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1 Introduction

In last week’s lecture we developed the ARMA model as a flexible way to model
cycles in a stationary series. In this lecture we consider forecasting with the
ARMA model.

2 Optimal Forecasts

An optimal forecast is a forecast that minimises the expected value of the fore-
caster’s loss function

L(et)

given the information set Ωt. In the ARMA model, the information set will
contain current and past values of yt and the disturbances εt so that

Ωt = {yt, yt−1,yt−2, · · · , εt, εt−1, εt−2 , · · · }. (1)

Under reasonably weak conditions, it can be shown that the optimal forecast of
yt+h given the information set at time t, Ωt, is the conditional mean

E(yt+h|Ωt).

3 Forecasting moving average processes

3.1 The first order moving average process

Let us look at the first order moving average model

yt = εt + θεt−1 (2)
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where
E(εt) = 0, var(εt) = σ2, cov(εtεt−s) = 0, s 6= 0.

Firstly, consider forecasting one period ahead. Leading the equation by one pe-
riod, we have

yt+1 = εt+1 + θεt

and, taking expectations conditional on the information set at time t, (1),

E(yt+1|Ωt) = θεt

since the future innovation εt+1 has expected value zero, or formally,

E(εt+1|Ωt) = 0.

The one period ahead forecast error is

et+1,t = yt+1 − ŷt+1,t = εt+1

and has variance
var(et+1,t) = var(εt+1) = σ2 = σ2

1.

Now consider forecasting two periods ahead. Leading the equation by two periods
we have

yt+2 = εt+2 + θεt+1

and, taking expectations conditional on the information set at time t,

E(yt+2|Ωt) = 0

since
E(εt+2|Ωt) = E(εt+1|Ωt) = 0.

The two-step ahead forecast error is

et+2,t = yt+2 − ŷt+2,t = εt+2 + θεt+1

and has variance

var(et+2,t) = var(εt+2) + θ2 var(εt+1) = (1 + θ2)σ2 = σ2
2.

More generally, for h > 1, we have

E(yt+h|Ωt) = 0

and
et+h,t = yt+h − ŷt+h,t = εt+h + θεt+h−1

with
var(et+h,t) = var(εt+h) + θ2 var(εt+h−1) = (1 + θ2)σ2 = σ2

h.

Thus the optimal h-step ahead forecast for a first order moving average process is
zero, for h > 1 and the variance of the forecast error is (1 + θ2)σ2. Note also that
for h > 1, the forecast error is autocorrelated and itself follows an MA(1) process.
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3.2 The second order moving average process

For the second order moving average model

yt = εt + θ1εt−1 + θ2εt−2 (3)

we have, for one-period ahead forecasts,

E(yt+1|Ωt) = θ1εt + θ2εt−1

and
et+1,t = εt+1

with
var(et+1,t) = σ2 = σ2

1.

For two-step ahead forecasts,

E(yt+2|Ωt) = θ2εt

and
et+2,t = εt+2 + θ1εt+1

with
var(et+2,t) = (1 + θ21)σ

2 = σ2
2

and, for forecasts of three or more periods ahead,

E(yt+h|Ωt) = 0

and
et+h,t = εt+h + θ1εt+h−1 + θ2εt+h−2

with
var(et+h,t) = (1 + θ21 + θ22)σ

2 = σ2
h.

The forecast errors are autocorrelated and follow an MA(2) process.

3.3 The q-th order moving average process

Now consider the general MA(q) model

yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q.

For h ≤ q,
E(yt+h|Ωt) = θhεt + · · ·+ θqεt+h−q
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and
et+h,t = εt+h + θ1εt+h−1 + · · ·+ θh−1εt+1

with
var(et+h,t) = (1 + · · ·+ θ2h−1)σ

2 = σ2
h.

For h > q,
E(yt+h|Ωt) = 0

and
et+h,t = εt+h + θ1εt+h−1 + · · ·+ θqεt+h−q

with
var(et+h,t) = (1 + θ21 + · · ·+ θ2q)σ

2 = σ2
h.

Consider the properties of the forecast as the forecast horizon h increases. Note
that for h > q, the optimal forecast is zero so that the MA(q) process is not
forecastable more than q steps ahead. The forecast error variance increases with
h until h = q+1, after which it is constant. The forecast error follows an MA(h-1)
process until h > q when it becomes an MA(q) process.

3.4 The infinite order moving average process

Recall from last week that the Wold Representation Theorem states that any co-
variance stationary variable yt with mean µ has the infinite order moving average
representation

yt − µ = εt + ψ1εt−1 + ψ2εt−2 + · · ·
Forecasting this process h-periods ahead we have

yt+h − µ = εt+h + ψ1εt+h−1 + ψ2εt+h−2 + · · ·
and

E(yt+h − µ|Ωt) = ψhεt + ψh+1εt+1 + ψh+2εt−2 + · · · .
The forecast error et+h,t is the MA(h-1) process

et+h,t = εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1

wth variance
var(et+h,t) = (1 + ψ2

1 + · · ·+ ψ2
h−1)σ

2 = σ2
h.

As h → ∞, E(yt+h − µ|Ωt) → 0 and the optimal forecast becomes simply the
unconditional mean µ and the forecast error variance becomes the unconditional
variance of yt

σ2

∞∑
i=0

ψ2
i .

As the horizon h increases, the process becomes more difficult to forecast until,
in the limit, the best forecast is the unconditional mean µ.
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3.5 Interval and density forecasts

So far, we have been looking at point forecasts. Interval and density forecasts can
also be defined if we make an assumption about the distribution of the disturbance
process εt. If we assume that the εt are independently normally distributed

εt ∼ N(0, σ2)

then yt+h, conditional on information available in period t, will also be normally
distributed with

yt+h ∼ N(yt+h,t, σ
2
h). (4)

Equation (4) defines a density forecast. It also follows that a 95% h-step ahead
interval forecast of yt+h is given by

yt+h,t ± 1.96σh.

3.6 Making the forecasts operational

So far we have ignored the fact that the moving average parameters θ are unknown
and must be estimated. To make the forecasts operational we must replace the
unknown parameters θ by the parameter estimates θ̂. Similarly, the unknown
disturbances εt are replaced by the estimated residuals ε̂t. For example, in the
MA(2) case we have

ŷt+1,t = θ̂1ε̂t + θ̂2ε̂t−1

and
ŷt+2,t = θ̂2ε̂t.

The fact that we use estimated parameters in place of true parameter values intro-
duces an additional uncertainty into the forecast. For example the true forecast
error is

êt+2,t = yt+2 − ŷt+2,t

= εt+2 + θ1εt+1 + θ2εt − θ̂2ε̂t.

The variance of this error includes the effect of the estimation error θ̂2 − θ2 and
is difficult to calculate. Because of this difficulty, we ignore parameter estimation
uncertainty and use the operational formula

σ̂2
2 = (1 + θ̂21)σ̂

2

for the estimated variance of our forecast error even though this formula under-
estimates the true variance because it neglects parameter uncertainty.
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4 Forecasting autoregressive processes

Since an autoregressive process can always be inverted to give a moving aver-
age process, we do not really need to consider forecasting autoregressive processes
specially, having already considered forecasting of moving average processes. Nev-
ertheless, it turns out to be useful to consider forecasting autoregressive processes
explicitly since this leads to a useful chain rule of forecasting.

Consider the first order autoregressive process defined by

yt = φyt−1 + εt (5)

where
E(εt) = 0, var(εt) = σ2, cov(εtεt−s) = 0, s 6= 0.

Firstly, consider forecasting this process one period ahead. Leading the equation
by one period, we have

yt+1 = φyt + εt+1

and, taking expectations conditional on the information set at time t, (1), defines
the forecast

E(yt+1|Ωt) = φyt (6)

with forecast error variance

var(et+1,t) = var(εt+1) = σ2.

Forecasting two-periods ahead we have

yt+2 = φyt+1 + εt+2

and
E(yt+2|Ωt) = φE(yt+1|Ωt) = φ2yt (7)

from (6). The forecast error variance is

var(et+2,t) = var(φεt+1 + εt+2) = (1 + φ2)σ2.

Similarly,
E(yt+3|Ωt) = φE(yt+2|Ωt) = φ3yt

with forecast variance

var(et+3,t) = var(φ2εt+1 + φεt+2 + εt+3) = (1 + φ2 + φ4)σ2

and so on. We can build up h-period ahead forecasts recursively, each forecast
using previously defined forecasts. This is called the chain rule of forecasting.
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The variance of the forecasts increases as the horizon h increases until it reaches
the unconditional variance of the process

(1 + φ2 + φ4 + φ6 + · · · )σ2 =
σ2

1− φ2
.

For the general AR(p) case

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

we have
E(yt+1|Ωt) = φ1yt + φ2yt−1 + · · ·+ φpyt−p+1

E(yt+2|Ωt) = φ1 E(yt+1|Ωt) + φ2yt + · · ·+ φpyt−p+2

E(yt+3|Ωt) = φ1 E(yt+2|Ωt) + φ2 E(yt+1|Ωt) + φ3yt + · · ·+ φpyt−p+3

and so on. Only the p most recent observations of yt are needed to generate
forecasts indefinitely far into the future. The forecast error variance increases
with the forecast horizon h until it reaches the unconditional variance of the
process.

5 Forecasting with ARMA models

Consider the general ARMA(p,q) model

yt = φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q.

Leading by h-periods, we have

yt+h = φ1yt+h−1 + · · ·+ φpyt+h−p + εt+h + θ1εt+h−1 + · · ·+ θqεt+h−q

and, taking expectations conditional on the information set at time t,

E(yt+h|Ωt) = φ1yt+h−1,t + · · ·+ φpyt+h−p,t + εt+h,t + θ1εt+h−1,t + · · ·+ θqεt+h−q,t.

All future values of y are replaced by recursively defined optimal forecasts and
all future values of ε are replaced by their optimal forecast of zero. All forecast
values of y or ε dated at time t or earlier are replaced by their actual values.

For example, in the ARMA(1,1) model

yt = φ1yt−1 + εt + θ1εt−1 (8)

we have
E(yt+1|Ωt) = φ1yt + θ1εt (9)
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and
E(yt+2|Ωt) = φ1 E(yt+1|Ωt) = φ2

1yt + φ1θ1εt. (10)

To compute the variance of the forecast errors from an ARMA model, we
note that any ARMA model has a moving average representation and that the
variance of h-step ahead forecast errors from a moving average model is given by
the formula

var(et+h,t) = σ2
h = (1 + ψ2

1 + · · ·+ ψ2
h−1)σ

2.

Substituting backwards for y in the model (8) gives

yt = φ1(φ1yt−2 + εt−1 + θ1εt−2) + εt + θ1εt−1

= εt + (φ1 + θ1)εt−1 + φ1θ1εt−2 + φ2
1yt−2.

We can continue to substitute backwards to get further terms in εt−j but we need
go no further in order to define the variance of the two-step ahead forecast, which
only depends on ψ1 = φ1 + θ1. For the one-step ahead forecast (9) we have

var(et+1,t) = σ2

and, for the two-step ahead forecast (10), we have

var(et+2,t) = (1 + ψ2
1)σ2 = (1 + (φ1 + θ)2)σ2.

We can define a 95% 2-step-ahead interval forecast of yt+2 as

φ2
1yt + φ1θ1εt ± 1.96σ

√
1 + (φ1 + θ1)2.

Replacing the unknown parameters with their estimates, we get the operational
version of this interval forecast:

φ̂2
1yt + φ̂1θ̂1ε̂t ± 1.96σ̂

√
1 + (φ̂1 + θ̂1)2.

6 Example: Canadian Employment

As an example, we will consider forecasting with the ARMA models for the Cana-
dian Employment index which were developed in last week’s lecture. We will use
two of the better models we fitted: the MA(8) model and the AR(2) model.

Figure 1 shows the forecasts and 95% confidence bands from the MA(8) model.
Note that the forecast reverts to the unconditional mean of the series after 8
quarters as expected. The error bands spread out and reach their maximum
extent also after 8 quarters.Figure 2 shows the forecast together with historical
data for the estimation period: 1963-1994. It can be seen that the forecast is
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Figure 1: Forecast from MA(8) model with 95% confidence bands 1995–1999

notably different from the behaviour of the series in its recent past, in the early
1990s, and may seem unrealistic.

Figure 3 shows the forecast and 95% confidence bands from the AR(2) model.
Note that the forecast exhibits much more persistence than that of the MA(8)
model and has not reverted to the unconditional mean even after 20 quarters.
Likewise, the error bands continue to spread out and haven’t reached their max-
imum extent also after 20 quarters.Figure 4 shows the forecast together with
historical data for the estimation period: 1963-1994. It can be seen that the fore-
cast has a lot of persistence and is more closely related to the recent behaviour of
the series than the MA(8) forecast.
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Figure 2: Canadian data: actuals and forecast from MA(8) model
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Figure 3: Forecast from AR(2) model with 95% confidence bands 1995–1999
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Figure 4: Canadian data: actuals and forecast from the AR(2) model

12


