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1 Introduction

Smoothing methods are rather different from the model-based methods that we
have been looking at up to now in this module. With smoothing methods there is
no search for a ‘best-fitting’ model and the forecasts produced will not generally
be optimal forecasts (although in some circumstances they may be). Instead,
smoothing methods are a simple way to put a smooth line through the data and
project that line into the future. Smoothing methods are useful in situations
where model-based methods cannot or should not be used. One such situation
is when there are too few observations to estimate a model. For example, with
only four observations, there are just too few degrees of freedom to be able to
estimate any model, however simple. On the other hand, smoothing methods can
still be used, even with such a small number of observations. Another situation
in which smoothing methods are useful is where model-based forecasts would be
too expensive, because of the size of the forecasting task or because of lack of
time. Smoothing methods are quick and dirty and require little attention. They
are an example of what are called ‘automatic forecasts’, which can be produced
very cheaply and with little effort.

Although some academics dislike smoothing methods because of their quick
and dirty nature, they do have a good track record in practice and are therefore
worthy of consideration as a forecasting tool.

2 Moving average smoothing

One simple way of smoothing a time series is the moving average. For example,
the two-sided moving average of a time series yt is defined by

yt =
1

2m+ 1

m∑
j=−m

yt−j (1)
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where m is the smoothing parameter. The larger the value of m, the smoother the
resulting series will be. The two-sided moving average takes a symmetric average
of past and future values of yt to smooth the current value. This means that it
is not suitable for forecasting the series forwards since it requires future values to
be known. There are also problems near the end-points of the series, y1 and yT

since the smoother can only be applied from the time observations ym+1 up to the
observation yT−m. Despite this, two-sided moving averages form an important
part of seasonal adjustment algorithms such as the U.S. Census X-12 ARIMA
package, as we have seen in a previous lecture.

A one-sided moving average of yt is defined by

yt =
1

m+ 1

m∑
j=0

yt−j (2)

where m is the smoothing parameter and, as before, the larger the value of m,
the smoother the resulting series. Since the one-sided moving average only uses
current and past values of yt in order to smooth the current observation, the
smoothed series can be calculated in the current period and can then be used to
generate forecasts of future values of yt.

A weighted one-sided moving average of yt is defined by

yt =
m∑
j=0

wjyt−j (3)

where w0, w1, . . ., wm are weights. Note that the simple one-sided moving average
(2) is a special case of the weighted one-sided moving average where the weights
are all equal with wj = 1/(m + 1). More generally, the weighting parameter wj

allows flexibility in the way that the past is discounted. For example, often we
want to use declining weights so as to discount the distant past more heavily
than the recent past. Exponential smoothing methods use a particular form of
declining weights.

3 Simple exponential smoothing

Simple exponential smoothing is a form of one-sided weighted moving average
smoothing defined by

yt =
t−1∑
j=0

α(1− α)jyt−j

where α is the smoothing parameter with 0 < α < 1 and the smaller the value
of α, the smoother the resulting series. It can be seen that the weights decline
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exponentially as

yt = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · ·+ α(1− α)t−1y1.

For example, with α = 0.5, the weights are w0 = 0.5, w1 = 0.25, w2 = 0.125 etc.
As the smoothing parameter α approaches 0, the smoothed series approaches a
constant value of 0 and as α approaches 1, the smoothed series tends to the original
unsmoothed series with yt → yt. In practice α will generally be chosen a priori
although, if there are enough observations, it can be estimated by minimising the
mean square error

T∑
t=1

(yt − yt)2. (4)

The exponential smoother can be generated recursively by initalising y1 from
the initial observation

y1 = y1 (5)

and then using the recursion

yt = αyt + (1− α)yt−1 (6)

for t = 2, . . . , T . This makes exponential smoothing extremely easy to implement.
Moreover, the smoothed series can then be used to forecast the series forwards
using the formula

ŷt+h,t = yt

which implies a flat forecast of the latest smoothed estimator.
Figure 1 illustrates two exponential smoothing models for the Canadian em-

ployment data series produced by EViews using values of the smoothing param-
eter α of 0.1 and 0.2 respectively. Note that EViews initialises the recursion (6)
for the smoothed series using the sample mean

y1 = y =
1

T

T∑
t=1

yt

instead of (5). Estimating the value of α by minimising the mean square error
(4) gives the value 0.999 which suggests that the ‘best’ exponential smoothed
estimator is essentially the original unsmoothed series itself with implied forecasts

ŷt+h,t = 0.999yt

which simply projects the latest value. This is clearly not a very satisfactory
forecast. Examining the smoothed series in Figure 1 shows that turning points
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Figure 1: Exponential smoothing on Canadian employment data: α = 0.1 and
α = 0.2

in the series are predicted with a lag of around one to two years. This is a
general feature of exponential smoothing models, which are not good at forecasting
turning points because they are based on weighted averages of past values.

Simple exponential smoothing is suitable for forecasting a time series that
is non-seasonal and has no trend. It can be shown that the simple exponential
smoothing model is equivalent to an optimal forecast in the ARIMA(0,1,1) model

∆yt = εt − θεt−1. (7)

In this model the optimal one-step ahead forecast is given by

∆ŷt+1,t = −θεt

or
ŷt+1,t = yt − θεt. (8)
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Rewriting (7) and substituting backwards to eliminate lagged values of εt we get

εt = ∆yt + θεt−1

= ∆yt + θ∆yt−1 + θ2∆yt−2 + · · ·
= yt − (1− θ)yt−1 − θ(1− θ)yt−2 − θ2(1− θ)yt−3 − · · · .

Substituting this last expression into (8) for the optimal forecast, we get

ŷt+1,t = (1− θ)yt + θ(1− θ)yt−1 + θ2(1− θ)yt−2 + θ3(1− θ)yt−3 + · · ·

or

ŷt+1,t = (1− θ)
t−1∑
j=0

θjyt−j

which is an exponential smoothing model with parameter α = 1 − θ. Thus the
simple exponential smoothing model gives optimal forecasts for the integrated
MA(1) process (7). Note that this process, although it has a unit root, is not
trended since E∆yt = 0 so that Eyt = yt−1. Note also that since α must lie
between 0 and 1, the equivalence between exponential smoothing and the optimal
forecast in the ARIMA(0,0,1) model (7) only holds for positive θ which means
negative autocorrelation.

4 Double exponential smoothing

Double exponential smoothing generalises simple exponential smoothing to deal
with time series with a linear trend. It uses the simple smoothing algorithm twice,
with the same smoothing parameter α, to define a single smoothed series yt and
a double smoothed series yt. The recursions are defined by

yt = αyt + (1− α)yt−1

and
yt = αyt + (1− α)yt−1

where the two smoothed series are initialised by

yt = yt = y1.

Forecasts from double smoothing are then defined by

ŷt+h,t = (2 +
αh

1− α
)yt − (1 +

αh

1− α
)yt

=
[
2yt − yt

]
+ [

α

1− α
(yt − yt)]h
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Figure 2: Double exponential smoothing on NYSE data

which is a straight line forecast with the first term in square brackets being the
intercept and the second term being the slope of the trend.

Figure 2 illustrates double exponential smoothing applied to the New York
Stock Exchange data series. The parameter α = 0.144 was estimated over the
period 1947 to 1990 and then the smoothed series forecast from 1991-1992. The
forecast is a downward sloping trend which is rather surprising given the strong
upward trend in the series as a whole.

5 Holt-Winters smoothing

Holt (1957) and Winters (1960) developed an alternative smoothing procedure to
deal with non-seasonal but trended time series. It is defined by the initialisations

y2 = y2
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and
T2 = y2 − y1

and the recursions
yt = αyt + (1− α)(yt−1 + Tt−1)

and
Tt = β∆yt + (1− β)Tt−1

for t = 3, . . . T , where 0 < α < 1 and 0 < β < 1. The additional component
here, Tt is the smoothed trend and its smoothness is controlled by the parameter
β while α controls the smoothness of the level.

Figure 3: Holt-Winters smoothing on NYSE data

Forecasts are generated by the formula

ŷt+h,t = yt + hTt
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and will lie on a straight line with an intercept of yt and a slope of Tt.
Figure 3 illustrates Holt-Winters exponential smoothing applied to the New

York Stock Exchange data series. The parameters α = 0.31 and β = 0 were
estimated over the period 1947 to 1990 and then the smoothed series forecast
from 1991-1992. The forecast is an upward sloping straight line trend which is an
improvement on the trend from the double exponential smoothing model.

6 Holt-Winters smoothing with seasonality

Holt and Winters also developed a procedure for dealing with seasonal trended
time series with periodicity s. This is defined by the initialisations

ys =
1

s

s∑
t=1

yt

Ts = 0

Sj =
yj
ys
, j = 1, · · · , s

and the recursions

yt = α(yt − St−s) + (1− α)(yt−1 + Tt−1)

Tt = β∆yt + (1− β)Tt−1

St = γ(yt − yt) + (1− γ)St−s

for t = s + 1, . . . T , where 0 < α, β, γ < 1. The additional component here, St

is the smoothed additive seasonal component and its smoothness is controlled by
the parameter γ.

Forecasts are generated by the formula

ŷt+h,t = yt + hTt + St+[h/s]+1−s

where [h/s] is the remainder when h is divided by s so that the forecast uses the
last s smoothed seasonal components St, St−1, . . ., St−s+1.

Figure 4 shows the Holt-Winters seasonal smoothing model applied the the
US liquor series where the parameters α, β and γ have been estimated over the
period 1960-1990 and the smoothed series forecast over the period 1991-1994. The
estimated parameter values were α = 0.32, β = 0 and γ = 0.95. As can be seen,
the forecast is a straight line trend plus a constant seasonal factor.
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Figure 4: Holt-Winters seasonal smoothing on US Liquor series
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