
Economic Forecasting
Lecture 2: Forecasting the Trend

Richard G. Pierse

1 Introduction

Trends are an important feature of many economic time series. In this lecture
we look at some simple models to forecast trends. There are two main classes
of model that have been proposed in the literature: deterministic trend models
and stochastic trend models. These two classes of model imply very different
implications for the effect of shocks on the future path of a time series. Tests are
available to help us to choose between them.

2 Stationarity

Before we start looking at models of trends we need to define the important
concept of stationarity. There are weaker and stronger definitions of stationarity
but, for our purposes, it is sufficient to consider the definition of what is known
as weak stationarity or covariance stationarity.

A time series {yt} is said to be covariance stationary if it satisfies the following
three conditions:

E(yt) = µ (1)

var(yt) ≡ E(yt − µ)2 = σ2 (2)

and
cov(yt, yt−s) ≡ E(yt − µ)(yt−s − µ) = γs. (3)

The first condition (1) states that the mean of the series is the same in every
time period t. The second condition states that the variance of the series is also
the same in every time period t. The third condition states that the covariance
between the two observations yt and yt−s depends only on the distance between
them, s, and is the same in every time period t.

A trended time series is one with a non-constant mean and so violates the
first condition for covariance stationarity. We will see that a time series with a
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stochastic trend also violates the second and third conditions. Detrending of a
trended time series removes the trend to leave a detrended series that will be
covariance stationary. The method of detrending will depend on the form of the
trend: deterministic or stochastic.

3 Deterministic Trend Models

3.1 The linear trend model

The simplest deterministic trend model is the linear trend model:

Tt = β0 + β1TIMEt

where TIME is an artificial time dummy taking the values TIME 1 = 1, TIME 2 =
2, TIME 3 = 3 etc. so that we can say that TIME t = t. The parameter β0 is the
intercept and gives the value of the trend when t = 0. The parameter β1 is the
slope; when β1 is positive, the trend is increasing and when β1 is negative, the
trend is decreasing. The absolute size of β1 specifies the steepness of the slope
of the trend. In economics and business, linear trends are typically increasing,
corresponding to growth, but this need not be the case and there are examples
of economic series with decreasing trends such as male labour force participation
(Figure 1).

In order to forecast with the linear trend model we must first estimate the
unknown parameters β0 and β1. Writing

yt = β0 + β1TIMEt + εt (4)

where yt is the time series to be forecast and εt is a disturbance with E(εt) = 0
and E(ε2t ) = σ2, the parameters β0 and β1 can be estimated by OLS regression
applied to equation (4). Taking expectations of (4),

E(yt) = β0 + β1t

which depends on time so that the series yt is not stationary although

var(yt) = E(ε2t ) = σ2

so that it does have constant variance.
Note that from the decomposition

yt = Tt + Ct + St + ut
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Figure 1: US Male Participation Rates: 1980-2000

discussed in last week’s lecture it follows from (4) that the OLS disturbance

εt = Ct + St + ut

is the sum of the cyclical, seasonal and irregular components of the time series.
While it is reasonable to assume that each of these components has zero mean
with constant variance, it is likely that the cyclical component (and hence εt) will
be autocorrelated. In this case, although the OLS parameter estimates will still
be unbiased, the standard errors of those parameter estimates will underestimate
the true standard errors.

Having estimated the parameters, the forecast of the linear trend model is
given by

T̂t = β̂0 + β̂1TIMEt

where β̂0 and β̂1 denote OLS estimates of the parameters β0 and β1. This forecast
will be a straight line as shown by the dotted lines in Figures 1 and 2.
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Figure 2: US Female Participation Rates 1980-2000

3.2 The quadratic trend model

In the linear trend model, the predicted trend is a straight line. The quadratic
trend model

Tt = β0 + β1TIMEt + β2TIME2
t

allows for a non-straight trend line. Various shapes are possible according to the
values of the parameters β1 and β2. When both parameters are positive, the trend
will be monotonically increasing but at a super-linear rate. Conversely, when both
parameters are negative, the trend will be monotonically decreasing at a super-
linear rate. When β1 < 0 and β2 > 0, the trend will have a u-shape and when
β1 > 0 and β2 < 0, the trend will have an inverted u-shape.

Figure 3 shows a quadratic trend fitted to the female participation rate time
series (the coefficient β2 was not significant for the case of the male participation
rate series, showing that a linear trend is sufficient there).
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Figure 3: Quadratic trend fitted to US Female Participation Rates

Higher order polynomial trends are possible such as the k-th order polynomial
trend

Tt = β0 + β1TIMEt + β2TIME2
t + β3TIME3

t + · · ·+ βkTIMEk
t .

The higher the order of the polynomial, the more flexible is the shape of the trend.
However, there is a serious danger of over-fitting when k is allowed to be too large
and, in practice, linear or quadratic trends are normally sufficient.

3.3 The exponential trend model

An alternative nonlinear model for the trend is the exponential trend model

Tt = β0e
β1TIMEt .
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Taking logarithms we get

log Tt = log β0 + β1TIMEt

so that the logarithm of the trend is a linear function of time. The parameters
of this model can therefore be estimated by fitting a linear trend model to the
logged time series.

Figure 4: Quadratic v. exponential trend forecasts for NYSE data

Figure 4 shows a comparison between the quadratic trend model and the
exponential trend model fitted to the New York Stock Exchange volumes data
set. It appears from 4 that the exponential trend model fits the data better
despite being based on fewer estimated parameters. This reflects the log-linearity
characteristic of many economic time series.
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3.4 Choosing between models: information criteria

We have looked at several different deterministic models of the trend. In each case,
the forecast errors from each model are given by the OLS regression residuals

et ≡ yt − T̂t.

Since the OLS estimator by definition minimises the sum of squared residuals

T∑
t=1

e2t

or, equivalently, the Mean Square Error (MSE)

MSE =
1

T

T∑
t=1

e2t = Ê(e2t ),

it follows that the forecasts from each model will be optimal if the forecaster has
the quadratic loss function

L(et) = e2t .

How does the forecaster choose between competing models? It might seem
tempting to choose the model with the smallest MSE, which is equivalent to
choosing the model with the largest R2. However, the MSE is not a good criterion
for selecting a model because it will never favour a parsimonious model with fewer
parameters. The reason is that the MSE cannot increase when an extra coefficient
is added to a regression and can only stay the same or fall. This means that, in
choosing between a linear trend and a quadratic trend, the MSE criterion will
always favour the quadratic trend, simply because it has an extra parameter.

In last week’s lecture, we discussed the importance of parsimony in selecting a
forecasting model. This suggests that, when comparing forecasts from competing
models, we should attach a penalty to a model with more parameters. Two
important information criteria have been proposed in the literature. Both involve
adjusting the MSE by a multiplicative penalty related to the number of model
parameters, k. In choosing between models, the model with the smallest value of
the criterion is selected.

The Akaike Information Criterion (AIC) is defined by

AIC = exp(
2k

T
)

1

T

T∑
t=1

e2t
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and the Schwarz Information Criterion (SIC) (sometimes known as the Bayesian
Information Criterion (BIC)), is defined by

SIC = T
k
T

1

T

T∑
t=1

e2t .

Both information criteria penalise a model with more parameters (larger k) but
the SIC involves a higher penalty than the AIC. This means that the SIC is more
likely to choose the more parsimonious model than the AIC. Which criterion
should we use? It can be shown that the SIC is consistent in the sense that,
when the ‘true’ model is among the models considered, then the probability of
selecting it approaches 1 as the sample size increases. On the other hand, the
AIC is asymptotically efficient in the sense that, as the sample size increases, it
will select a sequence of models aproaching the ‘true’ model at least as fast as
any other criterion. In practice, both criteria are used and they often lead to
selection of the same model. Where there is a conflict, the parsimony principle
would suggest using the SIC criterion.

To illustrate the use of information criteria to select a model, the table below
shows the MSE and the AIC and SIC criteria for the linear, quadratic and ex-
ponential trend models applied to the male and female participation rates data
graphed in Figures 1–3. (In order to make the exponential model comparable, it
was estimated in an anti-log form so that the dependent variable is the same as
for the other two specifications.)

MSE AIC SIC MSE AIC SIC
Linear 0.0496 0.025 0.125 0.3239 1.901 2.000

Quadratic 0.0490 0.107 0.256 0.0768 0.557 0.706
Exponential 0.0498 0.029 0.128 0.3832 2.069 2.169

For the male participation rate (columns 1–3) both AIC and SIC select the
linear model even though, as expected, the quadratic model has the smaller MSE.
For the female participation rate (columns 4–6) both AIC and SIC select the
quadratic model graphed in Figure 3. Thus, in this example, the two criteria
agree on the choice of model although this will not always be the case.

4 Stochastic Trend Models

4.1 The Random Walk with Drift

The simplest stochastic trend model is the random walk with drift

Tt = δ + Tt−1 + εt (5)
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where δ is the drift parameter and εt is a random disturbance that is assumed to
be mean zero, constant variance and non-autocorrelated, or, formally,

E(εt) = 0, E(ε2t ) = σ2, E(εtεs) = 0, s 6= t.

Such a disturbance is known as a ‘white noise’ process.
The random walk with drift is a non-stationary process as can be seen by

repeated back-substitution in (5) to get

Tt = T0 + tδ +
t∑
i=1

εi

so that
E(Tt) = T0 + tδ (6)

and

var(Tt) ≡ E(Tt − E(Tt))
2 = E(

t∑
i=1

εi)
2 = tσ2. (7)

From (6) it can be seen that the mean is non-constant (except when the drift
parameter δ is zero) and depends on t and from (7) it follows that the variance
is also non-constant and increases with t. In the limit, as t → ∞, the variance
becomes infinite. When the drift parameter δ is positive, the mean is increasing
in t and the process has a general upward trend. Conversely, when the drift
parameter δ is negative, the mean is decreasing in t and the process has a general
downward trend. In the special case when δ = 0, the process has no trend.

However, despite the effect of the drift, the presence of the stochastic distur-
bance ut means that a random walk with drift can wander arbitrarily far from
its mean trend path as is illustrated in Figure 5, which simulates a random walk
with δ = 0.01 and σ2 = 0.01. Despite the positive drift, this series has significant
periods of trending downwards.

Another way of writing (5) is

∆Tt = δ + εt

where ∆ is the first-order difference operator defined by ∆xt ≡ xt − xt−1. Note
that

E(∆Tt) = δ

var(∆Tt) = E(ε2t ) = σ2

and
cov(∆Tt,∆Tt−s) = E(εtεt−s) = 0, s 6= t
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Figure 5: Random walk with drift (δ = 0.01 and σ2 = 0.01). Level and Change

so that ∆Tt is covariance stationary.
A variable that can be made stationary by differencing is known as an inte-

grated variable and denoted as I(d) where d indicates the number of times that
the variable needs to be differenced to make it stationary. In this case, d is 1 so
we say that Tt is I(1) or ‘integrated of order 1 ’.

4.2 The log random walk model with drift

A variant of the random walk model with drift is the log random walk model with
drift defined by

Tt = δTt−1e
εt .

Taking logarithms of this equation we obtain

log(Tt) = log(δ) + log(Tt−1) + εt
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which is a random walk with drift in the logarithm of Tt. In this model the
stationary variable is the trend growth rate

∆ log(Tt) = log(δ) + εt

rather than the difference ∆Tt. This model is probably the most widely used
stochastic trend model in economic forecasting.

4.3 Forecasting with random walk models

There is one unknown parameter to be estimated in the random walk model with
drift, the drift parameter δ. This can be estimated by the regression of the first
difference of the data series ∆yt on an intercept:

∆yt = δ + ut.

Then, one-step ahead forecasts can be computed by

∆ŷt+1,t = δ̂

or
ŷt+1,t = yt + δ̂.

For the log random walk model with drift we use the regression

∆ log(yt) = log(δ) + ut

and compute one-step ahead forecasts by

∆ log(ŷt+1,t) = log(δ̂)

or
log(ŷt+1,t) = log(yt) + log(δ̂)

or
ŷt+1,t = ytδ̂.

For multi-step ahead forecasts we have

ŷt+h,t = ŷt+h−1,t + δ̂

= yt + hδ̂

and

ŷt+h,t = ŷt+h−1,tδ̂

= ytδ̂
h
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Figure 6: Random walk model with drift fitted to NYSE data

respectively. It is clear that these multi-step ahead forecasts simply project con-
stant changes (growth rates) into the future and will be expected quickly to go
off track.

For one-step ahead forecasting however, the random walk models can do very
well as is illustrated in Figures 6 and 7 where the random walk model and the
log random walk model are both fitted to the NYSE data series. Both models
fit notably better than the deterministic trend forecasts in Figure 4, and there is
very little to choose between them. (The AIC and SIC criteria marginally favour
the log random walk model). However, the figures also graph the one-step ahead
forecast errors which clearly show an increasing variance over time, evidence of
heteroscedasticity.
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Figure 7: Log random walk model with drift fitted to NYSE data

4.4 The local linear trend model

A more general stochastic trend model than the random walk with drift is the
local linear trend model defined by the two equations:

Tt = Tt−1 + δt−1 + εt

δt = δt−1 + ηt

where εt and ηt are both independent, normally distributed, white noise processes
with

E(εt) = 0, E(ε2t ) = σ2, E(ηt) = 0, E(η2t ) = ω2.

In this model the drift, δt, is a stochastic process that follows a random walk. In
the special case where var(ηt) = ω2 = 0, the model reduces to the random walk
model with drift

∆Tt = δ + εt.
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Alternatively, in the special case var(εt) = σ2 = 0, the model reduces to

∆2Tt = ηt−1

which is an I(2) stochastic process and, in the general case, the model can be
rewritten as

∆2Tt = ηt−1 + ∆εt

which is also an I(2) stochastic process since ηt−1 and ∆εt are both stationary.
In the general case, the effect of δt is to allow the slope of the trend to change

over time whereas in the random walk model with drift the slope is constant at
δ. Estimation of the unknown parameters in the local linear trend model, the
two variances σ2 and ω2, can be achieved by using the Kalman filter (see Harvey
(1989) for details) but this is beyond the scope of these lectures.

As we will see, empirical investigation suggests that many economic time series
are I(1) (generally in logarithms) but few are I(2). This suggests that the local
linear trend model may be more flexible than necessary to model the trend in
economic variables. However, one area in which a special case of the local linear
trend model has proved very popular is in the Hodrick-Prescott (H-P) filter used to
detrend economic series. It can be shown that applying the H-P filter is equivalent
to estimating the trend Tt in the model

yt = Tt + ut

Tt = Tt−1 + δt−1

δt = δt−1 + ηt

where ut is an irregular stationary component with variance E(u2t ), and the model
is estimated subject to the restriction that η2t ) = q E(u2t ) where q is a smoothing
parameter (set equal to 1/1600 for quarterly data). Several authors have pointed
out that the flexibility of the trend in the H-P filter means that it can remove
more than just the trend and, paradoxically, can introduce spurious cycles into
the residual irregular component.

5 Choosing Between Deterministic and Stochas-

tic Trends

Consider again the linear deterministic trend model

yt = β0 + β1t + εt (8)

and the random walk model with drift

∆yt = δ + εt. (9)
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Without any disturbances εt, the two models are indistinguishable. To see
this, set εt = 0, lag (8) by one period and subtract it from itself to get

yt − yt−1 = (β0 + β1t)-(β0 + β1(t-1))

or
∆yt = β1

which is the same as (9) where β1 = δ is the drift. Initialising the random walk
model by setting y0 = β0, both models will generate identical forecasts in the
absence of shocks.

Figure 8: Linear trend v. random walk with drift: response to a single shock
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The key difference between the deterministic and stochastic trend models lies
in the way that they respond to shocks. In the deterministic model, shocks have
only a temporary impact whereas in the random walk with drift, shocks have a
permanent effect on the path of the time series. This is illustrated in Figure 8
which shows the response of the two models to a single negative shock in period
150. In the deterministic trend model, the series returns to its trend immediately.
In the random walk model with drift, the series never returns to its former trend
but continues after the shock from where it is. The shock thus has a permanent
effect on the time path.

A third intermediate case is given by the stationary trend model

yt = β0 + β1t + β2yt−1 + εt (10)

where the parameter β2 satisfies |β2| < 1. (The deterministic trend model (8)
is just a special case of this model in which β2 = 0). In this model, the effect
of a shock dies away gradually as illustrated by the broken line in Figure 8 and
eventually the series resumes its former trend. The time that it takes for the effect
of the shock to completely die away depends on the magnitude of the parameter
β2, the closer |β2| is to 1, the longer it takes. In the limiting case where β2 = 1,
the shock has a permanent effect. This case corresponds with a unit root in the
dynamics of yt. Note that the random walk model with drift is a special case of a
unit root model where β2 = 1, β1 = 0 and β0 = δ.

5.1 Testing for unit roots

Consider the equation

∆yt = β0 + β1t + αyt−1 + εt. (11)

This is just equation (10) with yt−1 subtracted from both sides and with α ≡ β2−1.
This equation nests all three of the models (8), (9) and (10). When α = 0 (and
β1 = 0) we have the random walk model with drift. When α < 0, the model
corresponds to the stationary trend model with stationary β2 < 1 and in the
special case when α = −1 this is the deterministic trend model.

A test of the hypothesis
H0 : α = 0

against the alternative
H1 : α < 0

is a test for a unit root in the equation (11). It is a test of the random walk
model with drift against the deterministic trend models (10) and (8). A test can
be based on the t-statistic

α̂√
v̂ar(α̂)
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from OLS regression of equation (11). However, it is important to stress that
this statistic can not be tested using the standard Student t-distribution. In
fact, on the null hypothesis of a unit root, this statistic will be distributed with
a distribution known as the Dickey-Fuller distribution first tabulated by Fuller
(1976).

The Dickey-Fuller unit root test provides a way of choosing between determin-
istic and stochastic trend models. In empirical work, it has been found that the
null hypothesis of a unit root is rarely rejected for economic variables. This sug-
gests that stochastic trend models may be more appropriate than deterministic
trend models for forecasting economic variables and this in turn implies that it
may be difficult to forecast trends over a long horizon, when the best multi-step
forecast will be a constant change or constant growth rate forecast.
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