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1 Introduction

Cycles are present in many economic time series. In macroeconomics, variables
such as output and employment are subject to irregular business cycles. Various
economic theories have been proposed to account for these: trade cycle theory in
the 1950s and real business cycle theory since the 1980s. Agricultural production,
especially in developing countries, is subject to climate and weather cycles, caused
by varying levels of rainfall, droughts and floods. Government policy variables
may be subject to political cycles in which government policy follows a cyclical
pattern determined by proximity to the next general election. Cyclical dynamics
may be complicated and cyclical patterns may be more or less regular.

There are two main ways of characterising a cyclical time series, known as
the time domain and the frequency domain. In the time domain, the properties
of the series are characterised by looking at the autocorrelation function and the
partial autocorrelation function, which show the correlation between observations
of the series at different points in time. In the frequency domain, the properties
of the series are characterised by looking at the spectral density function, which
shows the composition of the series in terms of cycles of different frequencies (or
equivalently periods). Both time domain and frequency domain are equally valid
ways of looking at a cyclical time series. For most people, the time domain seems
more natural and has the advantage of being mathematically rather simpler. For
this reason, we will concentrate on time domain analysis of cycles in these lectures.
However, at some points it will be useful to consider the equivalent frequency
domain interpretation of the time domain concepts that will be introduced.

This lecture is a preparation for the consideration next week of the most
influential forecasting model of cycles in the time domain, the Box and Jenkins
or ARMA model.
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2 Simple Cycles

2.1 A deterministic cycle: the cosine wave

The simplest model of a regular cycle is the cosine wave

Ct = a cos(bt) (1)

with parameters a and b. The parameter a represents the size or amplitude of the
wave or cycle and b is the frequency of the cycle and is related by

b =
2π

q

to q which is called the period of the cycle and gives the number of time periods of
one complete cycle.Figure 1 represents a cosine wave with amplitude 1 and period

Figure 1: Cosine function with a = 1 and b = 2π/100
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100.
In the simple cosine wave (1), the amplitude of the wave a is constant. This

is what is called an undamped cycle. It is also possible to define a damped cycle

Ct = rta cos(bt) (2)

where r is a damping factor with |r| < 1.In this model, the amplitude of the cycle

Figure 2: Damped cosine function with r = 0.995, a = 1 and b = 2π/100

decreases with time at a rate determined by r and the wave will eventually die
away completely.

2.2 A stochastic cycle: the AR(2) model

An alternative stochastic model of a cycle can be represented by the equation

yt = φ1yt−1 + φ2yt−2 + εt (3)
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where εt is a ‘white noise’ random disturbance satisfying

E(εt) = 0, E(ε2t ) = σ2, E(εtεs) = 0, s 6= t.

This model is known as a second order autoregressive model or AR(2) model. We
will be looking at the properties of autoregressive models in more detail in the
next lecture. For now we note that this model gives rise to a damped cycle when
the parameters φ1 and φ2 satisfy

φ1 = 2r cos(b)

and
φ2 = −r2

with |r| < 1. Note that, since −1 ≤ cos(b) ≤ 1, it follows that −2 < φ1 < 2
and −1 < φ2 < 0. We will see next week that this corresponds to the case of a
pair of complex conjugate roots. The amplitude of the cycle generated by (3) is
determined by the initial values y0 and y−1.

In the absence of any shocks (with σ2 = 0), this model generates a damped
cosine wave identical to the damped cosine model (2). However, when shocks are
allowed to influence the process, the cycle generated becomes very irregular.Figure
3 shows the big effect of introducing even a small sized shock σ2 = 0.000025 into
the model (3). The cycle now has an irregular period and amplitude. Compare
this with Figure 4 which shows the deterministic damped cosine cycle model

yt = rta cos(bt) + εt

where an additive disturbance has been introduced. Even with a much larger
disturbance variance, σ2 = 0.01, the cycle still exhibits a regular period and a
smoothly damped amplitude.

3 Stationarity

In characterising cycles, we restrict ourselves to the consideration of stationary
time series. This means that, if the original series is non-stationary, then it is as-
sumed that the non-stationary trend has been removed by appropriate detrending
as considered last week.

Recall from last week the definition of weak stationarity or covariance sta-
tionarity. A time series {yt} is said to be covariance stationary if it satisfies the
following three conditions:

E(yt) = µ (4)

var(yt) ≡ E(yt − µ)2 = σ2 <∞ (5)
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Figure 3: AR(2) model with r = 0.995, b = 2π/100, σ2 = 0.000025

and
cov(yt, yt−s) ≡ E(yt − µ)(yt−s − µ) = γs. (6)

The first condition (4) states that the mean of the series is the same in every
time period t. The second condition states that the variance of the series is also
the same in every time period t. The third condition states that the covariance
between the two observations yt and yt−s depends only on the distance between
them, s, and is the same in every time period t.

Note that the variance is a special case of the covariance where s = 0 so that
we may write

var(yt) = γ0.
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Figure 4: Damped cosine function with disturbance, σ2 = 0.01

4 The Autocorrelation Function (ACF)

For a covariance stationary series, the covariance depends only on the distance
between observations or displacement. This means that we can consider the co-
variances as a function of s, known as the autocovariance function

γ(s).

Note that this function is symmetric with γ(s) = γ(−s) since

γ−s = cov(yt, yt+s) = cov(yt−s, yt) = γs.

The autocovariance function has a disadvantage in that it is not scale inde-
pendent but depends on the units in which yt and yt−s are measured. Instead, we
work with the autocorrelation function or ACF

ρ(s) =
γ(s)

γ(0)
=

cov(yt, yt−s)

var(yt)
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which gives the simple correlation between observations yt and yt−s. Note that
the autocorrelation function is also symmetric with ρ(s) = ρ(−s) and has the ad-
ditional property that ρ(0) = 1 since an observation is always perfectly correlated
with itself. Also, a correlation must lie between minus 1 and plus one so that

−1 ≤ ρs ≤ 1, s = 0,±1,±2, · · ·

For a stationary series it must be the case that eventually the autocorrelations
disappear so that, as s→∞, ρs → 0.

The autocorrelation function gives a complete characterisation of a stationary
time series. The shape of the ACF shows how the autocorrelations behave as
the distance between observations increases. Eventually, we know that, with any
stationary series, the autocorrelations have to go to zero. However, whether they
cut off abruptly or die away gradually or oscillate will characterise the series.

5 Estimating the ACF : the Correlogram

The autocorrelation function ρ(s) is defined by the theoretical expression

ρ(s) =
E(yt − µ)(yt−s − µ)

E(yt − µ)2
.

In order to make this operational, we need to be able to estimate the function
from a sample of T observations for yt, t = 1, · · · , T .

The sample autocorrelation function or correlogram is a consistent estimator
of the ACF and is defined by

ρ̂(s) =
1
T

∑T
t=s+1(yt − y)(yt−s − y)
1
T

∑T
t=1(yt − y)2

(7)

where

y =
1

T

T∑
t=1

yt

is an estimate of the sample mean µ. Note that the summation in the numerator
is over T − s observations but is divided by T . Asymptotically, this makes no
difference to the properties of the estimator.

6 The Box-Pierce and Box-Ljung Q Statistics

It is useful to be able to test the hypothesis that all the autocorrelations up to a
certain order m are equal to zero. This is a test of the hypothesis that the series
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yt is ‘white noise’ with cov(yt, yt−s) = 0, s > 0. Box and Pierce (1970) proposed
a statistic based on the sum of squared estimated autocorrelations:

QBP = T

m∑
s=1

ρ̂2s ∼ χ2
m.

This statistic asymptotically has a chi-squared distribution with m degrees of
freedom on the null hypthesis that all the autocorrelations are zero. This test
is sometimes known as a portmanteau test. Note that if any one autocorrelation
is non-zero, then the null hypothesis is violated and we expect that the test will
reject the null. However, in practice a single non-zero autocorrelation may be
swamped by many zero autocorrelations and the test may fail to reject in this
case. This is an example of what is called low power of a test.

A modified version of the test was proposed by Ljung and Box (1978). This
modified form is designed to follow more closely the chi-squared distribution in
small samples. The modified statistic is defined by

QBL = T (T + 2)
m∑
s=1

1

T − s
ρ̂2s ∼ χ2

m.

In this form, the sample autocorrelations are weighted and the scaling factor
adjusted. Note that, when T is large in relation to m, the two forms will be very
close to each other.

7 The Partial Autocorrelation Function (PACF)

The autocorrelation function measures the simple correlation between yt and yt−s.
The partial autocorrelation function or PACF measures the correlation between
yt and yt−s after controlling for the effects of yt−1, yt−2, · · · , yt−s+1. For example,
in the model

yt = φyt−1 + εt

yt is not directly affected by yt−2 but only by yt−1. However, it can be shown that
the simple correlation between yt and yt−2 is

ρ2 =
cov(yt, yt−2)

var(yt)
= φ2

where the correlation arises because of the indirect effect of yt−2 on yt−1 and hence
on yt. By contrast the partial autocorrelation between yt and yt−2 is zero since,
after controlling for the effect of yt−1, there is no additional effect from yt−2.
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The PACF is denoted
p(s)

and ps can be estimated by the estimator p̂s in the regression defined by

yt = c+ p1yt−1 + p2yt−2 + p3yt−3 + · · ·+ psyt−s + εt.

The estimated PACF is known as the sample partial autocorrelation function or
partial correlogram.

The PACF provides an alternative way to the ACF of viewing the autocor-
relations. By examining the shape of both functions, many stochastic processes
can be distinguished as will be discussed in the next lecture.

8 Examples

Figure 5: ACF with gradual damping

Figures 5–7 show autocorrelation functions with different shapes. In Figure
5 the autocorrelations die away gradually. In Figure 6 the correlations cut off
sharply after lag 14 and are zero thereafter. In Figure 7 the autocorrelations
follow an oscillation with gradual damping. Similar patterns may be observed in
partial autocorrelation functions.
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Figure 6: ACF with sharp cutoff

Finally, Figure 8 shows the correlogram for the AR(2) model of equation
(3). This resembles Figure 7 in that the autocorrelations oscillate in sign but
decrease in magnitude. The fact that it takes a very large number of periods for
the autocorrelations to die down indicates that the series is close to being non-
stationary. In contrast, the partial correlogram for this process cuts off sharply
after lag 2. We will see next week that these are the characteristics of a second
order AR process with a pair of complex conjugate roots.
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Figure 7: ACF with gradual damped oscillation
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Figure 8: Correlogram for AR(2) model of equation (3
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