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Lecture 7: Macroeconomic Forecasting

Richard G. Pierse

1 Introduction

All the forecasting models that we have looked at so far in these lectures have been
univariate and have been purely statistical in the sense that they are not based on
any underlying economic theory. In this lecture we look at multivariate forecast-
ing models based on economic theory that jointly model the inter-relationships
between several variables. The main application of these models has been in the
area of macroeconomic forecasting. The first empirical macroeconomic model is
usually taken to be a model of the Dutch economy built by Jan Tinbergen in
1936. Laurence Klein was an important figure in the development of macroeco-
nomic modelling after the Second World War and he built the first model of the
US economy (the famous Klein Model 1, Klein (1950)) and helped to build (along
with Sir James Ball and others) the first model of the UK economy in 1961 (Klein
et al. 1962). Another important UK model was the Cambridge Growth Project
model set up by Sir Richard Stone (Stone and Brown (1962)) which was concerned
with forecasting long run trends in the UK economy and which ran until the mid
1980s.

Today macroeconomic models of the UK are maintained by the National In-
stitute of Economic and Social Research, Her Majesty’s Treasury and the Bank of
England. The National Institute uses its model to provide quarterly forecasts of
the UK economy, published in its journal, the National Institute Economic Review
(NIER). Other commercial forecasts based on macro-models and sold to clients are
produced by city firms such as Phillips and Drew and other groups such as Oxford
Economic Forecasting and Cambridge Econometrics. In addition, multi-country
macroeconomic models have been built at the National Institute (NiGEM ), the
International Monetary Fund (MULTIMOD), the OECD (INTERLINK ) and the
European Central Bank (MCM ) among others.
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2 A simple macroeconomic model

We will look at Klein’s Model 1 : the first macroeconomic forecasting model of the
United States. While this model is now extremely out-of-date and the economics
underlying it is old-fashioned, it does serve to illustrate some of the main principles
that remain valid for any macroeconomic model. The model equations are:

Ct = a0 + a1Πt + a2Πt−1 + a3(Wt + St) + ε1t

It = b0 + b1Πt + b2Πt−1 + b3Kt−1 + ε2t

Wt = c0 + c1Yt + c2Yt−1 + c3t+ ε3t (1)

Yt = Ct + It +Gt

Πt = Yt −Wt − Tt
Kt = Kt−1 + It

where, for period t, Ct is consumption, Πt is corporate profits, Wt is the private
sector wage bill, St is the government wage bill, It is investment, Kt is the capital
stock, Yt is output (production), Gt is government expenditure, Tt is indirect
taxes and t is a time trend. The terms ε1t, ε2t and ε3t appearing in the first three
equations are disturbances. The model has six equations and eleven variables.
The six variables that are explained by model equations {Ct, It,Wt, Yt,Πt, Kt}
are called endogenous variables. The remaining four variables {Gt, Tt, St, t} are
known as exogenous variables. The exogenous variables are not explained within
the model. When the model is used for forecasting it will generate forecasts for
the endogenous variables but the exogenous variables need to be known or must
be forecast outside the model.

The first three equations in (1) are behavioural equations. These equations
represent the outcomes of decisions by economic agents: consumers, investors and
wage-setting firms respectively, and they involve unknown coefficients ai, bi and ci
that need to be estimated. These equations have associated disturbances ε1t, ε2t
and ε3t. The last three equations in (1) are identities. Identities are definitions and
accounting relationships and have no unknown parameters or disturbances. For
example, the fourth equation is the accounting identity that output is the sum
of consumption, investment and government expenditure (in this simple model
there are no exports or imports). The sixth equation is the definition of the
capital stock as the accumulation of past investment (notice that there is no
capital depreciation). Identities are very important to any model and ensure that
model forecasts will satisfy the accounting relationships and definitions that link
the variables. If, for example, we left out the output identity from this model
then there would be nothing to ensure that, when consumption and investment
are forecast to increase, output must also be forecast to rise.
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2.1 Simultaneity and Estimation

Klein’s Model 1 is a system of simultaneous equations. In a simultaneous sys-
tem, current dated endogenous variables appear as explanatory variables in other
equations. For example, in (1), the current dated endogenous variable It appears
on the right-hand side of the equations for Yt and for Kt and the current dated
variable Wt appears as an explanatory variable in the equations for Ct and Πt.
When estimating the parameters of the model with a data set of observations
on the model variables, this simultaneity has an important consequence because
it means that the current dated endogenous variables on the right-hand side of
equations will be correlated with the disturbance in the equation which violates
a basic assumption of the standard regression (OLS ) model.

Consider the effect of a positive unit shock to the disturbance of the con-
sumption equation, ε1t. This increases Ct by one unit through the first equation.
However, this increase in Ct also leads to an increase in Yt through the fourth
equation and this in turn increases Wt through the fifth equation. Thus the shock
to ε1t in the first equation affects Wt which is one of the explanatory variables
in the same equation. This means that the explanatory variable Wt is correlated
with the disturbance ε1t which violates a basic assumption of the OLS model.
In order to estimate the coefficients in a simultaneous system like (1), we cannot
use ordinary least squares but need to use an appropriate estimator such as Two
Stage Least Squares (2SLS ). Denoting the 2SLS parameter estimates with hats,
we can write the estimated model as

Ct = â0 + â1Πt + â2Πt−1 + â3(Wt + St) + e1t

It = b̂0 + b̂1Πt + b̂2Πt−1 + b̂3Kt−1 + e2t

Wt = ĉ0 + ĉ1Yt + ĉ2Yt−1 + ĉ3t+ e3t (2)

Yt = Ct + It +Gt

Πt = Yt −Wt − Tt
Kt = Kt−1 + It

where e1t, e2t and e3t are regression residuals that are known as Single Equation
Residuals or SERs. The other three equations in which there are no estimated
parameters should hold exactly in the data set and so have zero SERs.

In order to forecast one step ahead with the model in this structural form,
the three current endogenous variables Ct, It and Wt need to be jointly forecast
together. Then, having solved for the forecast of these variables, the remaining
variables Yt, Πt and Kt can simply be forecast from their identities.
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2.2 The reduced form

The information set at the start of period t for forecasting the endogenous vari-
ables at time t consists of lagged values of the endogenous variables plus lagged
and current values (assumed to be known in advance) of the exogenous variables.
In the case of Klein’s Model 1, the information set is

Ωt−1 = {1, Yt−1,Πt−1, Kt−1, Gt, Tt, St, t}.

These eight variables are called the predetermined variables of the system. In a
linear model like (2) it is always possible to write the current endogenous variables
in terms of just the predetermined variables. This is known as the reduced form
of the model. In the case of Klein’s Model 1 the reduced form of the behavioural
equations is defined by

Ct = π̂10 + π̂11Yt−1 + π̂12Πt−1 + π̂13Kt−1 + π̂14Gt + π̂15Tt + π̂16St + π̂17t+ v1t

It = π̂20 + π̂21Yt−1 + π̂22Πt−1 + π̂23Kt−1 + π̂24Gt + π̂25Tt + π̂26St + π̂27t+ v2t

Wt = π̂30 + π̂31Yt−1 + π̂32Πt−1 + π̂33Kt−1 + π̂34Gt + π̂35Tt + π̂36St + π̂37t+ v3t

where the π̂ij parameter estimates are (complicated) linear functions of the struc-

tural parameter estimates âi, b̂i and ĉi and the v1t, v2t and v3t are reduced form
residuals which are linear functions of the original single equation residuals e1t, e2t
and e3t. The reduced form residuals are also sometimes known as system residuals.
Note that once the model has been transformed into reduced form, one-step ahead
forecasts for the endogenous variables Ct, It and Wt can be obtained separately
and the other variables Yt, Πt and Kt can then be forecast using their identities.

3 Non-linear models

Klein Model 1 is a linear model since all the equations in the model are linear
functions of the model variables. In practice most useful economic models are
not linear. In particular, many behavioural equations in macroeconomic models
are assumed to be log-linear since this implies constant elasticities and constant
growth rates. Suppose that we were to replace the linear consumption function
in (1) with the log-linear function

logCt = α̂0 + α̂1 log Πt + α̂2 log Πt−1 + α̂3 log(Wt + St) + e1t. (3)

The consequence of this simple change is that the model becomes a combination
of log-linear behavioural equations and linear identities and ceases to be linear.
Although this creates no problems for estimation, with a non-linear model the
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reduced form cannot be found explicitly and in order to forecast we need to use
iterative numeric methods to solve the model.

In order to forecast the set of variables {Ct+1, It+1,Wt+1, Yt+1,Πt+1, Kt+1} us-
ing the information set Ωt = {1, Yt,Πt, Kt, Gt+1, Tt+1, St+1, t}, we need to solve
the set of equations

log Ĉt+1,t = α̂0 + α̂1 log Π̂t+1,t + α̂2 log Πt + â3 log(Ŵt+1,t + St+1)

Ît+1,t = b̂0 + b̂1Π̂t+1,t + b̂2Πt + b̂3Kt

Ŵt+1,t = ĉ0 + ĉ1Ŷt+1,t + ĉ2Yt + ĉ3(t+ 1) (4)

Ŷt+1,t = Ĉt+1,t + Ît+1,t +Gt+1

Π̂t+1,t = Ŷt+1,t − Ŵt+1,t − Tt+1

K̂t+1,t = Kt + Ît+1,t

where we note that the equation residuals in period t + 1 have been set to their
expected value of zero.

A simple iterative algorithm for solving this system of equations is the Gauss-
Seidel algorithm in which the forecasts are initialised to some value and then
the equations are evaluated repeatedly, updating the forecasts each time until
the changes from the previous iteration are smaller than some threshold value.
Although this algorithm is not guaranteed to converge, in practice it works sat-
isfactorily in many cases. A more powerful algorithm is Newton’s method, which
uses additional information from the derivatives of the equations with respect to
the model variables in order to improve convergence.

3.1 Types of forecast error

The forecast errors from the solution of the system of equations (4) are called
system forecast errors as opposed to the single equation forecast errors. The one-
step ahead system forecast error is based on a forecast for each variable in period
t+ 1 that is conditional on forecasts of all the other endogenous model variables
in the same period. Consider a forecast of the variable Kt+1 in (4). The one-step
ahead system forecast error for this variable is given by

est+1,t = Kt+1 − (K̂t+1|Kt, Ît+1,t). (5)

This forecast error will in general be non-zero because it includes the error made
in forecasting It+1. By contrast the one-step ahead single equation forecast error
is based on a forecast in period t+ 1 that is conditional on actual values of all the
other endogenous variables in t+ 1 as in

et+1,t = Kt+1 − (K̂t+1|Kt, It+1). (6)
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This latter forecast error will be zero if the capital equation is an identity that is
assumed to hold in the data in period t+ 1.

Multi-step forecasts and forecast errors can be generated dynamically. For
example, the two-period ahead system forecast error is the error from a forecast
for the period t + 2 made using one-step ahead forecasts for variables dated at
period t+ 1 and two-step ahead forecasts for variables dated at period t+ 2 as in

est+2,t = Kt+2 − (K̂t+2|K̂t+1,t, Ît+2,t). (7)

Similarly, the two-step ahead single equation forecast error is defined by

et+2,t = Kt+2 − (K̂t+2|K̂t+1,t, It+2). (8)

This forecast is based on the actual value of It+2 because this is still a single
equation forecast but the lagged value of the dependent variable, Kt+1 needs to
be forecast dynamically from the one-step ahead forecast in (6). Even so, in this
particular case the forecast error will still be zero if the one-step ahead forecast
error was zero and if the identity continues to hold in period t+ 2.

Generally, system forecast errors will be expected to be larger than single
equation errors since they include the errors made in forecasting all the variables
in the model. As usual, the more steps ahead is the forecast, the larger the forecast
errors are likely to be since errors will tend to cumulate dynamically.

Figure 1 shows three sets of forecast errors for consumption, Ct, from Klein’s
Model 1: single equation forecast errors (solid line), one-step ahead system fore-
cast errors (dotted line) and dynamic system forecast errors (broken line). It can
be seen that the single equation forecast errors are the smallest. These represent
the errors in forecasting the consumption equation only, taking all other model
variables as known. (These are also dynamic single equation forecast errors in
this case since there are no lags of consumption in the consumption equation).
The one-step ahead system forecast errors are larger since they include the effect
of the interaction between the errors made in forecasting each of the model vari-
ables. The dynamic system forecast errors are the largest. These show the effect
of forecasting the model dynamically from 1921 to 1941. For 1921, this error is a
one-step ahead system error, for 1922 this is a two-step ahead system error and
so on so that the forecast error in 1941 is from a twenty-one-step ahead forecast.
Generally, these dynamic forecast errors will tend to cumulate although in this
model it happens that by 1941 the forecasts have come back on track so that the
last two errors are small. One possible reason for this is that the forecast period
here is also the estimation period so that the parameter estimates incorporate
information about the observations up to 1941. In a ‘genuine’ forecast beyond the
end of the estimation period, this would be less likely to happen.
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Figure 1: Consumption forecast residuals for Klein Model 1: single equation,
one-step system and dynamic system residuals

4 Hypothetical forecasts: policy simulations

Some of the exogenous variables in Klein’s Model 1 are policy variables that are
either under the direct control of the government, such as government expenditure
Gt and the government wage bill St, or are indirectly controllable such as indirect
taxes Tt. It is possible to do forecasts based on different assumptions about these
government policy variables and compare these with a base forecast. These type
of hypothetical forecasts are generally known as ‘scenarios’ or policy simulations.
In a forecast over the future, it would normally be assumed in the base forecast
that the government continues to pursue policies unchanged from the past. With
a forecast over a historical period as we have for Klein Model 1, the base forecast
can simply be the historical policy actually pursued by the government and the
policy simulations forecast what would have happened if the government had
pursued an alternative policy.

What would have been the effect if the US government had pursued a Keyne-
sian policy in the 1930s and increased its expenditure in order to offset the effect
of the Great Depression of the 1930s? This question can be answered in Klein’s
Model 1 by performing a model simulation in which government expenditure Gt is
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Figure 2: Government expenditure simulation: percent changes in production
from base

increased by 5% relative to its historical values from the year 1929 (the year of the
Wall Street crash that led to the Great Depression) until 1941 (the year that the
USA entered the Second World War). Figure 2 shows the result of this simulation
on the production variable Yt. The results are reported as the percentage changes

100
ŷsimt+h,t − ŷbaset+h,t

ŷbaset+h,t

from a base run forecast ŷbaset+h,t in which Gt is at its historical values. Note that
production relative to base increases by around 0.7% in the first year, rising to
2.4% in 1932. However, after this the effect begins to wear off and falls to about
0.27% in 1937 before rising again to 1.9% by the end of the period. This cyclical
pattern is due to the dynamics in the model in which taxes affect current profits
and then both current and lagged profits affect consumption and investment.

Simulations can also be used to examine the effect of changes to the endogenous
variables. Since the endogenous variables are determined by equations, changes to
these variables can be implemented as shocks to the endogenous equations. Two
different types of shock can be distinguished: deterministic shocks and stochastic
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Figure 3: 10% quantiles of the forecast distribution of Yt in Klein Model 1

shocks. Deterministic shocks can be used to explore the effect on the model of
external events not captured in the model equations. Such external events would
exhibit themselves as shocks to the model equations. For example, we could
consider simulating the impact of the Wall Street crash of 1929 as a negative shock
to the investment equation in Klein’s Model 1. This could either be thought of
as a single shock in the year 1929 or as a sustained shock lasting several years.
Such a shock could either be additive (reducing It by $10m p.a.) or multiplicative
(reducing It by 10%).

Stochastic shocks can be used to derive interval and density forecasts through
stochastic simulation. This involves solving a model repeatedly, each time adding
a new drawing of pseudo-random shocks to the equations based on the distri-
bution of the equation disturbances such as ε1t, ε2t and ε3t.in (1). Each model
solution is called a replication. Generally the normal distribution is assumed for
the shocks although in principle any distribution could be used. Percentiles of
the distribution of the model forecasts can then be estimated from the distribu-
tion of the replications. The accuracy of these estimates can be increased simply
by increasing the number of replications. Figure 3 shows deciles of the forecast
distribution of production, Yt in Klein’s Model 1, estimated by stochastic simu-
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lation using 100 replications. The bands in the graph can also be used to define
interval forecasts, for example the outer bands correspond to a 90% confidence
interval around the central point forecast. Since this model is linear, the intervals
are symmetric. In a non-linear model, the intervals would be asymmetric and in
general could only be calculated by stochastic simulation.

5 Optimal control

In the previous section we asked the question of Klein’s Model 1: what would
have been the effect if the US government had increased its expenditure by 10%
in the 1930s? This question we can answer by standard simulation techniques.
Another question we could ask of the model is this: what would US government
expenditure have needed to have been in order to offset the effects of the Great
Depression and ensure that production grew over the entire period by 5%? This
question cannot be answered by standard simulation techniques because the gov-
ernment expenditure variable Gt is exogenous and so is not determined in the
model whereas the production variable Yt is endogenous to the model and so
cannot be fixed to grow at 5%.

To answer this sort of question of a model we need to use the techniques of
optimal control. In optimal control it is assumed that there is a policy maker with
targets that it wishes to achieve and policy variables that are under its control.
The target variables are endogenous and so are determined by the model and the
control variables are exogenous variables that the policy maker can set at will in
order to achieve the targets. The targets of the policy maker can be defined in
terms of a loss function to be minimised subject to the model. For example the
government expenditure question posed above could be formulated in terms of
the loss function

min
G1···GT

T∑
t=1

wt(Yt − Y ∗
t )2 (9)

where the minimisation is subject to the model (1). Here Y ∗
t are the target

values of Yt corresponding to a 5% annual growth rate and the loss function aims
to minimise the sum of the weighted squared deviations of Yt from Y ∗

t . The
parameters wt are weights that in principle can be time varying. The solution to
this problem is a set of optimal values for the control variables: G∗

1, · · · , G∗
T . The

problem can be solved by numerical minimisation of the function (9) where each
function evaluation involves solving the model for periods 1, · · · , T with guesses
of G∗

1, · · · , G∗
T until the minimum is found.

Figure 4 plots the optimal values of Gt (dotted line) along with the actual
historical values (solid line) over the solution period 1921–1941.It can be seen
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Figure 4: Optimal values of Gt necessary to achieve a 5% growth rate in Yt

that from 1926 onwards, the level of government expenditure necessary to achieve
the government’s growth target is above the actual historical level, rising to ap-
proximately twice the historical expenditure by 1941. For the first five years of
the solution period, however, the optimal level is actually less than the historical
level. This is because, during this period, historical production growth was above
the target rate of 5%.

6 Conclusions

Macroeconomic models provide a forecasting framework in which variables are
jointly determined by sets of equations coming from economic theory. We have
seen that we can use macroeconomic models to produce hypothetical forecasts or
simulations to ask what would have happened if different policies had been pur-
sued. Policy makers can use optimal control techniques to determine the setting
of their policy instruments and achieve their targets. In a world in which agents
in the economy form rational expectations of future government policy and will
react today to changes expected in the future, optimal government policy becomes
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more complicated. In this world there can be issues of time inconsistency where
the government will have an incentive to change a previously announced optimal
policy. Despite these complications, the techniques discussed in this lecture can
still be applied. Whitley (1994) is a simple and readable introduction to macroe-
conomic forecasting that discusses many of these issues. WinSolve (Pierse (2003))
is a user-friendly software package designed for forecasting and simulation with
non-linear macroeconomic models.
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