changes from the Flow of Funds accounts.
Source: BESA2 (1963–1973), FS (1974–1981)

R Local Authority 3 month deposit rate (last working day).
Source: BESA1 (1963–1973), BESA2 (1970–1974), FS (1975–1981)

Y Real Personal Disposable Income (£million. 1975 prices. Source: ETAS
P Implied deflator for Personal Disposable Income. Souce: ETAS
U Unemployment rate (Total unemployed / Working population). Source: ETAS
B Real value of UK Official Reserves (£million. 1975 prices). Source: ETAS

B Notation for Density Functions

The properties of the distribution which are presented here are found e.g. in Zellner (1971) or in Dréze
and Richard (1983).

1. Multivariate Normal Distribution

fnN (x|µ,Σ) = (2π)−(1/2)n|Σ|−1/2 exp
1

2
(x− µ)′Σ−1(x− µ).

2. Multivariate t-Distribution

fnt (x|µ,H, ν) = π−(1/2)nΓ

(
ν + n

2

)
/Γ
(ν

2

)
|H|1/2[1 + (x− µ)′H(x− µ)]−(1/2)(ν+p).

3. Inverted Gamma Distribution

fiγ(σ2|s2, ν) =
[
Γ
(ν

2

)]−1(s2
2

)ν/2 (
σ2
)−(1/2)(ν+2)

exp−1

2

s2

σ2
.

4. Inverted Wishart Distribution

fniW (Σ|S, ν) =

[
2(1/2)νπ(1/4)n(n−1)

n∏
i=1

Γ

(
ν + 1− i

2

)]−1
· |S|(1/2)ν |Σ|−(1/2)(ν+q+1) exp−1

2
tr Σ−1S.

9We are grateful to D. F. Hendry for this suggestion.
10Though as illustrated in figure 3 a “long-run” OLS regression of LMPY on LR and a constant does not seem to

support an hypothesis of cointegrability of M and R.
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C Derivation of Formulae (3.24) and (3.25)

The likelihood fiunction of our model is given in (3.11)–(3.13) with respect to (c2, σ
2) and (ρ, λ, ω2)

respectively yields the following expressions:

c̃2 (β, c1) = −X2
′X2)−1X2

′u1 (C.1)

σ̃2(β, c1) =
1

T
u1
′M2u1 (C.2)

ρ̃ (β, c1) = −(Z′Z)−1Z′[Ys − λ̃(β, c1) ·M2u1] (C.3)

λ̃ (β, c1) = (u1
′MZu1)−1u1

′MZYs (C.4)

ω̃2 (β, c1) =
1

T

[
s′Y′MZYs − u1

′MZu1 · λ̃2(β, c1)
]

(C.5)

=
[
θ̂ (β, c1)

]−1
·
∣∣∣Ω̃ (β, c1)

∣∣∣
together with

h̃ (β, c1) =
1

T
u1
′MZu1 (C.6)

Ω̃ (β, c1) =
1

T
(u1 : Ys)

′MZ(u : Ys). (C.7)

The concentrated log-likelihood function is then given by

L∗IV (Y;β, c1) ∝ −T
2

log
[
σ̃2(β, c1) · ω̃2(β, c1)

]
(C.8)

∝ −T
2

log

[
u1
′M2u1

u1
′MZu1

− |(u1 : Ys)
′MZ(u1 : Ys)|

]
. (C.9)

More detail and generalisations to systems of equations are found in Richard (1984).

D Derivation of Formulae (3.25) and (3.26)

By application of the properties of inverted-Wishart densities as described e.g. in (Dréze and Richard,
1983, Appendix) the prior densities of (σ2|β) and (λ, δ2|β) as derived from (3.32) are given by

D(σ2|β) = fiγ(σ2|σ2
0 , ν0 − 1) (D.1)

D(λ, ω2|β) = f1N (λ|λ0, ω2h−10 ) · fiγ(ω2|ω2
0 , ν0) (D.2)

where (h0, λ0, ω
2
0) are defined in (3.34) and σ2

0 = h0 (a distinct notation is used for σ2
0 and h0 because their

posterior counterparts σ2
∗ and h∗, as defined below, differ and because it proves notationally convenient

to have common functional forms for the prior and posterior moments of (σ2, λ, ω2|β)). Let li(Y;β, c)
for i = 1, 2 denote the “marginalised” likelihood function as derived from Li(Y;θi) under the relevant
prior density.

Combining together the partial likelihood function (3.12) and the prior density (D.1) yields the
following expressions

D(σ2|Y, β, c) = fiγ(σ2|σ2
∗, ν∗ − 1) (D.3)

l1(Y;β, c) ∝ (σ2
∗)
−1/2(ν∗−1), (D.4)

with
σ2
∗ = σ2

0 + u′u + b′V0b + u′u and ν∗ = ν0 + T. (D.5)
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The product of the partial likelihood function (3.13) and the prior densities (3.21) and (D.2) is
handled in a smilar way, except that it proves convenient to derive sequentially the posterior densities of
(p|λ, ω2, ·) and of (λ, ω2|·) which are respectively

D(p|Y, λ, ω2, β, c) = fkN (p|p∗, ω2(Z′Z)−1) (D.6)

D(λ, ω2|Y, β, c) = f1N (λ|λ∗, ω2h−1∗ ) · fiγ(ω2|ω2
∗, ν∗) (D.7)

where
p∗ = −(Z′Z)−1Z′(Ys− λu) (D.8)

and, in parallel with (3.34),

Ω∗ =

(
h∗ h∗λ∗
h∗λ∗ ω2

∗ + h∗λ
2
∗

)
= Ω0 + (u1 : Ys)′MZ(u1 : Ys). (D.9)

Also l2(Y;β, c) is given by

l2(Y;β, c) = l2(Y;β, c1) ∝ (ω2
∗)
−(1/2)ν∗h

−1/2
∗ . (D.10)

The posterior density of (β, c) is given by the product of D(β, c) and of the two marginalised likelihood
functions (D.4) and (D.10) and may be rewritten as (3.35).

More detail and generalisations to systems of equations are found in Richard (1984).

E Implementation of the Bayesian Analysis in Section 3.3

Combining together formulae (3.35), (3.36) and (D.2), and taking advantage of the identity |Ω∗| = h∗ ·ω2
∗

we can write the joint posterior density of β, c and λ as

D(β, c, λ|Y) ∝ D(β, c) · (σ2
∗)
−(1/2)(ν∗−1)

[
ω2
∗ + h∗(λ− λ∗)2

]−1/2(ν∗+1)
. (E.1)

Throughout the rest of the discussion it is assumed that D(β, c) is a t-density. In all generality
D(c |β, λ,Y) is then a product of three kernels of t-densities, i.e. a so-called 3-0 poly-t density whose
evaluation requires a bivariate numerical integration on an auxiliary random variable—see Richard and
Tompa (1980) for details. All together the analysis of the posterior density (E.1) requires, therefore
a four-dimensional numerical integration. For the integration of β and λ we use a bivariate iterative
Simpson procedure, as described in Tompa (1973), which has proved far more reliable than the other
methods we have tested (such as Gaussian rules) given that the posterior density of β and λ can be
extremely skewed. It implies, however, that the algorithm has to be run twice to obtain the marginal
densities of β and λ since the use of a bivariate iterative Simpson rule is essentially incompatible with a
complete analysis of the marginal density associated with the inner integration loop. In compensation
this repetition provides a very useful check of numerical accuracy since the integrating constants and
the moments are evaluated twice on different grid points. For a relative precision of the order of 1%
a complete run of computation may require up to 200 minutes of CPU time on a DGMV/8000 mini
computer equipped with a floating point accelerator.

The cost of computation can be divided by a factor of 20 if we use the non-informative prior density
(3.39) on c. In such a case σ2

∗ is the sole factor in (E.1) which still depends on c2. It can be rewritten
as

σ2
∗ = b′V0b + u1

′M2u1 + (c2 − c∗2)′Z2
′Z2(c2 − c∗2) (E.2)

with
c∗2 = (Z2

′Z2)−1Z2
′u1. (E.3)

Therefore, the conditional posterior density of (c2|β, c1) is Student whence

D(β, c1, λ) ∝ D(β)(σ2
0 + u1

′M2u1)−1/2(ν∗−m2−1[ω2
∗ + h∗(λ− λ∗)2]−1/2(ν∗+1). (E.4)

The numerical analysis of D(λ, β, c1|Y) is then based on the following identities

σ2
0 + u1

′M2u1 = (c1 − c∗1a)′X1
′M2X1(c1 − c∗1a)

+ b′[V0 + Y′M2Y −Y′M2X1(X1
′M2X1)−1X1

′M2Y]b (E.5)
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ω2
∗ + h∗(λ− λ∗)2 = λ2(c1 − c∗1b)

′X1
′MZX1(c1 − c∗1b)

+ φ′[V0 + Y′MZY −Y′MZX1(X1
′MZX1)−1X1

′MZY]φ (E.6)

together with
c∗1a = −(X1

′M2X1)−1X1
′M2Yb (E.7)

c∗1b = − 1

λ
(X1

′MZX1)−1X1
′MZYφ (E.8)

φ = λb− s. (E.9)

It follows that the conditional posterior density of (c1|β, λ) is a product of two kernels of Student
densities, i.e. a so-called 2-0 poly-t density whose evaluation requires only a one-dimensional numerical
integration on an auxiliary random variable. The analysis of the posterior density (E.4) then require
altogether a tridimensional numerical integration. The numerical procedure we have just described has
proved reliable and numerically efficient. It is now part of a Bayesian Regression Computer Program
(BRP) developed at CORE.

We mention finally that, as discussed in Lubrano and Richard (1981), equally efficient numerical
procedures apply to the case where the independent prior density D(β, c) in (3.29) is replaced by a
conditional prior density D(β, c|σ2) where σ2 is the variance of ut, in the form of a conventional natural
conjugate prior density for the parameters of the sole equation (3.16). The posterior density of (β, c, λ),
as given in (E.1), then takes a simpler expression in that D(β, c) is incorporated within σ2

∗ in the form
of an additional quadratic term in (3.37) and a non-informative prior density on c is no longer required
to obtain an expression similar to (E.4). We decided, however, against using such a conditional prior
density which suffers the major drawback of imposing a spurious dependence between (β, c) and σ2.

References

Artis, M. J. and M. K. Lewis (1976). The demand for money in the United Kingdom, 1963–1973.
Manchester School 44, 147–181.

Box, G. E. P. and D. A. Pierce (1970). Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Association 65,
1509–1526.

Chow, G. C. (1970). Tests of equality between sets of coefficients in two linear regressions. Economet-
rica 28, 591–605.
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