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Lecture 6: Seasonality

Richard G. Pierse

1 Introduction

Many economic variables, when observed at quarterly or monthly frequencies, ex-
hibit a repeating seasonal pattern. Some firms may face demand that is seasonal
(ice cream, suntan lotion, fireworks) or supply that is seasonal (agricultural pro-
duce). It is well known that quarterly consumer expenditure peaks in the fourth
quarter of each year because of Christmas spending. Employment and unemploy-
ment data exhibit seasonal fluctuations because school and university leavers tend
to enter the job market at the end of the academic year in September whereas
firms tend to recruit at different times in the year.

Seasonality can be thought of as a type of cyclical pattern where the cycles
have particular seasonal frequencies corresponding to periods of a fixed number
of months or a quarters. However, where economics has developed theories to
explain cyclical behaviour, such as real business cycle theory, seasonality has
largely been neglected in the economics literature. (One notable exception is
the work of Denise Osborn, see inter alia Osborn and Smith (1989)). In fact
the usual approach to seasonality is to remove the seasonal pattern by seasonal
adjustment. Many data series released by statistic agencies have already been
seasonally adjusted, usually using the procedure known as X-12. For example,
the data series on Canadian employment that we used in the previous lecture
was seasonally adjusted data, with the seasonal pattern removed. While this may
make sense when we are primarily interested in trends (is unemployment going up
or going down), seasonal patterns may change over time and may be related across
variables. Also, the seasonal fluctuations may be a large part of the variation of
the whole variable as with the US liquor sales series illustrated in Figure 1 so that,
to remove it would be to throw away most of what is going on. For these reasons,
econometricians and forecasters often choose to work with seasonally unadjusted
data and explicitly to model the seasonal pattern.

As with the models of trends and cycles we have explored in earlier lectures,
seasonal models are either deterministic or stochastic. The simplest deterministic
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Figure 1: US Liquor Sales: 1980:01–1992:12

model is the seasonal dummy model. The most popular stochastic model is the
seasonal ARIMA model which extends the Box and Jenkins model to seasonal
time series. One interesting issue in seasonal models is the possibility of seasonal
unit roots and tests for these have been devised in the literature. Finally, we look
at seasonal adjustment procedures and in particular the popular X-12 seasonal
adjustment package.

2 Deterministic Seasonality

The simplest deterministic seasonal model is the seasonal dummy model
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St = δ1d1t + δ2d2t + · · ·+ δsdst (1)

=
s∑

i=1

δidit

where s is the number of seasons and dit is a dummy variable taking the value 1 in
the ith season of the year and 0 in all other seasons, i = 1, . . . , s. The parameters
δ1 up to δs are coefficients on the seasonal dummy variables. For the quarterly
case, s = 4, the dummies are

d1 = {1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .}
d2 = {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, . . .}
d3 = {0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, . . .}
d4 = {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .} .

The dummies are like intercepts that are different for each season. If there were
no seasonal pattern, all the coefficients δi would be equal and the model would
reduce to

St = µ

where
µ = δ1 = δ2 = · · · = δs.

Note that, in general,

d1 + d2 + d3 + d4 = {1, 1, 1, 1, . . .}

which is just a standard intercept so that we can always rewrite the seasonal
dummy model (1) by dropping any one of the dummies and replacing it with an
intercept as in

St = µ+
s−1∑
i=1

γidit. (2)

In this formulation, µ is now the intercept for the omitted season s and the
coefficients γi give the seasonal increase or decrease relative to the omitted season
with γi = δi − δs. Note that, when an intercept is included as in (2), one of the
seasonal dummies must be dropped because otherwise the intercept and the set
of dummies will be perfectly collinear.

The seasonal dummy model (1) can also be represented equivalently in terms
of sines and cosines since

s∑
i=1

δidit = µ+

s/2∑
i=1

[
αi cos(

2πit

s
) + βi sin(

2πit

s
)

]
(3)
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where the s coefficients αi and βi are related to the coefficients δi. For the quarterly
case, s = 4, we have the correspondences

µ = (δ1 + δ2 + δ3 + δ4)/4

α1 = (δ4 − δ2)/2
α2 = (δ2 + δ4 − δ1 − δ3)/2
β1 = (δ1 − δ3)/2

and β2 = 0. Note that the final sine term in (3) is always zero because sin(πt) = 0
for all t. The sine and cosine waves in (3) correspond to cycles with periods s,
s/2, . . ., 2. In the quarterly case the cycles are of period 4 and 2, in other words
an annual cycle and a half-yearly cycle.

The parameters in the dummy variable model may be estimated from the
regression

yt = δ1d1t + δ2d2t + · · ·+ δsdst + εt

or the regression

yt = µ+ γ1d1t + γ2d2t + · · ·+ γs−1ds−1t + εt. (4)

In either case, the regression residuals

et = yt − ŷt

define a seasonally adjusted series

ySAt = yt − ŷt.

Figure 2 illustrates the US liquor sales series seasonally adjusted using the
additive seasonal dummy model (4). Although most of the seasonal variation has
been removed, notice that seasonal spikes remain in the early part of the time
series. This illustrates a potential drawback of the seasonal dummy model which
is that the seasonal effect is assumed to be constant and not to vary with the level
of the series. In a trended series like Figure 2, this assumption may be unrealistic.

An alternative model is given by the seasonal trend model

yt = µ+ bt+
s−1∑
i=1

(γi + βit)dit + εt. (5)

where both the intercept and the trend are allowed to be different in each season
with the intercept in season i given by µ + γi and the trend in season i given by
(b+βi)t. Figure 3 illustrates the liquor series seasonally adjusted using the model
(5). Note that the seasonal spikes in the early part of the series have disappeared
and the adjusted series looks much more satisfactory.
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Figure 2: US Liquor sales: seasonally adjusted using additive seasonal dummies

3 Calendar Effects

In addition to a regular pattern, seasonal data can be subject to calendar effects
due to holiday variation and trading day variation. Holiday variation is due to the
effect of moveable feasts such as Easter or Ramadan, which can occur on different
dates in different years. Since these holidays can affect sales, shipments, hours
worked etc., it is important to take account of them in a forecasting model of a
seasonal series. Trading day variation is due to the fact that different months (and
even weeks) have different numbers of business days. This can be very important,
for example, when building a monthly forecasting model of volume traded on the
London Stock Exchange.

Both types of calendar effects can be modelled by the use of dummy variables,
in a similar way to standard seasonal dummies. For example, in a monthly model
an Easter dummy can be defined taking the value 1 when the month contains
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Figure 3: US Liquor sales: seasonally adjusted using seasonal trend model

Easter and 0 otherwise. Each holiday would be modelled in a similar way by a
special dummy. Similarly, in a monthly model we can define a dummy equal to
the number of trading days in the month to pick up trading day effects. Adding
these two sets of dummies to the model (2) leads to the regression model model

yt = µ+
s−1∑
i=1

γidit +
n∑

i=1

δid
hol
it + ηdtdt + εt

where n is the number of holidays and dholit is a dummy variable for the i-th holiday
with associated coefficient δi and dtdt is the trading day dummy with associated
coefficient η. The parameters in this model can be estimated by ordinary least
squares.
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4 Seasonal ARMA Models

Seasonal effects can be modelled stochastically through the seasonal ARMA model.
Consider the first order seasonal autoregressive SAR(1) model

yt = ρyt−s + εt

or
(1− ρLs)yt = εt.

In this model yt is related to its value in the same season of the previous year. As
usual, for stationarity we require that |ρ| < 1 and for the repeating patterns that
we observe in seasonal series such as Figure ?? we would normally expect ρ > 0.
We can also consider the first order seasonal moving average SMA(1) model

yt = εt + ψεt−s

where yt is related to the disturbance in the same season of the previous year and
where, for identifiability we require that |ψ| ≤ 1.

More generally, we can define the seasonal ARMA(P,Q) model

ρ(Ls)yt = ψ(Ls)εt (6)

where
ρ(Ls) = ρ1L

s + ρ2L
2s + · · ·+ ρPL

Ps

is a P -th order autoregressive process and

ψ(Ls) = ψ1L
s + ψ2L

2s + · · ·+ ψQL
Qs

is a Q-th order moving average process.
The seasonal ARMA model (6) can be combined with the standard ARMA

model of lecture 4 to define the multiplicative seasonal ARMA(p,q)(P,Q) model

ρ(Ls)φ(L)yt = ψ(Ls)θ(L)εt (7)

where
φ(L) = 1− φ1L− φ2L

2 − · · · − φpL
p

and
θ(L) = 1 + θ1L+ θ2L

2 + · · ·+ θqL
q .

In this model the seasonal SAR(P) and SMA(Q) polynomials multiply the non-
seasonal AR(p) and MA(q) polynomials.
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5 Seasonal Unit Roots

Consider the model
yt = yt−s + εt

or
(1− Ls)yt = ∆syt = εt

where ∆s is the seasonal difference operator defined by ∆sxt = xt − xt−s. This is
a unit root process that is known as the seasonal random walk. In fact there are
s random walks, one for each season of the year. This can be seen by factorising
the process for the quarterly case, s = 4 which gives

∆4yt = (1− L4)yt = (1− L)(1 + L+ L2 + L3)yt (8)

= (1− L)(1 + L)(1 + iL)(1− iL)yt

which has four unit roots: one at frequency 0 which is the conventional random
walk and three at seasonal frequencies corresponding to cycles of 2 quarters, and
4 quarters (the pair of imaginary roots) respectively.

For time series including seasonal unit roots the seasonal ARIMA(P,D,Q)
model is

ρ(Ls)∆D
s yt = ψ(Ls)εt (9)

and the joint multiplicative seasonal ARIMA(p,d,q)(P,D,Q) model is defined by

ρ(Ls)φ(L)∆D
s ∆dyt = ψ(Ls)θ(L)εt (10)

where D is the order of seasonal differencing. Note that this model combines all
three structural components of a time series: trend, cycle and seasonal in a single
model.

Testing for seasonal unit roots is important and two main tests have been
developed: the Dickey-Hasza-Fuller test which is a joint test for all of the unit
roots and the Hylleberg-Engle-Granger-Yoo test which tests the roots separately.

5.1 Dickey-Hasza-Fuller (DHF) test

Dickey, Hasza and Fuller (1984) derive a test of the hypothesis αs = 0 in the
model

∆syt = αsyt−s + εt

against the alternative that αs < 0. The test statistic is simply the t-value on α̂s

and critical values for this test are presented in their paper (reprinted in Hylleberg
(1992)) for the cases s = 2, 4, and 12. As with standard Dickey-Fuller tests,
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deterministic components (constant and trend) can be added to the specification
but do affect the distribution of the statistic. Lagged values of ∆syt can be added
to ‘whiten’ the errors without affecting the distribution.

From (8) it can be seen that the DHF(4) test is a joint test of four unit roots
against an alternative of no unit roots. In particular it tests for a unit root at
zero frequency (i.e. the long run) at the same time as testing for seasonal unit
roots.

5.2 Hylleberg-Engle-Granger-Yoo (HEGY ) test

Hylleberg, Engle, Granger and Yoo (1990) develop a framework in which it is
possible to separately test the four unit roots in (8) in the quarterly case (s = 4).
This is based on constructing the model:

∆4yt = π1(1 + L+ L2 + L3)yt−1

−π2(1− L+ L2 − L3)yt−1

−π3(1− L2)yt−2 − π4(1− L2)yt−1 + εt .

The t-ratio on π̂1 is a test of the null of a unit root at zero frequency and can be
shown to follow a Dickey-Fuller distribution. The t-ratio on π̂2 is a test of a unit
root at the semi-annual frequency which also has a Dickey-Fuller distribution.
The t-value on π̂3 is a test for a unit root at the annual frequency, conditional on
the hypothesis that π4 = 0, and follows a DHF(2) distribution. Finally, a joint test
of the hypothesis that π3 = 0 and π4 = 0 can be constructed from the F -statistic
for a test of this restriction. The distribution of this last statistic is close to the
standard F2,T−k distribution and critical values are tabulated in HEGY. As usual,
adding lagged values of ∆4yt to the regression does not change the distributions.
However, if deterministic seasonal dummies are included in the regression, then
this does affect the distribution of the tests of π2, π3, and π4 leading to fatter
tails.

The HEGY tests have been extended to the monthly case by Beaulieu and
Miron (1993) and Franses (1991). Alternative tests for seasonal unit roots have
been developed by Kunst (1997) and Osborn, Chui, Smith and Birchenhall (1988)
and are discussed in Ghysels and Osborn (2001).

6 Seasonal Adjustment

Seasonal adjustment is the removal of the seasonal component from a data series.
We have seen that in a deterministic seasonal model, the variables can be season-
ally adjusted by regressing on the appropriate seasonal dummies and taking the
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residuals from the regression. In practice, statistical agencies that publish season-
ally adjusted data use much more sophisticated methods to model and remove the
seasonal patterns in the data. The most widely used seasonal adjustment proce-
dure is the X-12 algorithm developed by the U.S. Census Bureau. An alternative
procedure based on the computer programs TRAMO (Time series Regression
with ARIMA noise, Missing observations and Outliers) and SEATS (Signal Ex-
traction in ARIMA Time Series) has been developed by the Spanish statistician
Agust́ın Maravall. This is used in some European countries. Both procedures are
available in EViews.

6.1 The X-12 Seasonal Adjustment Program

Since the 1960s the U.S. Census Bureau have been developing different versions of
a method for the automatic seasonal adjustment of published data series. The lat-
est version of this method is called X-12 and is widely used by statistical agencies
around the world, including the UK. The complete procedure is quite complicated
and consists of two stages and several steps with many variants available.

The first stage of the procedure, which is known as X-12-ARIMA, is the build-
ing of a multiplicative seasonal ARIMA model based on (10) but including deter-
ministic components:

ρ(Ls)φ(L)∆D
s ∆d(yt −

k∑
i=1

βixit) = ψ(Ls)θ(L)εt. (11)

Here the xit represent a set of deterministic components which generally comprise
an intercept and linear trend, additive seasonal dummies plus holiday and trading
day dummies. In addition, outlier dummies may be included to take out the effect
of particular outlying observations. This model is then used to increase the sample
by forecasting and backcasting observations outside the original sample. These
observations are then used in the second main stage of the procedure which is the
X-11 program.

The X-11 program is the previous incarnation of X-12. It has been extensively
studied by statisticians and can be approximated by a linear procedure. We will
look at the case of monthly data where s = 12. The procedure is based on the
decomposition of a time series into trend, cycle, seasonal and irregular components
of the form

yt = Tt + Ct + St + ut

(additive) or
yt = TtCtStut

(multiplicative) that we discussed in the first lecture. In the X-11 procedure, the
trend and cycle component are modelled together as the combined trend/cycle
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component TCt and (initially) the seasonal and irregular components are com-
bined into a combined component SIt. In the final stage, the seasonal and ir-
regular components are separated. The procedure consists in a series of moving
average filters applied to the series to extract the components. There is no esti-
mation involved. There are three steps to the process which successively refine
the estimates of the components.

6.1.1 Step 1

The first step is the estimation of an initial trend and cycle component using the
centred moving average filter

TC1
t = (1/24)(1 + L)(L−6 + L−5 + · · ·+ L4 + L5)yt = M(L)yt.

This equation takes a moving average of yt using 12 observations centred on the
current observation. This is then averaged again over two observations. The
remaining seasonal plus irregular component is then defined as a residual using
either SI1t = yt−TC1

t , (additive) or SI1t = yt/TC
1
t (multiplicative). This seasonal

plus irregular component is then filtered using another centred moving average as

SF1
t = (1/9)(L−12 + L−11 + · · ·+ L11 + L12)SI1t .

The initial seasonal component is then defined by either

S1
t = SF1

t −M(L)SF1
t

or

S1
t =

SF1
t

M(L)SF1
t

.

This ensures that the seasonal component sums to unity over the year. Finally,
the first step seasonally adjusted series is defined as either the additive residual

ySA1
t = yt − S1

t

or the multiplicative residual

ySA1
t =

yt
S1
t

.

6.1.2 Step 2

The second step refines the estimates of the seasonally adjusted series from the
first step. Firstly, a new estimate of the trend/cycle component is defined by

TC2
t = (γhL

−h + γh−1L
−h+1 + · · ·+ γ0 + · · ·+ γh−1L

h−1 + γhL
h)ySA1

t

= H(L)ySA1
t
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where the γ0, . . . , γh are a series of fixed symmetric weights. This transformation
is called the 2h+1 term Henderson filter and the default value of h is 6. Then the
second stage seasonal plus irregular component is defined by either SI2t = yt−TC2

t ,
(additive) or SI2t = yt/TC

2
t (multiplicative). The second stage seasonal plus

irregular component is then filtered using the seasonal moving average filter

SF2
t = (1/15)(L−12 + 1 + L12)(L−24 + L−12 + 1 + L12 + L24)SI2t .

and the second stage seasonal factor and adjusted series are defined by either

S2
t = SF2

t −M(L)SF2
t

and
ySA2
t = yt − S2

t

or

S2
t =

SF2
t

M(L)SF2
t

and
ySA2
t =

yt
S2
t

.

6.1.3 Step 3

In the third and final step, the estimates of the second step are used to define a
new estimate of the trend/cycle component and define the final decomposition of
the series into trend and cycle, seasonal and irregular components. Firstly, the
final estimate of the trend plus cycle is derived by applying the Henderson filter
again (possibly using a different value of h) to the seasonally adjusted series ySA2

t

to give
TC3

t = H(L)ySA2
t .

Then the unexplained irregular component is defined by

ut = ySA2
t − TC3

t

or
ut = ySA2

t /TC3
t .

The final decomposition of the original series into trend/cycle, seasonal and irreg-
ular components is then either

yt = TC3
t + S2

t + ut

or
yt = TC3

t S
2
t ut.
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Figure 4: US Liquor sales: seasonally adjusted with X-12 and TRAMO/SEATS

6.2 Example

Figure 4 applies the X-12 procedure to the US liquor sales series to derive a
seasonally adjusted series. The graph also shows for comparison a seasonally
adjusted series derived by applying the TRAMO/SEATS procedure. In this case
it appears that the two procedures give very similar results.
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