
Introduction to Computer Programming: Class 3

 1

INTRODUCTION TO COMPUTER PROGRAMMING

Richard Pierse

Class 3:

Controlling Programs: Conditionals and Looping

Conditionals

Conditional statements allow your program to make choices and
perform one action or another depending on the value of a
condition.

The if command

Liberty BASIC, like almost all other programming languages, uses
the if command to allow the conditional execution of statements.

The format is:
 if(condition) then

 first block of statements
 else

 second block of statements
 end if

The first block of statements is executed if the condition is true.
Otherwise, the second block of instructions is executed. The else

clause is optional. If omitted then no instructions are executed
when the condition is false. The end if command must always

be present and signals the end of the conditional block(s).

Conditions are specified with relational expressions using one of
the relational operators in the following table:

Operator Description Example

< Less than if (sales < maxsales) then

> Greater than if(amount > 100.0) then

= Equal to if(age = 21) then

>= Greater than or equal to if(grade >= 70) then

<= Less than or equal to if(price <= 1.0) then

<> Not equal to if(year <> 2004) then

Relational expressions are always either true or false.

Introduction to Computer Programming: Class 3

 2

It is possible to nest one if statement within another as in the

examples:

 if(age < 18) then

 if(age > 12) then

 print ”teenager”

 else

 print ”child”

 end if

 else

 print ”adult”

 end if

or
 if(age > 18) then

 print ”adult”

 else

 if(age > 12) then

 print ”teenager”

 else

 print ”child”

 end if

 end if

These two examples both do the same thing. In the first, an
if...end block is nested within an outer if loop between the

if and else clauses. In the second, the inner if loop occurs

between the outer else and end if statements.

Note the use of indentation in the examples to make clear the level
of nesting in the conditional statements. While not necessary,
indentation increases clarity and is strongly recommended as
good programming practice.

There are some limitations on the nesting of if statements in

Liberty BASIC, compared with other languages and higher order
nesting than that shown in these examples is not possible.

Introduction to Computer Programming: Class 3

 3

Looping Statements

Looping statements cause blocks of code to be executed
repeatedly, making it possible to perform repetitive tasks, over and
over and again.

Liberty BASIC supports two looping commands: the for...next

loop and the while...wend loop. The first executes a block of

code a fixed number of times, while the second executes a block
of code repeatedly as long as a particular condition is satisfied.

The for...next loop

This loop is best explained through an example. Consider the
following code:
 for i = 1 to 5

 print i;

 print ”: log = ”; log(i)

 next i

The for statement starts the loop and the next statement ends it.

Each for loop has an associated control variable, in this case i.

The statements between the for and next are executed a fixed

number of times for values of i going from 1 to 5 in increments of

1. This loop prints the value i and its natural logarithm, log(i)

for the values: 1, 2, 3, 4 and 5.

It is possible to write for loops in which the control variable

increments in values other than 1 by using the step clause.

Consider this example:
for k = 0.5 to 0.2 step -0.1

 print k

next k

In this loop the control variable k goes from the value 0.5 down to

the value 0.2 in negative increments of -0.1.

Loops can be nested within each other as in the following
example:
 for i = 1 to 4

 for j = 1 to 3

 print i*j

 next j

 next i

Introduction to Computer Programming: Class 3

 4

In this example the block within the for i loop contains another

for loop, for variable j. The entire for j loop is executed for

each value of i. Note that the control variables in nested loops

must be different, and that the inner loop(s) must finish before the
outer loop. Loops in Liberty BASIC can be nested to any depth.

The while...wend loop

The while...wend loop allows a block of commands to be

executed repeatedly, while a condition continues to hold. For
example, the following code:

while (x <= 120)

 x=x*10

wend

repeatedly multiplies the number x by 10 until it is greater than

120 when the loop terminates. What would happen if the initial

value of x were zero or negative? In this case, the condition would

always be true so that the loop would never terminate. This is an
example of an infinite loop. Programmers should take care to
avoid inadvertently writing infinite loops.

while...wend loops can be used to create programs that run

repeatedly until the user chooses to terminate them. This is
illustrated in the following example:

ans$=”Y”

while(ans$ = ”Y”)

input ”Enter a number: ”; x

 if (x > 0.0) then

print ”Square root is ”; x^0.5

 else

print ”Non-positive number”

 end if

 input ”continue (Y/N)? ”; ans$

wend

The loop prints the square root of positive numbers as long as the
user continues to respond ”Y” to the question. Note that the first

line initialises the character variable ans$ to ”Y” so that the loop

always executes at least once.

Introduction to Computer Programming: Class 3

 5

Arrays

Arrays are used for storing several items of the same type, such
as product prices for 30 different firms, or names or test scores for
a class of students. Without arrays, we would need to use different
variable names for each item in the group e.g.

 student1score = 56

 student2score = 74

 student3score = 65

With an array, a single name can be used to refer to the whole
group of items and individual items can be referred to using
indices e.g.
 scores(1) = 56

 scores(2) = 74

 scores(3) = 65

Arrays are very powerful and are naturally manipulated with
looping commands. The student scores in the previous example
can be printed by the loop:

for i = 1 to 3

print ”student ”; i; ” mark ”; scores(i)

next i

Arrays normally need to be declared before they are first used so
that the computer knows how much array space is required. This
is accomplished by the dim command. For example, the

command

dim scores(30)

reserves space for 30 numeric elements in the array scores ,

while the command

 dim names$(100)

reserves space for 100 character variables in the array names$.

Liberty BASIC does allow small arrays (10 or less elements) to be
used without having being declared beforehand. However, it is
good practice always to declare arrays.

Introduction to Computer Programming: Class 3

 6

Liberty BASIC also supports two-dimensional arrays, which are
rectangular sets of elements declared as e.g

 dim m(10,4)

with individual elements referred to as m(10,1), m(1,4) etc.

The following code reads a set of n numbers (maximum of 100)

into the array x and computes their mean and variance:

 dim x(100)

 input ”How many numbers? ”; n

 if(n < 2) then

n = 2

 else

 if(n > 100) then

 n = 100

 end if

 end if

sum = 0.0

 sumsq = 0.0
for i=1 to n

 input ”Enter next number: ”; num

 x(i) = num

 sum = sum + x(i)

 sumsq = sumsq + x(i)*x(i)

next i

mean = sum/n

variance = (sumsq - n*mean*mean)/(n-1)

print ”Mean is ”; mean

print ”Variance is ”; variance

The program first asks for the value of n and checks for illegal

values (n < 2). If n is too large, it is reset to 100. Then the

variables sum and sumsq are initialised to zero and the loop

starts, prompting the user to enter each number and cumulating
the sum and sum of squares. Note that each number is read
initially into the variable num before being stored in the array x.

This is because Liberty BASIC does not allow input directly into
array elements. (This is a particular limitation of BASIC and does
not apply to most other programming languages.)

Introduction to Computer Programming: Class 3

 7

Example: A Number Guessing Game

The following example illustrates the use of the looping and
conditional commands from this week’s class in a program in
which the user has to guess a random number chosen by the
computer. The second line uses the rnd() function to generate a

random number between zero and one. This is transformed into
an integer between 1 and 100, which the user then has to guess.

If the guess is too low or too high, the user is prompted to guess
higher or lower. The variable tries counts the number of

guesses. Finally, when the user correctly guesses the number, the
program prints the answer and the number of tries. Note that the
variable guess is initialised to the impossible value of -1 so that

the while guessing loop always gets executed.

print ”Guess my number”

num = int(rnd(1)*100)+1

tries = 1

guess = -1

while (guess <> num)

 input ”What is your guess (1-100)? ”; guess

 if(guess < num) then

print ”Higher”

 else

 print ”Lower”

 end if

 tries = tries + 1

wend

print ”My number was ”; num

print ”You got it in ”; tries; ” tries”

end

Introduction to Computer Programming: Class 3

 8

Solutions to last week’s exercises

Exercise 1: calculate a firm’s profits

input ”fixed costs? ”; fixed

input ”unit variable costs? ”; variable

input ”product price? ”; price

input ”product quantity? ”; quantity

profits = (price-variable)*quantity-fixed

print ”profits are ”; profits

Exercise 2: annual compounded interest

input ”lump sum? ”; X

input ”annual interest rate as %? ”; r

input ”number of years? ”; n

print ”value is ”; X*(1+r/100)^n

Exercise 3: continuously compounded interest

input ”lump sum? ”; X

input ”annual interest rate as %? ”; r

input ”number of years? ”; n

print ”value is ”; X*exp(r/100)^n

Exercise 4: split first 3 words from a string

input ”enter string ”; str$

length=len(str$) ' length of string

sp1=instr(str$,” ”) ' position of 1st space

word1$=left$(str$,sp1-1) ' first word

str$=right$(str$,length-sp1) ' remove word 1 from str$

sp2=instr(str$,” ”) ' position of 2nd space

word2$=left$(str$,sp2-1) ' second word

str$=right$(str$,length-sp1-sp2) ' remove word 2

sp3=instr(str$,” ”) ' position of 3rd space

word3$=left$(str$,sp3-1) ' third word
print word1$; ” ”; word2$; ” ”; word3$

Exercise 5: area of a circle

pi=3.1415926

input ”radius? ”; r

print ”area is ”; pi*r*r

