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The problem of aggregation over micro units has had a long tradition in the econometrics literature,
stretching back to the pioneering work of Theil (1954). In this literature two issues in particular have
attracted attention. The first concentrates on the prediction problem of choosing whether to use macro
or micro equations to predict aggregate variables. This issue was raised by Grunfeld and Griliches (1960)
and is further addressed in a recent paper by Pesaran et al. (1989) (PPK). In PPK a generalised prediction
criterion and a formal statistical test of the hypothesis of perfect aggregation are developed. The present
paper considers the second strand in this literature which is concerned with the problem of ’aggregation
bias’ defined by the deviation of the macro parameters from the average of the corresponding micro
parameters. (See for example Theil (1954), Boot and de Wit (1960), Orcutt et al. (1968), Gupta (1971)
and Sasaki (1978).) In this paper we develop direct tests of aggregation bias in contrast to the indirect
test proposed by Zellner (1962) which tests the hypothesis that all the disaggregated coefficients are
equal. We also derive generalised versions of the tests for the case where the parameters of interest are
subsets or (possibly non- linear) functions of the full parameter vector. This is particularly relevant when
the focus of the analysis is on the long run properties of the aggregate and disaggregate models. Since the
tests of the aggregation bias, whether of the type discussed here or the one proposed in Zellner (I962),
assume the disaggregate model is correctly specified, in this paper we also develop a Durbin-Hausman
type misspecification test of the disaggregate model. Section I sets out the statistical framework and
assumptions. Section II develops the aggregation bias tests. Section III derives the Durbin-Hausman
type misspecification test of the disaggregate model. Section IV applies these tests to a disaggregate
model of employment demand for the United Kingdom taken from PPK.

I Framework and Assumptions

In order to develop the tests we consider the following general disaggregate model:

Hd : yt = Xiβi + ui, i = 1, 2, . . . ,m (1)

where yi is the n × 1 vector of observations on the dependent variable for the ith unit, Xi is the
n × k matrix of observations on the regressors in (1) for the ith unit, βi is the k × 1 vector of the
coefficients associated with columns of Xi, and ui is the n × 1 vector of disturbances for the ith unit.
The corresponding aggregate equation that satisfies the Klein-Nataf consistency requirement is given by
1

Ha : ya = Xaba + v, (2)

∗Published in Economic Journal (1990), Vol. 100 (Conference 1990), pp. 137–150.
1 See Lovell (1973), and the discussion in PPK (p. 25).
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where

ya =

m∑
i=1

yi, Xa =

m∑
i=1

Xi,

and ba is the k × 1 vector of macro parameters. The n × 1 disturbance vector v, will be equal to
ua =

∑m
i=1 ui, only if the ‘perfect aggregation’ condition

Hξ : ξ =

m∑
i=1

Xiβi −Xaba = 0, (3)

discussed in detail in PPK, is satisfied. Here we focus on the problem of aggregation bias and develop
alternative methods of analysing and formally testing the extent of this bias in economic applications.
In what follows we adopt the following assumptions:

Assumption 1. The n elements of the disturbance vector ui = {uit}, have zero means, constant vari-
ances and are serially independently distributed. They also satisfy the moment condition

E |uit|2+δ < ∆ <∞, for some δ > 0, and all t.

Assumption 2. The disturbance vectors ui are distributed independently of Xi, and E(uiuj
′) = σijIn,

for all i and j, (σii > 0).

Assumption 3. The matrices Xi have full rank, the probability limits

plim
n→∞

(n−1Xi
′Xi) = Σij , i, j = a, 1, 2, . . . ,m,

exist, and the k × k matrices Σii, i = a, 1, 2, . . . ,m are non-singular.

We also base our tests on the OLS estimates

b̂ = (Xa
′Xa)−1Xa

′ya, β̂i = (Xi
′Xi)

−1Xi
′yi, i = 1, 2, . . . ,m,

although, in principle, the tests proposed below can also be constructed using the more efficient SURE
(Seemingly Unrelated Regression Equations) estimators of βi, due to Zellner (1962).

II Direct Tests of Aggregation Bias

The problem of ‘aggregation bias’, as originally discussed by Theil (1954) is defined in terms of the
deviations of macro parameters from the averages of the corresponding micro parameters.2 In the
context of the linear disaggregate and aggregate models (1) and (2), the vector of aggregation bias is
defined by

ηβ = b− 1

m

m∑
i=1

βi, (4)

A test of aggregation bias then involves testing the hypothesis H0 : ηβ = 0. In testing this hypothesis
the case where b is given a priori (for example by a ‘consensus’ view) should be distinguished from the

case where b is defined as the pseudo true value of b̂ assuming that the disaggregate model is correctly
specified. In the former case the relevant statistic for testing the hypothesis H0 : ηβ = 0 is given by

q1 =

(
b− 1

m

m∑
i=1

β̂i

)′
Ω̂
−1
n

(
b− 1

m

m∑
i=1

β̂i

)
, (5)

where Ω̂n represents a consistent estimator of Ω = m−2
∑m
i,j=1 Cov(β̂i, β̂j).

3 Under assumptions 1–3

it is easily seen that q1 is asymptotically distributed as χ2
k The statistic q1 takes b as a fixed vector,

and tests for the deviation of the average of micro parameters from this fixed vector on the assumption
that Hd holds. In practice, however, it is rare that a ‘consensus’ value for b or some of its elements is

2 For empirical analysis of aggregation bias see, for example, the papers by Boot and de Wit (1960), Gupta (1971) and
Sasaki (1978).

3 Note that Cov(β̂i, β̂j) = σij(Xi
′Xi)

−1(Xi
′Xj)(Xj

′Xj)−1.
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available, and b needs to be chosen in light of the knowledge of the disaggregate model. When Hd holds
the pseudo true value of b is given by

b = plim
n→∞

(b̂|Hd) =

m∑
i=1

Ciβi, (6)

where
Ci = Σ−1aaΣai, i = 1, 2, . . . ,m, (7)

satisfy the condition
∑m
i=1 Ci = Ik. Ik is an identity matrix of order k.) The matrices Ci are the

probability limits of the coefficients in the OLS regressions of the columns of Xi on Xa; the ‘auxiliary’
equations in Theil’s terminology. Notice that result (6) holds only when Hd is correctly specified. We will
use this result later as the basis of a Durbin-Hausman type test of misspecification of the disaggregate
model. For the time being, however, we assume that the disaggregate model Hd is correctly specified
and write H0 as

H0;

m∑
i=1

(
Ci −

1

m
Ik

)
βi = 0. (8)

An indirect, albeit familiar method of testing (8), originally proposed by Zellner (1962), is to test the
micro-homogeneity hypothesis

Hβ : β1 = β2 = · · · = βm.

Testing Hβ as a method of testing H0 is however rather too restrictive. Although Hβ implies H0, the
reverse is not true. It is possible for ηβ = 0 to hold even when the micro-homogeneity hypothesis is
rejected. Here we propose a direct test of H0 based on the OLS estimate of ηβ , namely

η̂β = b̂− 1

m

m∑
i=1

β̂i. (9)

Under H0, η̂β is given by

η̂β =

m∑
i=1

Piui, (10)

where

Pi = (Xa
′Xa)−1Xa

′ − 1

m
− (Xi

′Xi)
−1Xi

′. (11)

This suggests basing a test of H0 on the statistic

q2 = n−1η̂β
′Φ̂
−1
n η̂β , (12)

Φ̂n = n−1
m∑

i,j=1

σ̂ijPiPj
′, (13)

and σ̂ij is a consistent estimator of σij .
4 Notice that except for the extreme case where Xi = m−1Xa,

matrix Φ̂n will in general be non-singular.

Theorem 1. Suppose

(i) The disaggregate model Hd is correctly specified;

(ii) Assumptions 1–3 hold;

(iii) The matrix Φ̂n defined by (13) and the matrix n−1(PiPi
′) both are non-singular and also converge

in probability to non-singular matrices.

Then on the hypothesis of no aggregation bias, H0, the statistic q2 defined in (12) is asymptotically
distributed as a chi-squared variate with k degrees of freedom.

Proof. See the Mathematical Appendix.

4 In small samples we suggest using the unbiased (and consistent) estimator of σij proposed in PPK. (See equation
(5.9) in PPK.)
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This theorem provides an asymptotic justification for the use of q2 in testing the null hypothesis of
no aggregation bias, and holds for σij 6= 0 and m ≥ 2, but requires n, the sample size, to be sufficiently
large. This contrasts the asymptotic framework underlying the perfect aggregation test proposed in PPK
where n is fixed but m is allowed to increase without bounds.

The test statistics q1 and q2 are applicable when the focus of the analysis is on all the elements
of βi. In practice, it is often the case that the parameters of interest are subsets or, more generally,
(non-linear) functions of βi. To deal with such cases we now consider a generalisation of (4) and write
the null hypothesis of no aggregation bias as

ηg = g(b)− 1

m

m∑
i=1

g(βi), (14)

where g(βi) is an s× 1 (s ≤ k) vector of known functions of βi.
Denoting the s× k derivative matrix ∂g(βi)/∂βi

′ by G(βi) and assuming that rank[G(βi)] = s, the
relevant statistic for the test of ηg = 0 when b is set a priori is given by

q∗1 =

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]′
Ω̂
−1
n

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]
(15)

where Ω̂n is now defined by

Ω̂n =
1

m2

m∑
i,j=1

ĜiĈov(β̂i, β̂j)Ĝj
′, (16)

and Ĝi = G(β̂). (The expression for Cov(β̂i, β̂j) is given in footnote 3.) Then on the null hypothesis of

ηg = 0 (with b set a priori), q∗1
a∼ χ2

s.
Turning to the case where b is defined by (6), Theorem 1 continues to hold with this difference that

the appropriate statistic is now given by

q∗2 = n−1η̂′gΦ̂
−1
n η̂g

a∼ χ2
s, (17)

where

η̂g = g(b̂)− 1

m

m∑
i=1

g(β̂i), (18)

and Φ̂n is defined by (13), although in this more general case Pi is now given by

Pi = Ĝa(Xa
′Xa)−1Xa

′ −m−1Ĝi(Xi
′Xi)

−1Xi
′, (19)

in which Ĝa = G(b̂) and ĝi = g(β̂i). Notice, also that under ηg = 0, the asymptotic distribution of q∗2
will be a chi-squared with s(≤ k) degrees of freedom. The statistics q∗1 and q∗2 are direct generalisations
of q1 and q2 and will reduce to them in the case where g(βi) = βi.

So far, we have limited attention to aggregation bias of the type discussed by Theil (1954) where
the bias is defined in terms of the deviations of macro parameters from the simple average of the corre-
sponding micro parameters, as in (4). It is possible that in some circumstances the macro parameters of
interest are derived from the micro parameters via a more general function than the average expression
(1/m)

∑
g(βi). An obvious example is when the macro parameters are defined as weighted averages of

the corresponding micro parameters. To deal with this and other more complicated averaging schemes,
we adopt a generalisation of (14) and consider aggregation bias defined as

ηh = g(b)− h(β1, . . . ,βm) (20)

where h(b, . . . ,b) = g(b). As before, aggregation bias is zero under the micro homogeneity hypothesis,
Hβ , but zero aggregation bias (i.e. ηh = 0) does not necessarily imply Hβ .

The relevant statistics for the test of ηh = 0 are given by

q∗1 =
[
g(b)− h(β̂)

]′
Ω̂
−1
n

[
g(b)− h(β̂)

]
(15′)

and

q∗2 =
[
g(b̂)− h(β̂)

]′
Φ̂
−1
n

[
g(b̂)− h(β̂)

]
(16′)
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where h(β) = h(β1,β2, . . . ,βm). The covariance matrices (Φn and Ωn have the same form as before

and are given by (13) and (16) respectively, with the difference that the matrix Ĝi in (16) need now be

replaced by Ĥi = ∂h(β̂)/∂β, and the matrix Pi by

Pi = Ĝn(Xa
′Xa)−1Xa

′ − Ĥi(Xi
′Xi)

−1Xi
′. (21)

Once more, q∗1
a∼ χ2

s under the null hypothesis that ηh = 0, and is the appropriate statistic where g(b)
is given a priori. The statistic q∗2 is relevant when g(b) is estimated from an aggregate equation and is
also asymptotically distributed as χ2

s under the null hypothesis.
In the application of the above tests to cases where the general functions g(βi) or h(β1, . . . ,βm)

are non-linear in the parameters, special care needs to be exercised in the way the nonlinear restrictions
ηg = 0 or ηh = 0 are formulated. As has been discussed in the recent literature,5 when the Wald
statistic is used for testing nonlinear restrictions, the value of the test statistic depends on the form of
the nonlinear restrictions used in the formulation of the null hypothesis. Although asymptotically this
does not matter, in finite samples it is possible to obtain very different values for the Wald statistic by
parameterising the hypothesis to be tested in different ways. A simple example which is directly relevant
to the empirical application that follows in Section IV helps clarify some of these points. Suppose, for
example that we are interested in testing the hypothesis for a single sector i that the long run elasticity
of yit with respect to xit in the simple model

log yit = βi0 + βi1 log yit−1 + βi2 log xit + uit, (22)

is equal to, say ci. A usual way of formulating this hypothesis is by means of the nonlinear restriction

d1(β1) = βi2/(1− βi1)− ci = 0. (23)

This is not, however, the only way that the hypothesis can be formulated. An alternative and in many
ways much more satisfactory formulation of this hypothesis is the linear restriction

d2(β1) = βi2 + c1βi1 − ci = 0. (24)

Although the Wald tests of (23) and (24) are equivalent asymptotically, in small samples, depending on

how different ĉi = β̂12/(1 − β̂i1) is from ci, they can lead to very different results. In this particular
example, the linearity of the restriction (24) recommends it over the nonlinear formulation (23),6 but in
general, the choice between alternative parameterisations of nonlinear restrictions is not a straightforward
matter.

Similar considerations also apply to our Wald tests of the aggregation bias. Suppose we are interested
in testing the hypothesis that the macro long run elasticity of Yt =

∑
log yit with respect to Xt =∑

log xit is equal to, say, c. When the micro homogeneity hypothesis does not hold, there is no unique
method of defining the macro long run elasticity in terms of the micro parameters βi1 and βi2. Here we
consider two possible methods, the first of which is based on the average of the micro long run elasticities
g(βi) = β12/(1− βi1, namely

ε1x =
1

m

m∑
i=1

g(βi) =
1

m

m∑
i=1

βi2
1− βi1

,

and the second of which is based on the averages of the micro parameters, namely

ε2x = h(β1, . . . ,βm) =
1

m

m∑
i=1

βi2

(
1− 1

m

m∑
i=1

βi1

)−1
.

Depending on which of these two definitions are adopted, the null hypothesis of interest can be written
as

ηg = c− ε1x = 0, (25)

or
ηh = c− ε2x = 0. (26)

5 See, for example, Gregory and Veall (1985, 1987), Lafontaine and White (1986), Breusch and Schmidt (1985).
6 Specifically, in calculating the Wald statistic in the two cases, Var(d2) involves the known hypothesised value of ci,

while Var(d̂1) involves ĉi, and so becomes less reliable under H0 as ĉi deviates from ci.
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As they stand both restrictions are non-linear in the micro parameters and the application of the Wald
test to them will be subject to the type of small sample problems emphasised by Gregory and Veall
(1985, 1987). Notice, however, that restriction (26) has the advantage that it can be written in linear
form:

η′h = c− 1

m

m∑
i=1

βi2 +
1

m

m∑
i=1

cβi1 = 0, (27)

which is the appropriate form to use in the application of the Wald test. Unfortunately, in general the
same is not true of the nonlinear restriction (25). The significance of these issues will be illustrated in
Section IV.

III A Misspecification Test of the Disaggregate Model

The tests of aggregation bias advanced above are based on the assumption that the disaggregate model
Hd is correctly specified. In particular the tests based on the q2 and q∗2 statistics assume that estimating
the macro-parameters directly from the regression of ya on Xa, or indirectly by utilising the expres-
sion

∑m
i=1 Ciβi should not make any difference asymptotically, in the sense that both give consistent

estimators of b under Hd. This implication of the disaggregate model can be tested by means of a
Durbin-Hausman type misspecification test and suggests basing a test of Hd on the statistic

η̂s = b̂−
m∑
i=1

Ĉiβ̂i, (28)

where Ĉi represents a consistent estimator of Ci defined by (7).7 Using the least squares estimates

Ĉi = (Xa
′Xa)−1Xa

′Xi, (i = 1, 2, . . . ,m), we have

η̂s = (Xa
′Xa)−1Xa

′ed, (29)

where

ed =

m∑
i=1

(yi −Xiβ̂i) =

m∑
i=1

Miyi, (30)

and
Mi = In −Xi(Xi

′Xi)
−1Xi

′.

Since (Xa
′Xa) is by assumption a non-singular matrix, a test based on η̂s and Xa

′ed will be equivalent
and for simplicity we use the latter. Suppose now Xa and Xi have p variables in common and write8

Xa = (Xa1|Xa2); Xi = (Xi1|Xi2), for all i,

where the n × p matrix Xa1 contains the observations on the common set of variables. It is now easily
seen that

Xa
′ed[ 0

p×1
: Xa2

′ed
(k−p)×1

],

and the appropriate statistics on which to base the misspecification test are the non-zero components of
Xa
′ed, namely Xa2

′ed. Under Hd, we have

Xa2
′ed =

m∑
i=1

Xa2
′Miui, (31)

which suggests the following theorem.

Theorem 2. Suppose

(i) Assumptions 1–3 hold;

(ii) The matrices n−1(Xa2
′MiXa2) are non-singular in finite samples, and also converge in probability

to non-singular matrices;

7 See Durbin (1954) and Hausman (1978). Also see Ruud (1984), and Pesaran and Smith (1989) for a unified treatment
of misspecification tests in the context of simultaneous equation models.

8 Examples of such variables include the intercept term, time trends and seasonal dummies.
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(iii) The matrix

V̂n = n−1
m∑

i,j=1

σ̂ij(Xa2
′MiMjXa2), (32)

is non-singular for a finite n, and converges in probability to the non-singular matrix, V.

Then on the hypothesis that the disaggregate model is correctly specified the test statistic

q3 = n−1ed
′Xa2V̂

−1
n Xa2

′ed, (33)

is asymptotically distributed as a χ2 variate with k − p degrees of freedom.
Proof. See the Mathematical Appendix.

This theorem complements Theorem 1 and in a sense precedes it. Since Theorem 1 assumes the
validity of the disaggregate specification, it is important that the misspecification test of Theorem 2 is
carried out before testing for aggregation bias. It is also worth noting that since in general

∑m
i=1 Ĉiβ̂i

is not necessarily a more efficient estimator of b =
∑m
i=1 Ciβi than b̂, the familiar Hausman formula

for the covariance of η̂s, namely Cov(
∑m
i=1 Ĉiβ̂i) is not valid. However, when βi are estimated by the

SURE method, the resultant estimators, sayβ̃i will be efficient and the covariance difference formula

Cov(η̃s) = Cov(b̂)− Cov

(
m∑
i=1

C̃iβ̃i

)
≥ 0,

applies. But even in this case to avoid some of the computational problems that arise because of the
possible singularity of Cov(b̂) − Cov(

∑m
i=1 C̃iβ̃i), a direct derivation of the variance of η̃s, along the

above lines seems to be more desirable.

IV An Application

In this section we apply the tests developed in this paper to the annual estimates of aggegate and
disaggregate employment demand functions for the U.K. economy presented in PPK. The general log-
linear dynamic specification used in the analysis is as follows

LEit = βi1/m+ βi2(Tt/m) + βi3LEi,t−1 + βi4LEi,t−2 + βi5LYit

+ βi6LYi,t−1 + βi7LWit + βi8LWi,t−1 + βi9LY at

+ βi10LY a,t−1 + uit, i = 1, 2, 3, 5, 6, . . . , 41 t = 1956, 1957, . . . , 1984, (34)

where

LEit = log of man-hours employed in sector i at time t;
Tt = time trend (T1980 = 0);
LYit = log of sector i output at time t;
LWit = log of average product real wage rate per man-hours employed in sector i at time t;
LY at = average of LYit over the 40 sectors;
m = number of sectors, (m = 40).

The data cover the whole of the private sector, excluding the Mineral Oil and Natural Gas sector (sector 4)
for which the sample size is too short to permit estimation. The rationale behind the above disaggregate
model and full details of sources and definitions can be found in PPK.

In order to check the overall validity of the disaggregate specification we first computed the Durbin-
Hausman type misspecification test statistic given by (33) in Section III. We obtained a value of 15.9
for this statistic which is distributed as χ2(7); this result is just significant at the 5% level and indicates
that the disaggregate model may be misspecified. The specification of the disaggregate model requires
further consideration, and the following results therefore need to be treated with some caution.

For the purposes of this paper the parameters of interest from the disaggregate model (34) are the
long run elasticities with respect to wages and output given respectively by:9

εiw =
βi7 + βi8

1− βi3 − βi4
, and εiy =

βi5 + βi6 + βi9 + βi10
1− βi3 − βi4

. (35)
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Table 1: Long Run Elasticities from Restricted Employment Equations∗ (1956–84)

Industrial sector Wage Output

1 Agriculture, forestry and fishing −0.8981 (0.2679) 0.0581 (0.2904)
2 Coal Mining −1.9336 (1.3890) −1.3866 (0.4410)
3 Coke −0.3005 (0.0418) 1.6778 (0.1438)
4 Mineral Oil and Natural Gas — — — —
5 Petroleum products −0.6530 (0.2947) 0.7560 (0.3552)
6 Electricity etc. −0.5379 (0.4028) 0.5015 (0.4090)
7 Public gas supply −0.2594 (0.1128) 1.0311 (0.5060)
8 Water supply 0.0 — 0.7899 (0.7082)
9 Minerals and Ores nes. −0.4870 (0.2788) −0.8741 (0.6483)

10 Iron and steel −0.7712 (0.2483) 2.5657 (0.8473)
11 Non-ferrous metals 0.0 — 1.9619 (1.2480)
12 Non-metallic mineral products −1.4832 (0.3596) 2.6847 (1.1330)
13 Chemicals and manmade fibres −0.7405 (0.2146) 1.5938 (0.4538)
14 Metal goods nes. −0.3976 (0.1987) 1.0368 (0.2219)
15 Mechanical engineering −0.8587 (0.2457) 1.2415 (0.3497)
16 Office machinery etc. −1.5343 (2.1250) 0.0 —
17 Electrical engineering −0.0495 (0.6733) 1.0277 (0.8828)
18 Motor vehicles −0.7238 (0.4988) 2.7303 (1.6720)
19 Aerospace equipment −0.1763 (0.1042) 0.1031 (0.0953)
†20 Ships and other vessels — — — —
21 Other vehicles −0.5247 (0.2978) 2.1886 (0.6949)
22 Instrument engineering −0.5607 (0.3201) 0.7715 (0.3876)
23 Manufactured food −0.4277 (0.1530) 1.7126 (0.8334)
24 Alcoholic drinks etc. −0.1302 (0.3108) 1.0793 (0.6737)
†25 Tobacco — — — —
26 Textiles −0.8320 (0.2335) 0.9812 (0.2690)
27 Clothing and footwear −0.8101 (0.1323) 0.9737 (0.1454)
28 Timber and furniture −0.1700 (0.1214) 0.6627 (0.1240)
29 Paper and board −0.3938 (0.0968) 0.9856 (0.2567)
30 Books etc. 0.2074 (0.2758) 0.1818 (0.1955)
3i Rubber and plastic products −0.5767 (0.3846) 1.2662 (0.5789)
32 Other manufactures 0.0 — 0.5903 (0.2431)
33 Construction −0.6453 (1.0200) 0.5872 (0.9331)
34 Distribution etc. −0.6965 (0.3259) −.01248 (0.1323)
35 Hotels and catering −0.6602 (0.4499) 1.2205 (0.7663)
36 Rail transport −0.3735 (0.3632) 2.0843 (0.7845)
37 Other land transport 0.0 — 0.4203 (0.1983)
38 Sea, air and other −0.2354 (0.1985) 0.5309 (0.4275)
39 Communications −0.0267 (0.1905) 0.9905 (0.6643)
40 Business services 0.0 — 0.2333 (0.1294)
41 Miscellaneous services −0.8108 (0.7865) 1.2228 (1.0810)

Mean of long run elasticities −0.5233 0.9489
Standard deviation of elasticities 0.4437 0.8867
Median of long run elasticities −0.5247 0.9812

∗ The estimates reported in this table are based on the results in table 2 of PPK. The
bracketed figures are the estimated standard errors.

† These industries are excluded from the analysis. See the text for further explanation.
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Table 1 presents estimates for these elasticities derived from the set of restricted disaggregate employ-
ment equations estimated by PPK (table 2), with asymptotically valid standard errors in parentheses.10

For two sectors, 20 and 25, the employment equations estimated by PPK do not possess long run solu-
tions so that there are no corresponding elasticities in Table 1. These two industries are excluded from
the subsequent analysis. For a few sectors, PPK found no significant response with respect to the real
wage variable, and in one sector no response was found with respect to the output variable. In these
cases the estimates of the long run elasticity in the table are set equal to zero and no standard errors
are given. The last three rows of Table 1 present the mean, standard deviation and the median of the
distribution of the estimates of the elasticities across the sectors. In the case of both sets of elasticity
estimates the mean and median are approximately equal showing that the distributions are close to
being symmetric. Both of the standard deviations are large highlighting the considerable variation in
the employment responses between sectors. This in itself can be viewed as an argument for the use of
disaggregated analysis. We now consider the application of the tests of aggregation bias developed in
Section II (namely the q∗1 and the q∗2 tests) to the disaggregated long run elasticities of Table 1 and those
of the corresponding restricted aggregate equation given by:11

LEat = −140.93 + 0.6935LEa,t−1 + 0.4665LYat − 0.3948LWat + ûat, (36)

(17.177) (0.0424) (0.0488) (0.0387)

R
2

= 0.9954, σ̂2 = 0.3666, n = 29 (1954–84),

χ2
SC(1) = 1.28, χ2

FF (1) = 2.45, χ2
N (2) = 4.41, χ2

H(1) = 3.45,

where LEat, LWat and LYat are the sums of LEit, LWit, and LYit over the 38 sectors respectively. R
2

is the adjusted R2, σ̂2 is the estimated standard error of the regression, and χ2
SC , χ2

FF , χ2
N and χ2

H

are respectively the chi-squared statistics for residual serial correlation, functional form misspecification,
normality, and homoskedasticity of the disturbances.12 The estimates of the long run real wage and
output elasticities based on (36) are −1.2880 (0.2947) and 1.5221 (0.3386) respectively. The numbers in
parentheses are asymptotically valid standard errors. It is clear that these results are consistent with the
hypothesis of wage and output elasticities of −1 and +1 respectively. The relevant statistic for testing
the hypothesis that the average of the disaggregate elasticities of Table 1 is equal to unity is given by q∗1 ,

(15). In this case g(b) = −− 1, g(β̂i) = ε̂iw for the real wage variable and g(b) = 1, g(β̂i) = ε̂iy for the
output variable where the long run elasticities εiw and εiy are already defined in (35). The hypothesis
of a unit average long run output elasticity can not be rejected even at the 10% level, since in this case
q∗1 equals 0.104 based on an estimated value for the average disaggregate output elasticity of 0.9489.
In contrast, the value of −0.5233 obtained for the average disaggregate wage elasticity is significantly
different from −1 with q∗1 taking the value of 19.27 in this case.13 The estimated q∗2 statistics reinforce
the finding that the aggregate and disaggregate results differ significantly. The values of this statistic
for the wage and output elasticities are 10.95 and 4.97 respectively, rejecting the null hypothesis of no
aggregation bias in both cases.14

We also considered the alternative aggregate restrictions involving the responsiveness of employment
to real wage and output changes corresponding to (26) in the simple model of SectionII. As noted there,
these restrictions can also be written in a linear form as in (27) and the q∗1 statistic given by (15)′ was
computed here using both linear and nonlinear forms of the restrictions. This allows us to examine the
practical importance of the issue of parameterisation of the nonlinear restrictions in the case of the Wald
tests discussed in Section II. For wage responsiveness, the values of the q∗1 statistic were 166.88 and 66.01
for the restriction forms (26) and (27) respectively, both forms of the test massively rejecting the null
hypothesis of a long run real wage elasticity of minus unity. For output responsiveness, the values of
the q∗1 statistic were 0.129 and 0.126 respectively, so that the null hypothesis of a unit long run output

9 The formula for the output elasticity allows for the long run effect of the sectoral changes on employment of the ith
sector both directly through the terms LYit and LYi,t−1, and indirectly through the aggregate output effects LY at and

LY a,t−1.
10 Details of the exclusion restrictions imposed for each sector and the diagnostic statistics computed for each equation

can also be found in PPK.
11 This result corresponds to equation (7.4) in PPK, reestimated to exclude sectors 20 and 25.
12 See Pesaran and Pesaran (1987) for further details and the relevant algorithms.
13 In the present application, q∗1 and q∗2 are both distributed asymptotically as χ2

1 under the null hypothesis.
14 The q∗2 statistics are calculated using (17) replacing g(b̂) and g(β̂i) by their corresponding aggregate and disaggregate

long run elasticity estimates.
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elasticity cannot be rejected in the case of either formulation.15 Clearly, the alternative parameterisations
considered here have a considerable effect on the value of the statistic obtained for the wage restriction
although the results are unaffected qualitatively.

In conclusion, our estimates of the disaggregate labour demand relationships show that there is
considerable variation across sectors so that important information may be lost in working with aggregate
figures. This is confirmed by the application of the tests developed in the paper. Significant aggregation
biases are found in the estimates of a variety of measures of the responsiveness of employment to real
wage and output changes based on our aggregate and disaggregate employment equations. The problem
of aggregation bias seems, however, to be much more serious for the estimates of the long run real wage
elasticity as compared to the estimates of the long run output elasticity.

A Mathematical Appendix

Proof of Theorem 1. Under H0 defined by (8), the statistic q2 in (10) can be written as

q2 = dn
′dn, (A.1)

where

dn =

m∑
i=1

zin, (A.2)

and
zin = n−

1
2 Φ̂
−1
n Piui, i = 1, 2, . . . ,m. (A.3)

The matrices Φ̂n and Pi are defined by (13) and (11) in the text, respectively. The proof we offer
here has two stages: we first show that for each i and for any real k × 1 vector λ such that λ′λ = 1,
λ′zin

a∼ N(0, φii) where φii > 0. Using this result in (A.2), we then show that λ′dn
a∼ λ′d, where

d ∼ N(0, Ik). From this it follows that dn
a∼ N(0, Ik), and dn

′dn
a∼ χ2

k. See proposition 5.1 in White
(1984).

Under Assumptions 1–3 it readily follows that

plim
n→∞

(σ̂ij) = σij , plim
n→∞

(Φn) = Φ,

where

Φ =

m∑
i,j=1

σijQij ,

and the matrices Qij defined by

Qij = plim
n→∞

(n−1PiPj
′)

= Σaa −
1

m
Σ−1aaΣajΣ

−1
jj −

1

m
Σ−1ii ΣiaΣ

−1
aa +

1

m2
Σ−1ii ΣijΣ

−1
jj ,

are finite for all i and j and are non-singular for i = j. Now noting that by assumption Φ is also
non-singular we have

λ′zin
a∼ n− 1

2µ′Piui = n−
1
2

n∑
t=1

δituit, (A.4)

where µ = Φ−1λ, and δit stands for a typical element of vector Pi
′µ. It is now easily seen that under

assumptions of the theorem, the conditions for the application of the version of Liapounov’s Theorem
cited in (White, 1984, theorem 5.10) to the right hand side of (A.4), which is a sum of independently,
but non-identically distributed random variables, are met and

λ′zin
a∼ N(0, φii), where φii = σiiµ

′Qiiµ > 0.

15 The estimates of the aggregate long run elasticities of output and real wages underlying the restriction form (26) are
0.9770 and −0 − 4551 respectively, as compared to the estimates 0.9909 and −0.7850 underlying the restriction form (27).
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Therefore, asymptotically λ′dn =
∑m
i=1 λ

′zin is distributed as a linear function of m normal variates
and itself will be distributed normally with zero mean and variance16

lim
n→∞

V(λ′dn) = λ′λ = 1.

Hence, for a finite m, dn
a∼ N(0, Ik), and dn

′dn
a∼ χ2

k. Q.E.D.

Proof of Theorem 2. The proof is similar to that presented for Theorem 1. Under Hd the statistic
q3 defined by (33) can be written as q3 = dn

′dn where dn is defined by (A.2), but zin is now given by

zin = n−
1
2 V̂
− 1

2
n Xa2

′Miui. Since by assumption V̂n converges in probability to a non-singular matrix,
say V, we also have

λ′zin
a∼ n− 1

2λV−
1
2 Xa2

′Miui = n−
1
2µ′Xa2

′Miui,

where λ is now a (k − p)× 1 vector of constants such that λ′λ = 1, and µ = V−
1
2λ. Denoting the tth

element of MiXa2µ by ηit we now have

λ′zin
a∼ n−frac12

n∑
t=1

ηituit, (A.5)

which is a sum of independently, but non-identically distributed random variables. As in the proof of
Theorem 1, it is easily seen that under assumptions of Theorem 2, the Liapounov’s theorem ((White,
1984, theorem 5.10)) is applicable to (A.5) and

λ′zin
a∼ N(0, ψii),

where

ψii = µ′
[

plim
n→∞

(n−1Xa2
′MiXa2)

]
µ > 0.

Hence, by a similar reasoning as in the proof of Theorem 1, we have

λ′dn
a∼ N(0, 1), and dn

a∼ N(bfzero, Ik−p),

which establishes that
q3 = dn

′dn
a∼ χ2

k−p.

Q.E.D.

References

Boot, J. C. G. and G. M. de Wit (1960). Investment demand: an empirical contribution to the aggregation
problem. International Economic Review 1, 3–30.

Breusch, T. and P. Schmidt (1985). Alternative forms of the Wald test: how long is a piece of string?
Unpublished manuscript.

Durbin, J. (1954). Errors in variables. Review of International Statistical Institute 22, 23–32.

Gregory, A. W. and M. R. Veall (1985). Formulating Wald tests of nonlinear restrictions. Economet-
rica 53, 1465–1468.

Gregory, A. W. and M. R. Veall (1987). Formulating Wald tests of the restrictions implied by the rational
expectations hypothesis. Journal of Applied Econometrics 2, 61–68.

Grunfeld, Y. and Z. Griliches (1960). Is aggregation necessarily bad? Review of Economics and Statis-
tics 42, 1–13.

Gupta, K. L. (1971). Aggregate bias in linear economic models. International Economic Review 12,
293–305.

16 Notice that since limn→∞ V(λ′zinzjn
′λ) = σijµ

′Qijµ = φij , then limn→∞ V(λ′dn) = limn→∞ V(
∑m

i=1 λ
′zin) =∑m

i,j=1 φij = µ′(
∑m

i,j=1 σijQij)µ = µ′Φ−1µ = λ′Φ−
1
2 ΦΦ−

1
2 λ = 1.



K. C. Lee, M. H. Pesaran, R. G. Pierse / Testing for aggregation bias in linear models 12

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251–1271.

Lafontaine, F. and K. J. White (1986). Obtaining any Wald statistic you want. Economics Letters 21,
35–40.

Lovell, C. A. K. (1973). A note on aggregation bias and loss. Journal of Econometrics 1, 301–311.

Orcutt, G. H., H. W. Watts, and J. B. Edwards (1968). Data aggregation and information loss. American
Economic Review 58, 773–787.

Pesaran, M. H. and B. Pesaran (1987). Microfit: An Interactive Econometric Software Package. Oxford:
Oxford University Press.

Pesaran, M. H., R. G. Pierse, and M. S. Kumar (1989). Econometric analysis of aggregation in the
context of linear prediction models. Econometrica 57, 861–888.

Pesaran, M. H. and R. J. Smith (1989). A unified approach to estimation and orthogonality tests in
linear single equation econometric models. Journal of Econometrics. (forthcoming).

Ruud, P. A. (1984). Tests of specification in econometrics. Econometric Reviews 3, 211–242.

Sasaki, K. (1978). An empirical analysis of linear aggregation problems. the case of investment behavior
in Japanese firms. Journal of Econometrics 7, 313–331.

Theil, H. (1954). Linear Aggregation of Economic Relations. Amsterdam: North-Holland.

White, H. (1984). Asymptotic Theory for Econometricians. Orlando, FL: Academic Press.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for
aggregation bias. Journal of the American Statistical Association 57, 348–368.


	Framework and Assumptions
	Direct Tests of Aggregation Bias
	A Misspecification Test of the Disaggregate Model
	An Application
	Mathematical Appendix

