
Economic Forecasting
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Richard G. Pierse

1 Introduction

The ARMA model was introduced by Box and Jenkins (1976) as a general way of
explaining a variable in terms of its own past. The Box and Jenkins methodology
has proved popular as a method of producing short-term forecasts.

2 Autoregressive processes

2.1 The first order autoregressive process

Let yt be defined by the process

yt = φyt−1 + εt (1)

where εt is an independently identically distributed random variable of innovations
with

E(εt) = 0, var(εt) = σ2, cov(εtεt−s) = 0, s 6= 0.

For the process to be covariance stationary we require that the parameter φ sat-
isfies the restriction that

|φ| < 1.

This process is known as a first order autoregressive or AR(1) process. By re-
peated substitution we can write yt in terms of the innovations εt

yt = εt + φεt−1 + φ2εt−2 + φ3εt−3 + · · ·

The variable yt has the properties that

E(yt) = E(εt) + φE(εt−1) + φ2 E(εt−2) + φ3 E(εt−3) + · · · = 0
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V ar(yt) = E(ε2t ) + φ2 E(ε2t−1) + φ4 E(ε2t−2) + φ6 E(ε2t−3) + · · ·
= (1 + φ2 + φ4 + φ6 + · · · )σ2

= σ2/(1− φ2)

and

Cov(ytyt−s) = φsV ar(yt−s)

= φsσ2/(1− φ2).

It can be seen that yt has a constant mean of zero, a constant variance and
autocovariances that depend only on the distance s between observations. This
verifies that yt is covariance stationary.

Recall from last week that the autocorrelation function (ACF ) of any station-
ary process yt is defined by

ρs =
Cov(yt, yt−s)

V ar(yt)
(2)

so, for the AR(1) process
ρs = φs

and the ACF coefficients die away gradually (in absolute value) since |φs| < |φs−1|.
The partial autocorrelation function (PACF ) of yt, p(s), measures the autocor-

relation between yt and yt−s taking into account the effect of all lags in between.
The PACF is measured by the coefficient ps in the regression equation

yt = p1yt−1 + p2yt−2 + p3yt−3 + · · ·+ psyt−s + εt.

In the AR(1) model, clearly p1 = φ and ps = 0, s > 1. It can be seen that the
PACF coefficients cut off abruptly after s = 1.

2.2 Higher order processes

We can define the AR(p) process

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (3)

where as before

E(εt) = 0, E(ε2t ) = σ2, E(εtεs) = 0, s 6= t.

Introducing the lag operator, L, defined by

Lkxt = xt−k , L0xt = 1
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we can rewrite the model as

yt − φ1Lyt − φ2L
2yt − · · · − φpLpyt = εt

or
(1− φ1L− φ2L

2 − · · · − φpLp)yt = φ(L)yt = εt

where φ(L) is a polynomial function in the lag operator. This polynomial can be
factorised as the product of its roots

φ(L) =

p∏
j=1

(1− αjL) = (1− α1L)(1− α2L) · · · (1− αpL) (4)

where the roots are
1

α1

,
1

α2

, · · · , 1

αp
.

These roots are either real numbers or complex numbers of the form a+bi where a
and b are real numbers and where i is the imaginary number defined by i =

√
−1.

Where roots are complex, they must appear in complex conjugate pairs of the
form

αj = aj + bji and αj+1 = aj − bji
so that the sum of the pair of roots is

αj + αj+1 = (aj + bji) + (aj − bji) = 2aj

and the product of the two roots is

αjαj+1 = (aj + bji)(aj − bji) = a2j − b2j i2 = a2j + b2j

are both real numbers. A real root corresponds to a damped exponential whereas
a pair of complex conjugate roots corresponds to a damped cosine wave (a cycle).

For the AR(p) process to be stationary we require that

‖αj‖ < 1, j = 1, · · · , p

where ‖αj‖ is the norm of αj defined for the real case as ‖αj‖ = |αj| and for the
complex case as

‖αj‖ =
√

(aj + bji)(aj − bji) =
√
a2j + b2j .

The condition for stationarity is sometimes stated as the condition that all the
roots of the AR(p) process lie outside the unit circle since∥∥∥∥ 1

αj

∥∥∥∥ > 1, ∀j.
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.
The AR(p) model can be written in terms of the innovations εt as

yt = φ(L)−1εt

where

φ(L)−1 =

p∏
j=1

(1− αjL)−1

is a polynomial in the lag operator. This polynomial will only exist when the
AR(p) process satisfies the conditions for stationarity. In general it will be of
infinite order so that yt depends on the whole past history of εt.

The AR(p) process has the properties that

E(yt) = E(φ(L)−1εt) = 0,

V ar(yt) ≡ γ0 = E[yt(φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt)]

= φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2

Cov(ytyt−s) ≡ γs = E[yt−s(φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt)]

= φ1γs−1 + φ2γs−2 + · · ·+ φpγs−p.

The coefficients of the ACF, ρs the autocovariances, will die out gradually as s
increases but will never disappear completely. The PACF partial autocovariances
ps are non-zero up to pp but then cut off completely.

3 Moving Average processes

Let yt be defined by the process

yt = εt + θεt−1 (5)

where εt is an independently identically distributed random variable with

E(εt) = 0, var(εt) = σ2, cov(εtεt−s) = 0, s 6= 0.

This process is known as a first order moving average or MA(1) process.
The variable yt has the properties that

E(yt) = E(εt) + θE(εt−1) = 0,
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V ar(yt) = E(εt + θεt−1)
2

= E(ε2t ) + 2θE(εtεt−1) + θ2 E(ε2t−1)

= σ2(1 + θ2),

and

Cov(ytyt−s) = E(εt + θεt−1)(εt−s + θεt−s−1)

= E(εtεt−s) + θE(εtεt−s−1) + θE(εt−1εt−s) + θ2 E(εt−1εt−s−1)

= σ2θ , s = 1 and = 0 , s > 1.

It can be seen that yt has a constant mean of zero, a constant variance and
autocovariances that depend only on the distance s between observations. Thus
yt is a covariance stationary variable and this is true for all values of θ, including
the unit moving average root cases θ = ±1.

The autocovarances ρs cut off after the first order whereas it can be shown
that the partial autocovariances ps will gradually damp down and die away.

3.1 Identification

For the autocorrelation function of the MA(1) process we have ρ1 = θ/(1+θ2) and
ρs = 0 for all s > 1. Consider an alternative MA(1) process with MA coefficient
θ∗ = 1/θ. The autocorrelation function for this process has

ρ∗1 =
θ∗

(1 + θ∗2)
=

1

θ

1

(1 + 1
θ2

)
=

1

θ

θ2

(1 + θ2)
=

θ

(1 + θ2)
= ρ1

and ρ∗s = 0 for all s > 1. Thus an MA(1) process with coefficient 1/θ has exactly
the same autocorrelation function as a process with coefficient θ and it is impos-
sible to distinguish between the two processes from their autocorrelations. This
is called an identification problem and to resolve this we impose the identification
restriction on the MA(1) model that

|θ| ≤ 1.

As before, note that the identification restriction does not exclude the unit root
cases θ = ±1.

3.2 Higher order processes

We can define the MA(q) process

yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q
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where as before

E(εt) = 0, var(εt) = σ2, cov(εtεt−s) = 0, s 6= 0.

This process has the properties

E(yt) = E(εt) + θ1 E(εt−1) + θ2 E(εt−2) + · · ·+ θq E(εt−q) = 0,

V ar(yt) = E(ε2t ) + θ21 E(ε2t−1) + θ22 E(ε2t−2) + · · ·+ θ2q E(ε2t−q)

= (1 + θ21 + θ22 + · · ·+ θ2q)σ
2

and

Cov(ytyt−s) = (θs + θ1θs+1 + · · ·+ θq−sθq)σ
2 , s ≤ q

= 0 , s > q.

The autocovariances ρs are non-zero up to order q but cut off after this point.
The partial autocovariances ps will die away gradually.

4 The ARMA model

4.1 The Wold Representation Theorem

Wold (1954) proved the important result that any covariance stationary stochastic
process yt with mean µ and variance σ2 can be written in the form

yt − µ = ψ0εt + ψ1εt−1 + ψ2εt−2 + · · · =
∞∑
j=0

ψjεt−j (6)

where εt is a sequence of uncorrelated random variables with mean 0 and constant
variance σ2. This equation is called the infinite moving average representation of
yt, or the Wold representation. The moving average coefficients are subject to the
condition that they are absolutely summable

∞∑
j=0

|ψj| <∞ .

Using the lag operator L, equation (6) can be rewritten as

yt − µ = (1 + ψ1L+ ψ2L
2 + · · · )εt = ψ(L)εt
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where ψ(L) is a polynomial function in the lag operator. Without loss of gener-
ality, we have imposed the normalisation restriction that ψ0 = 1.

The polynomial ψ(L) can be factorised as the product of its roots

ψ(L) =
∞∏
j=1

(1 + βjL) = (1 + β1L)(1 + β2L) · · · (7)

with roots given by

− 1

β1
,− 1

β2
, etc.

These moving average roots must satisfy the condition of identifiability that

‖βj‖ ≤ 1 , ∀j .

Note that this condition of identifiability does not rule out the possibility of unit
moving average roots where ‖βj‖ = 1.

In practice we can approximate the infinite order MA process by a finite order
MA process. As we shall see, under certain conditions an autoregressive represen-
tation and a mixed ARMA representation will also exist.

4.2 Invertibility and the autoregressive representation

When there are no unit roots in (7) so that all the roots satisfy the stronger
condition that ‖βj‖ < 1, then the process is said to be invertible and yt can be
written in the autoregressive representation

ψ(L)−1yt = εt .

More generally, if some of the roots satisfy ‖βi‖ < 1, then ψ(L) can be factorised
into two polynomials

yt = ψ(L)εt = φ(L)−1θ(L)εt

where the first polynomial φ(L)−1 has no unit roots and so is invertible and the
second θ(L) may contain some unit roots. Inverting the first polynomial leads to
the model

φ(L)yt = θ(L)εt . (8)

(8) is a mixed ARMA(p,q) model where

φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp

and
θ(L) = 1 + θ1L+ θ2L

2 + · · ·+ θqL
q .

7



4.3 Integrated Processes: the ARIMA model

Suppose that yt is not stationary but instead is integrated of order d, (yt ∼ I(d)).
Then, by definition, the dth order difference of yt,

∆dyt = (1− L)dyt

is stationary, and can be expressed as an ARMA(p,q) process. Therefore, it follows
that we can write

φ(L)∆dyt = θ(L)εt. (9)

Such a process is said to be an integrated ARMA process or an ARIMA(p,d,q)
process where d denotes the order of differencing.

4.4 Mixed Processes

4.4.1 Advantages of mixed processes

Why is it necessary to consider mixed processes? Box and Jenkins (1976) stress
parsimony. They argue that an ARMA(p,q) model with small values of p and q
will do as well at explaining a process yt as a high order pure AR(p∗) or MA(q∗)
process. Allowing an MA component may be useful since it can give evidence
of over-differencing. Suppose that the ‘true’ model is yt = εt, but the forecaster
mistakenly differences the process and estimates an ARMA model for ∆yt. From
the true model, ∆yt = ∆εt = εt+θεt−1, where θ = −1. This is an MA process with
a (negative) unit root which has been induced by over-differencing. The forecaster
who estimates an ARMA model for ∆yt including an MA(1) component will find

an estimated parameter θ̂ close to −1. This should alert the forecaster to probable
over-differencing and this could not be picked up in a pure AR model.

4.4.2 Problems with mixed processes

One problem with estimating mixed processes is that of common factors. Suppose
the ‘true’ model is ARMA(p,q) but the investigator mistakenly estimates the
model ARMA(p+1,q+1). If the true model is given by φ(L)yt = θ(L)εt , then the
estimated model can be written

(1− αp+1L)φ(L)yt = (1 + βq+1L)θ(L)εt

where αp+1 and βq+1 are extra (superfluous) roots. For any values of αp+1 and
βq+1 satisfying αp+1 = −βq+1 = γ, the extra roots cancel out so that the model
reduces to ARMA(p,q). This model is not identified since the parameters αp+1

and βq+1 can not be estimated.
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This result implies that starting out from an over-parameterised ARMA model
and testing down to find a parsimonious representation, the so called general-to-
simple modelling strategy, will not work with a mixed ARMA model. It will still
work with pure AR or pure MA models, however.

5 Choosing the order of the ARIMA model

5.1 Identifying the order of differencing d

The first step in choosing an appropriate ARIMA model is to identify the correct
order of differencing. This is a question of testing for unit roots and a natural test
to use is the (augmented) Dickey-Fuller (ADF ) test. The appropriate procedure
would be to test down from an initial order of integration d∗ that is at least
as large as the (unknown) true value d. Then a sequence of Dickey-Fuller tests
are computed testing the null hypothesis ∆d∗yt ∼ I(1) against the alternative
hypothesis that ∆d∗yt ∼ I(0), reducing d∗ each time, until the null hypothesis
fails to be rejected. The final d∗ then determines d.

5.2 Identifying the orders of p and q

Examining the correlogram and partial correlogram may help distinguish between
pure AR and pure MA processes. In pure MA processes, we know that the simple
autocorrelations should cut off after a certain point whereas in pure AR processes,
the simple autocorrelations will damp down gradually but never disappear com-
pletely. Conversely, in pure AR models, the partial autocorrelations should cut
off after a certain point whereas in pure MA models they will only damp down
gradually. Examining the correlogram and partial correlogram for evidence of
these features should allow us to distinguish a pure AR from a pure MA process.
In practice however, noise may blur these distinctions and make it difficult to
decide on the correct process from the correlogram and partial correlogram.

Information criteria such as the AIC and SIC can be used to select the most
parsimonious model that fits the data. Sometimes, more than one model may fit
a series equally well and different researchers can often disagree about the best
ARMA model for a particular series. For example, Box and Jenkins themselves
identify two different processes for some of their test series.

6 An Example: Canadian Employment

As an example, let us look at building an ARIMA model for the seasonally ad-
justed quarterly Canadian Employment index considered by Diebold (2004) and
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illustrated in Figure 1. Although this series is not obviously trended, we should
still first test for a unit root to determine whether the order of differencing d
should be 0 or 1.

Figure 1: Canadian Employment Data: 1961-1994

The Augmented Dickey-Fuller test reported by EViews gives a test statistic
of −2.2056 which is less than the 5% critical value of −2.8841 so the test fails to
reject the null of a unit root. This suggests that the series is integrated of order
1, I(1), and needs to be differenced before fitting an ARMA model. Despite this,
Diebold chooses to fit an ARMA model to the level of the series.

Diebold reports the correlogram and partial correlograms illustrated in Figure
2 . The solid lines represent two-standard error bands. The graphs show that the
simple autocorrelations fall off gradually whereas the partial autocorrelations cut
off sharply. We have seen that this pattern is characteristic of an autoregressive
process. Also, the fact that the autocorrelations die out is consistent with the
series being covariance stationary and contradicts the result of the previous ADF
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Figure 2: Sample ACF and PACF for Canadian Employment Index

test for a unit root. (This may be because of the low power of the unit root test
to reject when the alternative has roots close to but less than one).

AR(p) models MA(q) models ARMA(p,q) models
Order AIC SIC AIC SIC Order AIC SIC

1 3.85 3.89 5.70 5.74 1, 1 3.67 3.73
2 3.60 3.67 4.94 5.01 2, 1 3.61 3.70
3 3.61 3.70 4.46 4.54 1, 2 3.63 3.72
4 3.63 3.74 4.15 4.26 3, 1 3.60 3.71
8 3.70 3.91 3.78 3.98 1, 3 3.64 3.75

The table presents AIC and SIC information criteria for various different
ARMA(p,q) models fitted to the Canadian Employment data. Note that the
low order AR models perform better than the low order MA models with the
AR(2) model doing best by both criteria. This is consistent with the patterns
observed in the correlogram and partial correlogram which suggest that the form

11



of the autocorrelation is autoregressive and can be captured by a low order AR
model. To approximate this by an MA process requires a much higher order
process, for example it requires MA(8) to get close to the fit of an AR(1). That
the AR(2) seems to do best is consistent with the cut-off point in the partial
correlogram which shows that partial autocorrelations beyond the second order
are not significant. The estimated AR(2) model is

ŷt = 101.2 + 1.44yt−1 − 0.48yt−2

or
(1− 0.92L)(1− 0.52L)ŷt = 101.2. (10)

This process has two real roots, the first of which is quite close to unity which helps
to explain why the hypothesis of a unit root was not rejected by the Dickey-Fuller
test.

Can a mixed ARMA model do better than the AR(2) model? The simplest
ARMA model, the ARMA(1,1) has the same number of parameters as the AR(2)
but doesn’t fit as well as can be seen from comparing the AIC and SIC criteria.
Increasing the order of the MA part by considering ARMA(1,2) and ARMA(1,3)
doesn’t help. Increasing the order of the AR component to consider ARMA(2,1)
and ARMA(3,1) does better but of course these models nest the AR(2) model.
For the ARMA(2,1) the results are

ŷt = 101.2 + 1.57yt−1 − 0.61yt−2 + εt − 0.18εt−1

or
(1− 0.90L)(1− 0.68L)ŷt = 101.2 + (1− 0.18L)εt

but the MA parameter estimate is insignificantly different from zero with p-value
0.33. For the ARMA(3,1) the results are

ŷt = 101.1 + 0.50yt−1 + 0.87yt−2 − 0.44yt−3 + εt + 0.97εt−1

or
(1− 0.93L)(1− 0.51L)(1 + 0.94L)ŷt = 101.1 + (1 + 0.97L)εt.

Note that the third AR root almost cancels out with the MA root, suggesting that
this is an example of an over-parameterised, unidentified ARMA process with a
common factor. Cancelling the redundant root reduces the model to the AR(2)
model (10), which is thus the preferred model for this time series.

To verify that the AR(2) model is indeed adequate, we can use the Box-Ljung
Q-statistic to test that the residuals from equation (10) are white noise with no
evidence of serial correlation. Choosing a lag length of 12, the test statistic is 5.44
which has a p-value of 0.86, so supporting the null hypothesis of no residual serial
correlation.
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