
Introduction to Computer Programming: Class 1

 1

INTRODUCTION TO COMPUTER PROGRAMMING

Richard Pierse

Class 1:

Introduction to Computers and Programming Languages

How does a computer work?

Here is a simple schematic diagram of the structure of a computer.

 CPU

 RAM Process

 Disk

 Programs

The CPU (Central Processing Unit) is the ‘brain’ of a computer and
handles all the calculations.
RAM (Random Access Memory) is the ‘memory bank’ of the
computer and holds programs and data that are being processed by
the CPU. All programs and data need to be loaded into memory
from disk before the CPU can use them.
Modern computers often have several available disk sources. These
include floppy disks, hard disks, CD and DVD.

Introduction to Computer Programming: Class 1

 2

What is a computer program?

The CPU does the computer’s calculations but it needs detailed
instructions as to what calculations to do and in what order. It is the
computer program that tells the computer what to do. Without a
program, the computer would not be able to do anything at all.

When you switch on a computer, several computer programs
automatically start running. These programs are part of the
operating system. The operating system controls the operation of
the computer and allow other programs to run such as Word
Processors, Spreadsheets, web browsers, computer games etc.
Examples of operating systems are the various versions of Microsoft
Windows (95, 98, NT, XP etc.), UNIX, DOS, Mac OS.

Computer hardware comprises the physical parts of the computer:
the CPU, memory chips, disk drives, disks, monitor, printers etc.

Computer software comprises the programs and data that run on
the hardware. Although, software may come on a disk, it is not the
disk itself but the programs on the disk that are software.

When do we need to program?

Your computer comes already equipped with many programs like
Word Processors, spreadsheets, and web browsers that allow you
to do many things. Some, such as Excel, allow you to write your
own small programs in the form of macros (as you have seen in a
previous module). In addition, special-purpose programs exist to
solve specific economic problems in areas such as econometrics
(Eviews), model solution (WinSolve), Operations Research (Lindo).

If a program already exists to solve your problem, it will almost
always be better to use it rather than write a program yourself.
However, there are occasions when no program does exist to solve
your problem so you will need to write your own program. Your first
decision will be what language to use. Choices include general
purpose languages such as BASIC, Java, or C, or special-purpose
languages like Matlab, Gauss, Mathematica or Maple. Programming
can be a lot of fun but it can also be hard work so it should not be
undertaken unnecessarily.

Introduction to Computer Programming: Class 1

 3

Machine Code and Compilers

The computer can understand instructions only if they are written in
a special code called machine code. Machine code is specific to
the particular type of computer. For example, here is the machine
code for an IBM PC (Intel 80386) to add up three numbers and
compute their average.

Machine code Assembly instructions Meaning
D945FC fld dword ptr[ebp-0x04] load number from RAM
D845F8 fadd dword ptr[ebp-0x08] add second number
D845F4 fadd dword ptr[ebp-0x0c] add third number
D95DF0 fstp dword ptr[ebp-0x10] store sum in RAM
DB2DBC104000 fld tbyte ptr[0x4010bc] load value 1/3
D84DF0 fmul dword ptr[ebp-0x10] multiply sum by 1/3
D95DF0 fstp dword ptr[ebp-0x10] store result in RAM

 The first column lists the machine code in hexadecimal.
(Hexadecimal is a compact way of writing binary numbers the
computer understands using the sixteen ‘digits’ 0-9 and A-F).

 The second column lists the same machine code in assembler
language. Assembler is a simple language that makes it slightly
easier for a programmer to write machine code. However, it is still
not very easy to understand!

 The third column explains the meaning of the various machine
code instructions in English.

In the early days of computing, all programs had to be written
directly in machine code. This was extremely tedious and prone to
error. Also, a machine code program written for one machine would
need to be rewritten to run on a different type of machine.

The solution to this was the invention of compiled computer
languages. With a compiled language, the programmer writes a
program as a set of instructions in a high-level language designed
to be easy to use. This program is called the source code. Then a
computer program, called a compiler, translates the source code
into machine code, which can then be run or executed on the
computer. With an appropriate compiler, the same source code can
be translated to run on any machine.

The main advantages of compiled languages are:

 ease of use - the language is designed for people not machines

 portability - the same source code will execute on any computer

Introduction to Computer Programming: Class 1

 4

Compilers

The following schema shows the separate stages of compilation and
execution.

 Source code Compiler Machine code Execution
 e.g. e.g.
 myprog.bas myprog.exe
 myprog.jav myprog.com

Files of source code generally have a suffix to identify the language
e.g. .bas for BASIC, .jav for Java, .c or .cpp for C or C++.

Source code files are human-readable and can be viewed in any
text editor. Machine code files that can be executed by the
computer are indicated by extensions such as .exe, .com, .dll.

These files are not human-readable.

Examples of Computer Languages

Consider again the task of adding three numbers, A1, A2 and A3
and computing their average (as variable A4). Let us see how code
to do this might be written in some different computer languages:

BASIC: a4 = (a1+a2+a3)/3.0

Java: a4 = (a1+a2+a3)/3.0;

C: a4 = (a1+a2+a3)/3.0;

Gauss: a4 = meanc(a1|a2|a3);

Firstly, note how much simpler, more compact and closer to familiar
algebra are all these examples than the machine code we looked at
earlier. Secondly, note the similarity between the source code in the
first three examples. This illustrates how knowing one computer
language can often help in understanding other languages. Thirdly,
note the last example. Gauss is a special-purpose language
designed for dealing with vectors and matrices. Here the average is
calculated as the mean of a vector formed of the three variables,
using a built-in Gauss function, meanc. This illustrates how a

special-purpose language can be useful for dealing with special
problems.

Introduction to Computer Programming: Class 1

 5

Code Optimisation

It used to be true that programs written in compiled languages were
generally less efficient than those written directly in machine code.
This was because good machine code programmers would know
the detailed working of a computer and would tailor their code to
take advantage of the quirks of a particular machine. They would
know for example that addition is much faster on a computer than
multiplication, and that multiplication is faster than division. As a
result, most critical software such as operating systems and games
software used to be written directly in machine code.

Modern compilers can automatically optimise source code to
increase execution speed and/or to reduce the size of the executing
program. Optimisation increases the time it takes to compile a
program but will reduce the time it takes to execute. Since a
program is normally compiled once but may execute many times,
optimising code is generally a good idea. As a result of automatic
optimisation, programmers don’t need to worry about the details of
how the computer operates and can concentrate on writing source
code that is clear and easy to understand.

These days compilers are very good at optimising code to run
efficiently and high-level languages like C are now used to write
both operating systems like Windows and major applications such
as Excel. In fact, the C language was originally invented in order to
write the operating system of UNIX machines.

Compilers versus Interpreters

A compiler translates source code into machine code and produces
as output an executable file. This executable file can then be run on
any computer without the need for the compiler to be present. In
contrast, an interpreter is a program that translates the source
code and then executes it without going through the intermediary
stage of producing an executable file. As a result, the interpreter
needs to be present every time that the program is run. The analogy
is with language translation: a compiler is like a written translation of
a text, an interpreter is like a human real-time translator. Some
languages such as BASIC, traditionally have an interpreter rather
than a compiler. Interpreted languages are generally not optimised
because they are compiled each time they are executed.

Introduction to Computer Programming: Class 1

 6

Choosing a Language

There are a great many different computer languages and new ones
are continually being invented. Some languages are better than
others for particular tasks. However, people have different
preferences and most computer programmers only know a small
number of languages. It is easier to continue to program in a
language you already know than to learn a new one.

Languages divide into two main categories: general purpose
languages which are designed for general programming, and
special purpose languages which are designed for particular tasks.
For example FORTRAN is an early example of a general purpose
language, first developed in the 1950s. Although it has been largely
superseded by more modern languages such as C, it continues to
be used for scientific applications, mainly because of its familiarity.
HTML is a special purpose language used for developing web sites
(we will be looking at HTML in class 8 of this module). Java (which
we will be learning later in this module) is an example of a language
originally developed for web-based applications, which has become
a general purpose language that is rapidly taking over from C and
C++ (on which it is closely modelled) as the most widely used
general purpose language.

General purpose languages:
Language Compilers Comments
BASIC Visual, Liberty Originally developed for teaching
FORTRAN Lahey, Salford Early high-level language
Pascal Turbo Structured language, based on Algol
C Visual, Borland Very popular and efficient language
C++ Visual, Borland Object-oriented version of C

Java Sun, Forte Becoming popular, especially on the web

Special purpose languages useful for Economics:

Language Author Comments
Gauss Aptech Matrix language widely used in econometrics
Matlab Math Works Similar to Gauss, more widely used in science
Mathematica Wolfram Mathematical language, including algebra
Maple Waterloo Similar to Mathematica, good for graphics
HTML W3C Special language for writing web pages

It is best to use special purpose languages wherever possible. For
econometric applications, Gauss or Matlab are ideal and pre-
existing code is available for many problems.

Introduction to Computer Programming: Class 1

 7

Installing Liberty BASIC

We are now ready to start programming using Liberty BASIC.
Liberty BASIC is a shareware version of a the BASIC language that
is similar to Microsoft’s Visual BASIC. A copy of a compiler for
Liberty BASIC comes on the CD that accompanies Greg Perry’s
textbook for this module.

Introduction to Computer Programming: Class 1

 8

Getting started with Liberty BASIC

Loading a Sample program

Before, writing our first program, let us take a look at an existing
example program that comes with Liberty BASIC.

1. Select File, Open.
2. Select draw1.bas and click OK. The source code in the

draw1.bas file will appear in the Liberty BASIC editor.

3. Select Run from the Run menu (or click on the run button which
has a picture of a man running). Liberty BASIC compiles the
program and runs it in one step. A drawing window will open.

4. To draw a line, circle or square, click on the appropriate icon.
Click somewhere in the window, hold down your mouse button
and drag the mouse. When you release your mouse button, the
line, circle or square will appear.

5. Clicking on a colour icon before drawing changes the colour of
the shape.

6. To stop the program, click on the Close button.

This program illustrates the power of Liberty BASIC to create a
simple Windows program. We will be learning about how to write
Windows and graphical programs in class 5. However, for now, our
first program will be a little less ambitious.

Running our First Program

1. Select File, New to clear the source code window and prepare

the editor for a new program.
2. Type the following lines into the editor:

’ prints a countdown from 10 to 1
for i = 10 to 1 step -1

print i
next i
print ”Blast Off!”
end

3. Select Run from the Run menu (or click on the running man icon)

to run the program.

The program should print the numbers 10 down to 1 followed by the
message “Blast Off!”.

Introduction to Computer Programming: Class 1

 9

Analysing the Program

Let us look in detail at the program we have just typed in.

 The first line (beginning with a single quote character) is a
comment, called a remark in BASIC. Any line starting with a
single quote is simply ignored by BASIC so we can use it to add
any comment that we like to our program

 The second line is the start of a loop. All the commands between
the for i and the next i commands will be repeated for values
of the variable i going from 10 down to 1 in steps of -1. In this
case the only command in the loop is the third line print i and
so the loop is equivalent to the 10 commands:

print 10, print 9, and so on until print 1.
This will simply “print” these numbers to the output window.

 The program ends by printing the text Blast Off! to the output
window. Note that the text to be printed needs to be surrounded
by double quotes.

 The final End command tells the compiler that this is the last line.

It might seem as if this program took a lot of effort for little result.
However, by simply changing the 10 in the second line to 10000, we
can get the program to print numbers from 10000 down to 1!

Alternatively, by inserting the line

input n
before the second line and changing the 10 in the second line to n,
we get a program that will print a countdown from any number n,
that we supply. The program waits for us to type in a value for n,
showing a question mark as a prompt.

What would happen if we typed in the value 0? Since 0 is less than
1, the loop will never be executed and the program will immediately
print the text Blast Off! and exit.

