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Abstract

A choice criterion is proposed for discriminating between disaggregate and aggregate models esti-
mated by the instrumental variables method. The criterion, based on prediction errors, represents
a generalisation of criteria developed in the context of classical regression models. The article also
derives general tests for aggregation bias in the instrumental variables context. The criterion and the
tests are applied in an analysis of UK employment demand. It is shown that a model disaggregated
by 40 industries predicts aggregate employment better than an aggregate model and that significant
biases exist in estimates of the long-run wage and output elasticities obtained from the aggregate
model.
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The problem of aggregation over micro units has a long tradition in the econometrics literature stretching
back to Theil (1954). Two issues in particular have attracted attention. The first concerns the prediction
problem of choice between alternative disaggregate and aggregate specifications to predict aggregate
variables. This issue was raised in the literature by Grunfeld and Griliches (1960) and reconsidered
in a more general context by Pesaran et al. (1989) (henceforth PPK). The second issue concerns the
problem of aggregation bias defined by the deviation of the macro parameters from the average of the
corresponding micro parameters. This was first discussed by Theil (1954) and an indirect test proposed
by Zellner (1962). Early empirical studies are reported by Boot and de Wit (1960), Orcutt et al. (1968),
and Gupta (1971), for example, whereas more recent work includes that by Heckman and Sedlacek
(1988), Keane et al. (1988), and contributions in Barker and Pesaran (1990). In the work of Lee et al.
(1990a,b) some general direct tests were derived for the case where the subset of parameters of interest
may be a (possibly nonlinear) function of the full vector of parameters.

This article reconsiders both of these issues in the context of models in which the assumption that
model regressors and disturbances are uncorrelated cannot be maintained and, to obtain consistent
parameter estimates, instrumental variables (IV) methods are used. This situation arises frequently in
applied work either due to simultaneity or because expectations are replaced by their realisations under
the rational expectations hypothesis in econometric equations. It also arises in models in which nonlinear
relations (such as Euler equations) are derived as first-order conditions to optimisation problems at a
microlevel (see for example Hansen (1982) and Hansen and Singleton (1982)). When regressors and
disturbances are correlated, the usual criterion for choosing between models, the sum of squared residuals,
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is no longer an appropriate statistic in the sense that its use does not guarentee that the ‘true’ model
will be chosen, even asymptotically. Since the criteria proposed by Grunfeld and Griliches (1960) and
by PPK for choosing between alternative disaggregated and aggregated models are based on the sum
of squared residuals, these criteria are also inappropriate in these circumstances. Statistics based on
the prediction errors of alternative models that provide a valid model-selection criterion can be derived,
however. Moreover, since the equation residuals coincide with the prediction errors in the least squares
case, the criterion based on the prediction errors advanced in this article represents a generalisation of
the criteria that have been considered previously in the literature.

In Section 1 of this article, new choice criteria are proposed for discriminating between disaggregate
and aggregate specifications estimated by IV methods, and their validity in this context is established.
In Section 2, the issue of aggregation bias is considered in the IV context. Here tests are derived that
allow a statistical comparison to be made between different parameters of interest based on aggregate
and disaggregate models in which the models are estimated using IV methods. Finally, in Section 3 the
statistical tools that have been developed are applied in an analysis of employment demand for the UK
economy. Labour-demand equations for 40 industrial sectors are estimated using the IV method and
compared with their aggregate counterpart. It is established that the disaggregate model outperforms
the aggregate model in terms of its ability to predict aggregate employment demand. Furthermore, key
long-run elasticities of labour demand estimated by the aggregate and disaggregate models are shown
to be significantly different, with elasticities based on the aggregate model overstating the extent of the
responsiveness of labour demand to changes in wages and output when compared to estimated elasticities
based on the disaggregate model.

1 A Choice Criterion under IV Estimation

Suppose we have a disaggregated multisectoral model, denoted Hd, consisting of m sectoral equations,
where the dependent variable in the ith equation is yi, an n × 1 vector of observations for the ith
unit (i = 1, · · · ,m). We also have an aggregate model, denoted Ha, given by a single equation, the
dependent variable of which is ya =

∑
i yi. Clearly, a disaggregate model can be used to address many

questions that the aggregate model cannot. In this section, however, we assume that the primary focus
of the analysis is the prediction of the aggregate variable ya and consider the derivation of an appropriate
selection criterion for choosing between the two models on this basis. This question was first addressed in
the literature by Grunfeld and Griliches (1960), and a more general treatment was given by PPK. These
works proposed selection criteria for choosing between disaggregate and aggregate models based on sums
of squared residuals from the two models. The use of these selection criteria is justified on the grounds
that, on average, their use would lead to the choice of the disaggregated model under the assumption
that the micro equations are correctly specified. The use of the prediction criteria in the context of
choice between models also has implications for model misspecification. When the disaggregate model
fits worse than the aggregate model, this would indicate that the disaggregated model is misspecified.
This suggests using a Durbin-Hausman type of misspecification test of the disaggregate model, and such
a test is developed in the least squares context by Lee et al. (1990b)). A misspecification test of this
type, however, serves a quite separate function to that served by the choice criterion. The way to think
of the choice criterion is in situations in which an investigator is faced with two models, an aggregate
and a disaggregate one, and must choose one of them for use in predicting the aggregate variable. The
issues of model misspecification and aggregation errors were addressed in more detail by PPK, section 6.

The criteria proposed by Grunfeld and Griliches and by PPK are derived for models in which it could
be assumed that regressors and disturbances are uncorrelated. In many instances, however, it is not
reasonable to make this assumption, so ordinary least squares (OLS) estimation is no longer appropriate,
and the IV estimation method is required to obtain consistent estimates. In these circumstances, the
residual vectors obtained from the estimated model depend on the sign and magnitudes of the correlations
between the dependent variable and the variables that are determined jointly with it. As a consequence,
measures of goodness of fit that are based on the IV residuals cannot be guaranteed to choose a correct
model even asymptotically, and the sum of squares of residuals is no longer an appropriate basis for
developing model-selection criteria. (See Pesaran and Smith (1994) for further discussion of selection
criteria appropriate for choice between models estimated by the IV method.)

In this section we consider alternative statistics, s2d and s2a, relating to the disaggregate and aggregate
models estimated by the IV method. These statistics are based on prediction errors, which are the
appropriate measures for model comparison, and are not subject to the difficulties described previously.
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Specifically, these statistics are shown to have the property that

plim
n→∞

(s2d|Hd) ≤ plim
n→∞

(s2a|Hd),

where probability limits are taken under the hypothesis of the disaggregated model Hd, so that they are
valid statistics for use in a choice rule. To this end, consider the general disaggregate model defined by

Hd : yi = Xiβi + ui i = 1, . . . ,m

Xi = ZiΠi + Vi (1.1)

where yi is the n× 1 vector of observations on the dependent variable for the ith sector, Xi is the n× ki
matrix of observations on the regressors in (1.1) for the ith sector, assumed to have a full column rank,
βi is the ki × 1 vector of the coefficients associated with columns of Xi, and ui is the n × 1 vector of
disturbances for the ith sector. Zi is a n× ri matrix of IV’s (where ri ≥ ki), Πi is an ri × ki matrix of
parameters, and Vi is an n× ki matrix of disturbances. The disturbances ui and Vi are assumed to be
serially uncorrelated within each sector but are contemporaneously correlated across sectors. Formally,
the following standard assumptions are made:

Assumption A1: For all i, j = 1, 2, ...,m, the probability limits of u′iuj/n, V′iVj/n, and V′iuj/n ex-
ist and are given by σij , Σij , and δij , respectively.

Assumption A2 : For all i, j = 1, 2, ...,m, the instruments, Zi, are of full-column rank, and are asymp-
totically uncorrelated with the disturbances uj and Vj .

Assumption A3 : For all i, j = 1, 2, ...,m, the matrices Z′iXi/n and Z′iZj/n have finite probability limits,
and the probability limits of X′iXi/n and Z′iZi/n exist and are non-singular.

In general, the matrix Xi is correlated with ui and may include lagged values of the dependent variable,
yi, as well as current and lagged values of other endogenous variables. It is possible, however, that Xi

includes some exogenous variables, in which case we assume that these variables also appear in Zi, so
Vi and consequently Σii will not be of full rank.

The aggregate model is given by

Ha : ya = X∗β∗ + u∗ (1.2)

where ya =
∑m
i=1 yi and X∗ is a n × k∗ matrix of regressors, β∗ is a k∗ × 1 vector of the coefficients

associated with the columns of X∗ and u∗ is an n×1 vector of disturbances. It will also be assumed that:

Assumption A4 : There exists a set of “aggregate” instruments, Z∗, of full-column rank that are asymp-
totically uncorrelated with the disturbances ui and Vi, and for which the matrices Z′∗Xi/n and Z′∗Z∗/n
have finite probability limits for i = 1, 2, ...,m.

No assumption is made in (1.2) about the relationship between X∗ and the Xi’s. Model (1.2) is to
be viewed here as a rival model to (1.1) for the purpose of predicting ya and has not necessarily been
derived from (1.1) through any formal aggregation procedure. (See Section 2, however, on testing for
aggregation bias.) Similarly, the instruments of the aggregate model, Z∗, are not necessarily related
to the disaggregated instrument sets, Zi, except insofar as by Assumption A4 they would also be valid
instruments under Hd. This condition would be satisfied, for example, when the Z∗’s are restricted to
include lagged variables only.

Now consider the statistics for the aggregate and disaggregate models, based on the prediction errors,
given by

s2a = ê′aêa/n (1.3)

and
s2d = ê′dêd/n, (1.4)

respectively, where

êd =

m∑
i=1

êi (1.5)
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and where êa = ya − X̂∗β̃∗, β̃∗ = (X′∗P∗X∗)
−1X′∗P∗ya, X̂∗ = P∗X∗, P∗ = Z∗(Z

′
∗Z∗)

−1Z′∗, and êi =

yi− X̂iX̂eβi, β̃i = (X′iPiXi)
−1X′iPiyi, X̂i = PiXi, Pi = Zi(Z

′
iZi)

−1Z′i. The estimators β̃∗ and β̃i are
the generalised IV estimators of the parameters of the aggregate and disaggregate models, respectively.
These are consistent IV estimators although for the disaggregate model they are not fully efficient since
they do not take into account the contemporaneous covariances between sectors characterised by the
nonzero off-diagonal elements in σij in Assumption A1. Clearly, the prediction errors of the two models,

êa and êd, are different from the usual single-equation residuals, ea = ya −X∗β̃∗ and ei = yi −Xiβ̃i
because they account for the fact that the regressors X∗ and Xi are stochastic variables, which, for
prediction, must be replaced by their predicted values X̂∗ and X̂i respectively. The two coincide only
in a fixed regressor framework, where Vi = 0 and where OLS is an appropriate estimator. From this
perspective, (1.3) and (1.4) can be viewed as an obvious generalisation of the sum of squared residuals
criterion proposed for OLS models by Grunfeld and Griliches (1960) and by PPK.

We now show that the statistics (1.3) and 1.4) have the desirable property that

plim
n→∞

(s2d|Hd) ≤ plim
n→∞

(s2a|Hd).

First note that
β̃i = (X̂′iX̂i)

−1X̂′iyi (1.6)

and
β̃∗ = (X̂′∗X̂∗)

−1X̂′∗ya. (1.7)

Then we can write êi = (I − Q̂i)yi, where Q̂i = X̂′i(X̂
′
iX̂i)

−1X̂′i. Hence, substituting from (1.1), êi =

(I− Q̂i)Xiβi + (I− Q̂i)ui, and, since X̂′iXi = X̂′iX̂i and Q̂iX̂i = X̂i, we have

êi = (Xi − X̂i)βi + (I−Qi)ui. (1.8)

However,

Xi − X̂i = Xi − Zi(Z
′
iZi)

−1Z′iXi

= (I−Pi)Xi

= (I−Pi)(ZiΠi + Vi)

= (I−Pi)Vi.

Hence, (1.8) can be rewritten as

êi = (I−Pi)Viβi + (I− Q̂i)ui (1.9)

so that
êd =

∑
i

[(I−Pi)Viβi + (I− Q̂i)ui]

and

ê′dêd =
∑
i,j

β′iV
′
i(I−Pi)(I−Pj)Vjβj

+
∑
i,j

u′i(I− Q̂i)(I− Q̂j)uj

+
∑
i,j

β′iV
′
i(I−Pi)(I− Q̂j)uj

+
∑
i,j

u′i(I− Q̂i)(I−Pj)Vjβj . (1.10)

But, under Assumptions A1–A3,

plim
n→∞

(
ê′dêd
n
|Hd

)
=
∑
i,j

β′iΣijβj +
∑
i,j

σij +
∑
i,j

β′iδij +
∑
i,j

δ′jiβj

= E

{[∑
i

(ui + Viβi)

]′ [∑
i

ui + Viβi

]}
= E(ξ′aξa) > 0, (1.11)
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where ξa =
∑
i ξi is the vector of aggregate errors of the reduced form equations

yi = ZiΠiβi + Viβi + ui

= ZiΠiβi + ξi (1.12)

and ξi = Viβi + ui.

Consider now the aggregate prediction criterion. We have êa = ya − X̂∗β̃∗, and, under Hd,

êa =
(
I− Q̂∗

)(∑
i

Xiβi + ui

)
, (1.13)

where

Q̂∗ = X̂∗(X̂
′
∗X̂∗)

−1X̂′∗

= P∗X∗(X
′
∗P∗X∗)

−1X′∗P∗.

Substituting from (1.12),

êa =
(
I− Q̂∗

)[∑
i

ZiΠiβi +
∑
i

(ui + Viβi)

]
=
(
I− Q̂∗

)
(fa + ξa)

so that, taking probability limits under Hd,

plim
n→∞

(
ê′aêa
n
|Hd

)
= plim
n→∞

(
f ′a[I− Q̂∗]fa

n

)
+ plim
n→∞

(
ξ′a[I− Q̂∗]ξa

n

)

+ 2 plim
n→∞

(
f ′a[I− Q̂∗]ξa

n

)
. (1.14)

But, since ui and Vi are asymptotically distributed independently of Z∗, by Assumption A4, it follows
that

plim
n→∞

(
ξ′a[I− b̂fQ∗]ξa

n

)
= plim
n→∞

(
ξ′aξa
n

)
= E(ξ′aξa)

and

plim
n→∞

(
f ′a[I− Q̂∗]ξa

n

)
= 0.

Hence,

plim
n→∞

(
ê′aêa
n
|Hd

)
= E(ξ′aξa) + plim

n→∞

(
f ′a[I− Q̂∗]fa

n

)
≥ E(ξ′aξa), (1.15)

where the inequality follows because the second term in (1.15), namely

plim
n→∞

(
f ′a[I− Q̂∗]fa

n

)
,

is a positive semidefinite quadratic form. Comparing (1.15) with (1.11) establishes the result that

plim
n→∞

(
ê′dêd
n
|Hd

)
≤ plim
n→∞

(
ê′aêa
n
|Hd

)
. (1.16)

In general we have not made any assumptions about the relationship between the disaggregate model
Hd and the aggregate model Ha. It is interesting, however, to look at the special case where the aggregate
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model has been derived from a formal aggregation of the disaggregate model so that X∗ = Xa =
∑
i Xi

and Z∗ = Za =
∑
i Zi. In this case the best that the aggregate model can do is to predict as well as

the disaggregate model so that the two criteria coincide, and the conditions under which this will occur
are the conditions for perfect aggregation, discussed for the least squares case by PPK. In the fixed
regressor context of PPK, it is well known that sufficient conditions are when either βi = β, for all i,
i = 1, ...,m (the microhomogeneity hypothesis) or when Xi = XaΛi for all i (the compositional-stability
hypothesis) where Λi are square full-rank matrices satisfying

∑
i Λi = I. (See also Lewbel (1992) for the

application of a stochastic version of the compositional-stability hypothesis in the context of aggregating
log-linear microequations.) In the present IV framework, however, where there is more than one variable
determined simultaneously, these two conditions are no longer sufficient to achieve perfect aggregation,
and an additional condition on the Zi’s is also needed. One such condition is given by

Zi = ZaΓi (1.17)

for all i, i = 1, ...,m where Γi are square full-rank matrices of fixed coefficients. This condition ensures
that X̂i = PaXi, where Pa = Za(Z′aZa)−1Z′a, and, together with either the microhomogeneity hypoth-
esis or the compositional-stability hypothesis, it is sufficient to ensure that êd = êa so that disaggregate
and aggregate criteria coincide. Condition (1.17) is a compositional stability hypothesis for the IV’s of
the disaggregate model. Clearly a special case is where Γi = I for all i which is where a common set of
instruments is used across all sectors.

The prediction criteria (1.3) and 1.4) can be modified to incorporate degrees-of-freedom corrections.
Clearly, such corrections will not affect the asymptotic properties of the statistics but we conjecture
that they might improve their performance in finite samples. PPK derived corrections that ensured
unbiasedness of the criteria in the least squares context. While no formal proof can be given in the
present context, by analogy, we suggest using similar correction factors. This has the advantage of
ensuring consistency with the criteria of PPK in the limiting case where Xi ⊂ Zi and X∗ ⊂ Z∗ and the
models (1.3) and (1.4) collapse to the fixed regressor models considered by PPK. Hence, the following
modified criteria are suggested:

s2a = ê′aêa/(n− k∗) (1.18)

and
s2d =

∑
i

∑
j

ê′iêj/{n− ki − kj + tr(Q̂iQ̂j)}, (1.19)

where, as before, Q̂i = X̂i(X̂
′
iX̂i)

−1X̂′i.

2 Testing for Aggregation Bias under IV Estimation

Another important aspect in the comparison of aggregate and disaggregate models is the issue of aggre-
gation bias. This concept was originally formalised by Theil (1954), who defined aggregation bias as the
deviations of the parameters of a macro equation from the average of the corresponding parameters of
the micro equations. Other definitions of aggregation bias are also used in the literature. For example, in
his analysis of aggregating log-linear relations with fixed slope coefficients, Lewbel (1992) defined aggre-
gation bias as the percentage difference between the common slope coefficient of the micro relations and
the probability limit of the slope coefficient in the analogue aggregate equation and showed that this bias
depends on the extent of the dependence between the regressors and the disturbances of the aggregate
model. In the context of our application, where the micro equations are linear but have different slope
coefficients, an adaptation of Lewbel’s condition for no aggregation bias requires the micro coefficients,
βi, to be distributed with a common mean, βa, such that βi − βa are distributed independently of
the regressors in all the micro equations. This condition yields the familiar random-coefficients model
discussed by Zellner (1969). The condition that βi − βa and the regressors of the micro equations are
independently distributed is not, however, likely to be satisfied if the micro equations contain lagged
dependent variables. (On this, see Pesaran and Smith (1992)). In general, however, where the slope co-
efficients differ across the micro equations, Theil’s definition will still be appropriate for dynamic models,
and will therefore be adopted in the rest of the article.

Here we generalise the tests for aggregation bias derived by Lee et al. (1990a,b) to the case where the
macro and micro models are estimated by the IV method. In the application of the tests of aggregation
bias, it is only meaningful to consider the case where the macro model is defined to be an analogue of
the micro relations (1.1), given by

Ha : ya = Xaβa + u, (1.2´)



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 7

where Xa =
∑m
i=1 Xi. Here, the coefficients βa can be interpreted as the ‘average’ counterparts of βi.

Such an interpretation of (1.2′) arises naturally in the case of random-coefficients models mentioned
previously. The familiar method of testing for aggregation bias in the context of the micro relations (1.1)
is to test directly the micro homogeneity hypothesis—namely, Hβ : β1 = β2 = · · · = βm. An alternative
approach, which is less restrictive, would be to test the equality of βa from the macro equation with the
average of the coefficients of the micro equations—namely,

H0 : ηβ = βa −m−1
m∑
i=1

βi = 0. (2.1)

Clearly H0 implies Hβ , but not vice versa. In what follows, we focus on tests of H0 and its generalisation
(which was discussed in detail by Lee et al. (1990b)), when the micro and macro equations are estimated
by the IV method. The generalisation of H0 covers situations in which the parameters of interest are
(possibly nonlinear) functions of the micro parameters and their macro counterparts. In this general
case, the hypothesis of no aggregation bias may be defined as

H0 : êtah = g(βa)− h(β1, . . . ,βm) = 0, (2.2)

where h and g are assumed to be continuous and differentiable vector functions of dimension s, and where
g(βa) = h(βa, . . . ,βa). This formulation includes the hypothesis expressed at (2.1) as a special case and
also allows the possibility of defining bias as the deviation of a function of the macro parameters from
an average of the same function of the micro parameters or from a function of the average of the micro
parameters or some other general form. In all cases, the null hypothesis that there is no aggregation
bias would not be rejected under the micro homogeneity hypothesis Hβ . On the other hand, it would be
possible that no evidence of aggregation bias is found even when micro homogeneity does not hold, so
that testing H0 provides a less restrictive test for the presence of aggregation bias than the familiar test of
the micro homogeneity hypothesis Hβ . (Clearly this approach to testing for the presence of aggregation
errors is distinct from that based on tests of mispecification in an aggregate model in which measures of
distributional effects, calculated across the micro units, are employed (e.g., see Stoker (1986)).)

Two test statistics are derived corresponding to two different assumptions about the vector of macro
parameters βa. First assume that βa is a vector of known parameters given a priori from some ‘consensus’
view, for example. A test statistic can be constructed based on the vector

η̃h = g(βa)− h(β̃1, . . . , β̃m). (2.3)

On the null hypothesis H0:
plim
n→∞

η̃h = ηh = 0, (2.4)

and

Âvar(η̃h) =

m∑
i=1

m∑
j=1

H̃iÂvar(β̃i, β̃j)H̃
′
j = Ω̃n, (2.5)

where H̃i = ∂h/∂β̃
′
i, and the variance-covariance matrix of βi in model (1.1) is estimated consistently

by Âvar(β̃i, β̃j) = σ̃ij(X̂
′
iX̂i)

−1X̂′iX̂j(X̂
′
jX̂j)

−1, where σ̃ij is any consistent estimator of σij . Then the
test statistic for the hypothesis (2.2) is given by

q∗1 = η̃′hΩ̃nη̃h, (2.6)

and on the null hypothesis, H0, q∗1
a∼ χ2

s.
Second, consider the case in which there is no consensus view on βa, so that, instead of being given

a priori, the parameter vector βa is estimated from the aggregate model (1.2′). From Assumption A4,

plim
n→∞

(β̃a|Hd) =

m∑
i=1

Ciβi, (2.7)

where
Ci = plim

n→∞
{(X̂′aX̂a/n)−1(X̂′aXi/n)}.

In this case, a test of (2.2) can be based on the vector

η̃h = g(β̃a)− h(β̃1, . . . , β̃m). (2.8)



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 8

On the null hypothesis of no aggregation bias, H0,

plim
n→∞

(η̃h|Hd) = g

(
m∑
i=1

Ciβi

)
− h(β1, . . . ,βm) = 0. (2.9)

The test statistic for this case is given by

q∗2 = (g(β̃a)− h(β̃1, . . . , β̃m))′Φ̃
−1
n (g(β̃a)− h(β̃1, . . . , β̃m)), (2.10)

where

Φ̃n =

m∑
i=1

m∑
j=1

σ̂ijΨ̃iΨ̃
′
j , (2.11)

and the matrix Ψ̃i (which corresponds to equation (21) of Lee et al. (1990b)) is defined by

Ψ̃i = G̃a(X̂′aX̂a)−1X̂′a − H̃i(X̂
′
iX̂i)

−1X̂′i, (2.12)

where G̃a = ∂g/∂β̃
′
a. On the null hypothesis, H0, q∗2

a∼ χ2
s.

3 An Application to Sectoral Labour-Demand Determination

In this section, the statistics that have been developed are applied to aggregate and sectorally disag-
gregated labour demand functions for the UK economy. This is an area of research that has received
considerable attention recently as economists have attempted to understand and explain the causes of the
historically high unemployment levels experienced recently in the United Kindom and elsewhere (e.g.,
see Layard et al. (1991), and the references therein). In particular, much applied research has focused on
the responsiveness of labour demand to changes in real wages and in output levels in an effort to evaluate
the efficacy of different policies designed to reduce unemployment. Much of this analysis, however, has
been carried out using aggregate data, and it is of some interest to consider whether conclusions drawn
on the basis of this work are affected by the choice of the level of aggregation used in the analysis.

PPK and Lee et al. (1990b) investigated this question empirically, using annual data for 40 industrial
sectors over the period 1956-1984. The data cover the whole of the private sector, excluding the mineral
oil and natural gas sector (sector 4) for which data are available only since 1971 when North Sea oil
production started to come on line. (Full details of sources and definitions can be found in the data
appendix to PPK.) In these works, the following general log-linear dynamic specifications for the sectoral
labour demand equations were adopted:

LEit = βi1/m+ βi2(Tt/m) + βi3LEi,t−1 + βi4LEi,t−2 + βi5LYit + βi6LYi,t−1 + βi7LWit

+ βi8LWi,t−1 + βi9LY at + βi10LY a,t−1 + uit,

i = 1, 2, 3, 5, 6, . . . , 41, t = 1956, . . . , 1984, (3.1)

where LEit = log of man-hours employed in sector i at time t, Tt = time trend (T1980 = 0), LYit = log
of sector i output at time t, LWit = log of average product real wage rate per man-hours employed in
sector i at time t, LY at = average of LYit over the 40 sectors and m = number of sectors, (m = 40). This
specification can be justified theoretically when employment decisions are made within an industry by
cost minimising firms with identical production functions and the same given demand and factor price
expectations. The inclusion of lagged employment variables can be justified on the grounds of inertia in
revision of expectations, adjustment costs involved in hiring and firing of workers, or aggregation over
different labour types (see, for example, Nickell (1984) and Pesaran (1991)). The variable LY at, which
measures the level of aggregate output (in logs), is a proxy measure intended to capture changes in
demand expectations arising from the perceived interdependence of demand in the economy by the firms
in the industry. The time trend is included in the specification in order to allow for the effect of neutral
technical progress on labour productivity.

OLS estimates of the disaggregated model in (3.1), and a restricted version of the model (in which
linear parameters restrictions are imposed as a means of avoiding over-parameterisation), were presented
in tables I and II of PPK. Using these, evidence is found to suggest that a disaggregate model is superior
to its aggregate counterpart in terms of its ability to predict fluctuations in aggregate labour demand and
that statistically significant differences exist between estimates of labour-demand elasticities obtained
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from the estimated aggregate and disaggregated models. In many models of supply-side behaviour, how-
ever, it is acknowledged that employment, wage, price, and output levels are determined simultaneously.
Furthermore, in these circumstances, it is not clear how aggregate output levels, themselves an aggrega-
tion of the outcomes of sectoral output decisions, could be known with certainty prior to the time when
sectoral employment decisions are made. Consequently, it might be argued that all of the current-dated
explanatory variables in (3.1) are potentially correlated with the uit, and that instruments for these
variables are required. It is important, therefore, that we establish whether the previous findings are
robust to the choice of estimation method, and to this end we have reestimated both the aggregate
and disaggregate models using the IV method, and employed the techniques developed in the preceding
sections to evaluate their relative performance.

As a first step in the empirical work of this paper, we estimated model (3.1) by the generalised
IV method using the instruments Zit = {1, Tt, LEi,t−1, LEi,t−2, LWi,t−1, LWi,t−2, LYi,t−1, LYi,t−2,
LEa,t−1, LEa,t−2, LW a,t−1, LW a,t−2, LY a,t−1, LY a,t−2}. This choice of instruments is a natural one
given the preceding discussion; the simultaneity of the employment-, price-, output-, and wage-setting
decisions in each sector, and the possibility of intersectoral interdependencies, exerted directly through
product or labour-market competition, or indirectly through the expectations-formation process, means
that lagged sectoral and aggregate variables are likely to provide valid instruments for the current-valued
explanatory variables in (3.1). Moreover, it is important to be as comprehensive as possible in the choice
of instruments for the sectoral regressions; if for any sector i, the included instruments are only a subset
of those variables that determine Xi in model (1.1), then the assumed independence of the Zi and the
Vj is likely to be violated for i 6= j. Similar comments are likely to be true for the assumed independence
of the Z∗ and the Vi if the Z∗ include aggregated values of the Zi. The second step in the empirical
study was to calculate the Wu (1973) T2 statistic, also known as the Wu-Hausman statistic, for each of
the sectoral equations to test for the exogeneity of the current-dated explanatory variables in (3.1), and
to investigate the relevence of the IV estimation method in this context. In those sectors in which the
null of exogeneity was not rejected, we reestimated the labour-demand equations by the OLS method.
Finally, for each sector, we undertook a specification search in which variables with t ratios that were
less than unity (in absolute terms) were dropped from the list of explanatory variables to obtain a more
parsimonious set of employment equations. At each stage of the specification search, a joint test of the
parameter restrictions and a test of the exogeneity of the regressors were also carried out. In the case of
industries where the exogeneity hypothesis was not rejected, the employment equations were estimated
by OLS.

The estimates of the sectoral labour-demand equations obtained through this procedure are given in
Table 1 and Table 2 provides some of the associated summary and diagnostic statistics. Included also in
Table 2, in the columns headed χ2

MS(4) and FWH(3, 16), are the Sargan (1964) general misspecification
test statistics and Wu-Hausman test statistics, respectively, carried out on the (unreported) unrestricted
versions of the equations in (3.1). The Sargan test statistics serve as a general misspecification test
of the joint validity of the model specification and the instruments, and are below their 95% critical
values in all sectors. Turning to the Wu-Hausman test results, note that, conservatively working at
the 10% level of significance, these statistics suggest the rejection of the exogeneity hypothesis in 6 of
the 40 industries—namely, mechanical engineering (15), office goods (16), electrical engineering (17),
rubber goods (31), hotels and catering (35), and communications (39). Furthermore, in the course of the
specification search procedure, exogeneity of regressors in the restricted version of the labour-demand
equation for the office goods sector could not be rejected either. Consequently, in all but five industries
the parameter estimates reported in Table 1 are obtained by OLS and are equivalent to those in table II
of PPK (in which OLS methods were employed throughout). In these five industries, however, exogeneity
cannot be assumed to hold, and the IV estimation method has been employed; Wu-Hausman statistics
for the test of the exogeneity of regressors in the restricted regressions reported in Table 1 for sectors 15,
17, 31, 35, and 39 were 3.14 (2,18), 11.87 (2,22), 3.39 (1,23), 8.83 (2,19), and 18.39 (2,21), respectively,
where the relevent degrees of freedom of the F distribution are given in parentheses.

The parameter estimates presented in Table 1 are generally of the expected sign and, following the
specification search, are generally well determined. In particular, it is worth noting that a second lagged
dependent variable is included in 17 of the 40 industrial equations, and its coefficient takes a negative
sign, as suggested by the theory, in all cases in which the coefficient is statistically different from 0 (see
Pesaran (1991)). The need to include a variable to capture the effects of changes in demand expectations
arising from interdependencies in the economy is confirmed by the presence of aggregate output terms
in 19 of the 40 sectors. And the signs of the coefficients on the wage and output terms are generally as
expected: the sum of the coefficients on current and lagged wage terms is negative in 31 of the sectors
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Table 1: Disaggregate Labour-Demand Functions (restricted) 1956–1984

Industry c/40 T/40 LYit LYi,t−1 LEi,t−1 LEi,t−2 LWit LWi,t−1 LY at LY a,t−1

1. Agriculture 152.152 — .2687 .1752 .5312 — −.4312 — −.2437 −.1729
(64.95) (.14) (.11) (.06) (.08) (.10) (.11)

2. Mining 41.200 −.3502 .2734 4− .4181 1.1604 −.2848 −.2018 — — —
(14.34) (.07) (.04) (.06) (.09) (.08) (.03)

3. Coke −351.57 −1.3100 — .6330 — — −.3005 — 1.0448 —
(44.66) (.18) (.15) (.04) (16)

4. Oil — — — — — — — — — —
5. Petroleum Products −70.796 −.5087 .3640 — .5185 — −.3144 — — —

(71.77) (.13) (.13) (.13) (.09)
6. Electric 18.523 — .1614 — 1.2739 −.5958 −.1732 — — —

(14.70) (.08) (.17) (.16) (.07)
7. Gas −47.110 −.6014 — .0611 .4191 — −.1507 — .5379 —

(97.22) (.20) (.07) (.15) (.05) (.18)
8. Water 8.168 — .6536 −.6536 .8112 — −.4027 .4027 −.6415 .7906

(18.92) (.40) (.40) (.08) (.11) (.11) (.31) (.31)
9. Minerals 172.916 — .2655 — .6931 — −.1494 — −.5337 —

(79.12) (.13) (.08) (.06) (.26)
10. Iron −349.96 −.9045 .1083 — .4978 — −.3873 — 1.1803 — —

(58.87) (.27) (.09) (.08) (.08) (.29)
11. Other metals −84.826 −.5749 .1817 −.3091 1.2461 −.4796 −.0756 .0756 .5854 —

(30.72) (.15) (.13) (.13) (.15) (.12) (.05) (.05) (.18)
12. Mineral products −280.57 −.3729 .3101 — .6919 — −.2356 −.2214 .5170 —

(60.64) (.21) (.15) (.09) (.11) (.10) (.29)
13. Chemicals −125.06 — — — .6205 — −.2810 — .6049 —

(23.83) (.07) (.03) (.08)
14. Metal goods −32.245 −1231 .4365 .5798 — −.1671 — — —

(25.53) (.10) (.04) (.05) (.08)
15. Mechanical engineering† −140.40 .2775 .5872 −.2910 .5309 −.1529 −.3090 −.3407 — .3966

(63.92) (.15) (.10) (.11) (.22) (.16) (.15) (.13) (.21)
16. Office goods −3.4674 — .1694 −.1694 1.2748 −.3244 −.3884 .3123 — —

(22.75) (.09) (.09) (.20) (.18) (.14) (.13)
17. Electrical engineering† −64.345 — .4199 — .5345 — −.9220 .5053 — —

(29.12) (.09) (.09) (.18) (.17)
18. Motor vehicles −184.62 −.2365 .4908 −.3811 .9237 −.1783 — −.1843 .5856 —

(50.06) (.11) (.06) (.11) (.16) (.09) (.07) (.18)
19. Aerospace 200.392 −.6788 .0732 — .7560 −.4659 — −.1252 — —

(53.12) (.16) (.06) (.17) (.14) (.07)
20. Ships −.7667 — .4809 −.4809 1.4717 −.4717 — — .5103 −.5103

(.31) (.12) (.12) (.15) (.15) (.20) (.20)
21. Other vehicles −132.16 −.4754 .3130 — .7270 — −.1432 — — .2845

(54.39) (.17) (.07) (.09) (.05) (.11)
22. Instrument engineering −11.357 −.3580 .3611 — .5319 — −.2624 — — —

(47.49) (.14) (.10) (.13) (.11)
23. Food −172.16 −.4510 .6697 — .3177 .2237 −.1962 — — .1157

(76.05) (.20) (.17) (.17) (.16) (.06) (.12)
24. Drink −15.180 −.4844 .2933 — .7283 — −.0945 .0591 — —

(73.49) (.14) (.12) (.12) (.09) (.09)
25. Tobacco −213.37 −.3959 .7424 — .7367 .2633 — — — —

(80.84) (.12) (.28) (.22) (.22)
26. Textiles −68.150 — .5278 −.1236 .5880 — −.3428 — — —

(10.02) (.05) (.08) (.06) (.05)
27. Clothing −68.949 — .4514 — .5364 — −.3756 — — —

(11.96) (.04) (.04) (.03)
28. Timber 60.3106 −.3017 .3769 — .4312 — −.2460 .1493 — —

(20.95) (.08) (.04) (.06) (.07) (.07)
29. Paper −44.740 −.3259 .4680 .1585 .3644 — −.2503 — — —

(13.29) (.10) (.07) (.09) (.08) (.04)
30. Books 58.9249 — .2973 −.2575 1.4842 −.7029 −.0454 — — —

(20.82) (.06) (.06) (.17) (.15) (.05)

(continued)
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Table 1: (Continued)

Industry c/40 T/40 LYit LYi,t−1 LEi,t−1 LEi,t−2 LWit LWi,t−1 LY at LY a,t−1

31. Rubber† −54.009 −.6246 .6726 −.2123 .7116 — — — — —
(13.15) (.12) (.09) (.12) (.09)

32. Other manufacturing 60.3555 −.3233 .2345 — .6028 — — — .4274 −.4274
(20.03) (.07) (.04) (.09) (.13) (.13)

33. Construction 7.2409 — .5490 −.4527 1.0813 −.2453 −.4434 .3376 — —
(20.56) (.08) (.09) (.16) (.11) (.08) (.11)

34. Distribution 109.986 .3892 — .5034 .5641 — −.3036 — — −.5678
(43.33) (.21) (.20) (.09) (.12) (.17)

35. Hotels† 388.377 .4384 −.8857 1.6050 — −.4753 −.8499 .3938 — −.4509
(205.9) (.18) (.52) (.60) (.40) (.31) (.24) (.28)

36. Rail −65.107 — — .4077 .8047 — −.0729 — — —
(26.28) (.10) (.05) (.05)

37. Land transportation 146.432 −.4542 — .2451 .9023 −.4855 — — — —
(37.81) (.10) (.07) (.19) (.18)

38. Sea transportation 48.5901 −.1921 .1924 — 1.1919 −.5542 −.0853 — — —
(104.9) (.11) (.16) (.17) (.22) (.07)

39. Communications† 195.189 — −.2816 — .8450 −.3766 — .2841 .5211 —
(48.50) (.10) (.17) (.17) (.10) (.13)

40. Business 209.651 — .3108 — .6781 −.3104 — — — −.1633
(49.15) (.08) (.18) (.17) (.05)

41. Services −39.904 — .2123 — .8264 — −.1408 — — —
(33.31) (.08) (.10) (.07)

Note: Equations are estimated using the OLS method, except in the case of industries denoted
† (i.e. industries numbered 15, 17, 31, 35 and 39), in which the IV method was employed.
For these five sector, the following variables were included in the instrument set for the
ith industry: c/40, T/40, LYi,t−1, LYi,t−2, LEi,t−1, LEi,t−2, LWi,t−1, LWi,t−2, LY a,t−1,
LY a,t−2, LEa,t−1, LEa,t−2, LW a,t−1, LW a,t−2. Variables definitions are provided in the
text, and data sources are provided in PPK. Values in parentheses are standard errors.

(and is not significantly different from 0 in a further 8), but the sum of the coefficients on the sectoral
output terms is positive in 33 sectors (and is not significantly different from 0 in a further 4).

Table 2 reports the generalised R̄2 as measures of the ‘fit’ of the IV regressions and also several
diagnostic statistics, denoted χ2

SC(1), χ2
FF (1), χ2

N (2), and χ2
H(1), and distributed approximately as chi-

squared variates (with degrees of freedom in parentheses), for tests of residual serial correlation, functional
form misspecification, nonnormal errors, and heteroscedasticity, respectively. (For more details of the
tests, see Pesaran and Pesaran (1991)). These statistics indicate that there is evidence of misspecification
in only a few cases. For example, there is evidence of residual serial correlation only in the chemicals
(13) and construction (33) industries, and this is weak in the former case. The χ2

R(r) statistics reported
in Table 2 for testing the restrictions imposed on the unrestricted labour-demand equations in (3.1)
to obtain the specifications given in Table 1 are below their 95% critical values in all industries other
than office goods (16), thus reaffirming the plausibility of our search procedure. In summary, the results
of Tables 1 and 2 indicate that, although there may be room for improving the results—by including
industry-specific variables, for example—the specifications considered here provide a reasonable model
of labour-demand determination at the sectorally disaggregated level.

Consider now the aggregate employment equation obtained as an analogue of (3.1):

LEat = b1 + b2Tt + b3LEa,t−1 + b4LEa,t−2 + b5LYat

+ b6LYa,t−1 + b7LWat + b8LWa,t−1 + uat, (3.2)

where

LEat =

41∑
i=1, i 6=4

LEit , LYat =

41∑
i=1, i 6=4

LYit and LWat =

41∑
i=1, i 6=4

LWit.

Here the dependent variable of interest is assumed to be LEat—that is, the sum of the logarithms of
industry employment (in man-hours). Clearly, this is not the dependent variable usually considered
in aggregate labour-demand equations (which tend to consider the logarithm of the sum of industry
employment). The issue of consistent aggregation in the context of log-linear models has been discussed
in the literature (e.g., Lovell (1973); van Daal and Merkies (1981)), and here we simply note that the
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Table 2: Summary and Diagnostic Test Statistics for Restricted Labour-Demand Equations of Table 1

Industry GR
2

σ̂ χ2
R(r) χ2

SC(1) χ2
FF (1) χ2

N (2) χ2
H(1) FWH(3, 16) χ2

MS(4)

1. Agriculture .9983 .0137 .04(3) .00 7.40∗∗ .39 2.55 1.03 5.96
2. Mining .9986 .0158 3.72(3) .83 .91 .32 .05 .82 5.96
3. Coke .9771 .0449 5.20(5) .24 .67 .27 1.87 .02 4.66
4. Oil — — — — — — — — —
5. Petroleum Products .9178 .0566 4.89(5) .48 .01 1.83 .85 .78 6.68
6. Electric .9876 .0190 2.19(5) .17 1.26 .18 .12 .26 5.62
7. Gas .9719 .0322 3.97(4) 1.29 .00 4.88∗ 1.42 1.09 5.91
8. Water .9279 .0412 .73(4) 1.67 .00 .47 1.05 .36 4.94
9. Minerals .9760 .0318 2.40(5) 1.36 .16 32.7∗∗ .00 .39 4.21
10. Iron .9933 .0265 2.49(4) .08 .19 1.42 .43 1.07 6.88
11. Other metals .9864 .0250 2.63(2) .00 3.45∗ .20 1.89 1.29 5.63
12. Mineral products .9935 .0177 3.44(3) 1.11 .23 .76 3.15∗ .34 6.38
13. Chemicals .9795 .0156 6.27(6) 3.51∗ 1.49 .96 1.14 .44 8.96∗

14. Metal goods .9877 .0192 2.37(5) .09 .27 .38 1.00 .36 9.02∗

15. Mechanical engineering† .9918 .0148 .49(1) 1.21 6.21∗ .77 1.49 2.60∗ 5.85
16. Office goods .8922 .0345 10.5(4)∗∗ .05 2.49 7.24∗∗ 5.05∗∗ 3.00∗ 3.38
17. Electrical engineering† .9683 .0224 2.95(5) .00 7.90∗∗ .69 3.48∗ 5.40∗∗ 1.90
18. Motor vehicles .9874 .0186 1.29(2) 1.55 8.71∗∗ 3.89 .00 .92 5.92
19. Aerospace .9878 .0268 2.21(4) .90 .30 1.81 1.30 1.04 3.69
20. Ships .9818 .0323 9.70(6) .45 .43 .40 6.26∗∗ .67 2.58
21. Other vehicles .9973 .0241 1.69(4) .00 .81 .17 .04 .91 1.99
22. Instrument engineering .9250 .0257 7.92(5) .47 3.05∗ .00 .84 .29 6.88
23. Food .9837 .0164 .85(3) 1.69 1.76 1.33 4.38∗∗ .75 8.92
24. Drink .9232 .0269 2.56(4) 1.32 .02 .94 2.06 .80 6.79
25. Tobacco .8796 .0497 7.09(6) .25 .70 .65 6.33∗∗ 1.66 4.36
26. Textiles .9981 .0175 3.18(5) .05 4.44∗∗ .74 5.09∗∗ .70 5.62
27. Clothing .9984 .0110 3.76(6) .36 1.91 .62 .03 .20 3.46
28. Timber .9864 .0138 4.24(4) .00 2.56 1.34 .30 .41 2.85
29. Paper .9927 .0192 2.86(4) 1.09 1.32 1.74 4.41∗∗ 1.93 2.30
30. Books .9306 .0123 4.69(4) 1.70 .00 .14 .44 1.01 2.38
31. Rubber† .9570 .0193 .67(5) .11 3.34∗ .56 2.48 3.71∗∗ 3.43
32. Other manufacturing .9570 .0137 7.18(5) .37 .21 1.12 .00 .91 3.45
33. Construction .9689 .0179 5.54(3) 5.00∗∗ 2.13 1.62 1.00 .43 3.83
34. Distribution .9589 .0143 5.44(4) .49 .00 .94 2.06 2.12 3.61
35. Hotels† .9202 .0316 .38(2) .03 6.48∗∗ 2.21 1.77 3.18∗ 1.01
36. Rail .9960 .0230 2.36(6) .28 .00 1.27 1.98 .12 7.10
37. Land transportation .9747 .0163 4.04(5) .02 1.75 .64 2.71∗ .95 4.00
38. Sea transportation .9155 .0229 7.87(4)∗ .27 6.06∗∗ .39 2.75∗ .22 8.64
39. Communications† .9232 .0203 .33(4) 1.87 1.48 1.01 2.75∗ 6.39∗∗ 1.17
40. Business .9940 .0128 1.81(5) .98 2.01 1.98 .17 .49 2.90
41. Services .9512 .0222 3.21(6) .06 .53 .39 1.91 .34 6.63

Note: Equations are estimated using the OLS method, except in the case of industries de-
noted † (i.e. industries numbered 15, 17, 31, 35 and 39), in which the IV method was

employed. See footnotes to Table 1. GR
2

refers to the generalised R2 statistic (cf. Pesaran
and Smith (1994)). σ̂ is the estimate of the of the equation’s standard error. χ2

R(r) is the
chi-squared statistic for the Lagrange multiplier test for r linear restrictions imposed on the
parameters of the unrestricted equation (where r is given in parentheses). χ2

SC(1), χ2
FF (1),

χ2
N (2) and χ2

H(1) are diagnostic statistics, distributed approximately as chi-squared variates
(with degrees of freedom in parentheses) for tests of residual serial correlation, functional
form misspecification, nonnormal errors, and heteroscedasticity, respectively. (See Pesaran
and Pesaran (1991)). FWH(3, 16) is the Wu-Hausman test for the exogeneity of LY it, LWit
and LY at carried out on the unrestricted version of the model (cf. F (3, 16)). χ2

MS(4) is Sar-
gan’s general misspecification test carried out on the unrestricted version of the model. This
latter statistic is the same as the J statistic in the generalised method of moments proposed
by Hansen (1982). ∗∗ denotes significance at the 5% level and ∗ denotes significance at the
10% level.
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aggregates employed in (3.2) may have some theoretical advantages over standard aggregate measures
(i.e., the logarithm of the sum of sectoral employment, wages, or output) when the issue of interest is
the analysis of sectoral employment growths. Of course, for our purposes, the specification (3.2) also has
the advantage of fitting directly within the linear framework of the article.

A restricted version of (3.2) was estimated by the IV method using the instrument set Zat = {1,
LEa,t−1, LEa,t−2, LYa,t−1, LYa,t−2, LWa,t−1, LWa,t−2}, and the following results were obtained:

LEat = −137.01 +0.6840LEa,t−1 +0.4745LYat −0.3830LWat + ûat
(20.70) (0.0569) (0.0708) (0.0540)

σ̂ = 0.3487, s(LEat) = 5.75, Sample = 1956− 1984 (n = 29)

χ2
SC(1) = 0.56, χ2

FF (1) = 0.07, χ2
N (2) = 4.15, χ2

H(1) = 2.18, χ2
MS(3) = 2.68. (3.3)

Here, standard errors of the estimated parameters are given in brackets, σ̂ is the estimate of the equation’s
standard error, s(LEat) is the standard deviation of the dependent variable, and the remaining diagnostic
statistics are as described in relation to Table 1. These IV estimates differ only marginally from those
previously obtained using the OLS procedure and reported by PPK, and indeed the Wu-Hausman test
fails to reject the exogeneity of the regressors LWat and LYat in this equation. While this finding might
appear to suggest that the use of the OLS estimation method would be acceptable, it is in fact most
important that the presence of simultaneity is taken into account here. If there is simultaneity in any
of the sectoral equations, then it is clear that the aggregate model will be affected by such simultaneity
so long as the matrix of regressors in the aggregate model includes aggregated values of the Xi’s. The
IV method will be the appropriate estimation procedure for the aggregate model in these circumstances,
even if tests of exogeneity of regressors in the aggregate model fail to reflect this, possibly because of lack
of power. Given the presence of simultaneity in the determination of employment, wages, and output in
5 of the 40 sectors, it is not appropriate to estimate the aggregate equation using OLS methods, and the
IV results reported here are the relevent ones for use in comparison of the aggregate and disaggregate
models.

For the two models (3.1) and (3.2), the statistics s2d and s2a of Section 1 were computed in both
the uncorrected form and the modified form making an adjustment for degrees of freedom. (These
calculations, as with all those described in this section, were carried out using the GAUSS programming
language. Copies of the procedures as well as the data used for this analysis, are available from the
authors on request.) For the disaggregated model, the uncorrected and modified values of s2d were found
to be 0.0742 and 0.1000, respectively, whereas for the aggregate model, the uncorrected and corrected
values of s2a were 0.3584 and 0.4158, respectively. It is clear that the criteria favour the disaggregate
model, both in the uncorrected forms of (1.3) and (1.4) and in the corrected forms of (1.18) and (1.19),
which include the degrees-of-freedom adjustments. These results are consistent with the findings of PPK
based on the OLS estimates.

Models (3.1) and (3.2) were also used to test for aggregation bias in the estimates of the long-run
elasticities of UK labour demand with respect to wages and output. (For this analysis sectors 20 and
25 had to be excluded because the restricted specifications estimated for these sectors do not seem to
possess long-run solutions. The two sectors were consequently also removed from the definition of the
aggregate variables entering equation (3.2).) For the ith sector, the long-run elasticities of interest are
defined by

εiw =
βi7 + βi8

1− βi3 − βi4
, εiy =

βi5 + βi6 + βi9 + βi10
1− βi3 − βi4

,

and in considering aggregation bias, we aim to compare the average of each of these sectoral elasticities
with the corresponding estimates based on the aggregate specification. As noted previously, these elas-
ticities have been the subject of considerable interest because of their implications for macroeconomic
policy. Various aggregate studies (many of which were reviewed by Treasury (1985)), have found a
significant effect for real wages on employment demand, although the estimated size of the effect has
varied considerably across studies, depending on the coverage of the data and on the specification of the
employment equation that is considered. A consensus view has emerged on the basis of these aggregate
studies, however, that the elasticity is close to −1, and hence this is the figure employed in the test of
aggregation bias when comparison is made with an aggregate measure that is assumed known a priori.
Similarly, a unit elasticity is used as the consensus figure for the output elasticity. Note that the wage
and output elasticities obtained based on the aggregate model of (3.3) are −1.2792 (0.2121) and 1.5189
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(0.2676), respectively. (Asymptotically valid standard errors are in parentheses.) These estimates are
consistent with the hypothesis of wage and output elasticities of −1 and +1, respectively.

To examine whether these estimates for the aggregate wage and output elasticities are subject to
aggregation bias, we use the restricted versions of IV models (3.1) and (3.2) and apply the tests defined
by the statistics (2.6) and (2.10) of Section 2. A value of −0.5112 was obtained for the average of the
sectoral wage elasticities estimated in Model (3.1), but the average of the sectoral output elasticities is
found to be 0.9094. The q∗1 statistics of (2.6) that correspond to these figures, testing the null hypotheses
that the wage and output elasticities are equal to their ‘consensus’ values of −1 and +1 respectively,
are 29.25 and 0.48. Since both statistics are compared to the χ2

1 distribution, these results provide
strong evidence with which to reject the null hypothesis of no aggregation bias in the case of the wage
elasticity but no evidence to reject the null in the case of the output elasticity. In contrast, when the q∗2
test statistics of (2.10) are calculated in which aggregation bias is defined with respect to the aggregate
elasticities obtained from the estimated version of (3.2), the test statistic takes the value of 6.82 in the
case of the wage elasticity, and 3.36 in the case of the output elasticity. Again each statistic is to be
compared to the χ2

1 distribution, so that there remains strong evidence with which to reject the null
hypothesis of no aggregation bias in the case of the wage elasticity, and there is now some marginal
evidence with which to reject this hypothesis for the output elasticity. These findings are also in line
with those reported by Lee et al. (1990b), using the OLS method.

The results just described, obtained using the statistics appropriate for models estimated using the
IV method derived in the previous sections of the article, confirm the findings of PPK and Lee et al.
(1990b) that a disaggregate model of employment demand in the United Kingdom outperforms an
aggregate model in terms of its predictive power and that there is significant aggregation bias in the
estimation of the key wage elasticity of employment demand. The results substantiate the conclusions
drawn previously by demonstrating that they cannot be attributed simply to some neglected simultaneity
bias. The implications of those findings may be important for policy formulation, and certainly the results
indicate that further work at the disaggregate level may be worthwhile.
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