
Introduction to Computer Programming: Class 4

 1

INTRODUCTION TO COMPUTER PROGRAMMING

Richard Pierse

Class 4:

Programming Fundamentals: Structuring and Subroutines

Designing Programs

Writing a computer program to perform a complex task can seem a
daunting undertaking. Before getting down to write any code, it is
important to spend time thinking about the design of the program
and breaking the task down into its component steps. In this way,
the task becomes more manageable and no detail gets forgotten. In
the business world, large programming projects are generally
managed by systems analysts who are concerned with designing
programs and may do very little actual programming themselves.

Top-Down Program Design

Top-down program design is a technique to help plan the design of
a program. The key to the top-down approach is to put off the
details as long as possible, concentrating on the overall goal and
breaking that up into component parts, and then each part into
smaller parts and so on. It can be illustrated in the schema:

1. Determine the overall goal
2. Break that goal into a few component parts, each with its goal
3. Repeat step 2 for all sub-goals, holding back details as long as

possible.

Introduction to Computer Programming: Class 4

 2

Developing Program Logic

Once the task has been broken down into its component parts, each
component can be analysed in detail. Two tools which are useful in
planning the logic of each component are pseudo-code and flow
charts.

Using pseudo code

Pseudo-code is a form of English that is understandable without
knowledge of any programming language, but that represents
clearly the logic underlying the task. It is simple for a programmer to
translate pseudo-code into actual code, making the final
programming task very straightforward. Pseudo-code can be used
at different levels of abstraction, and is useful in many areas outside
computer programming e.g. instruction manuals.

Here is an example of some pseudo-code for a simple payroll
calculation:

For each employee:

 If the employee worked 0 to 40 hours then

 net pay equals hours worked times rate

 Otherwise,

 If the employee worked between 40 and 50 hours then

 net pay equals 40 times the rate

 add (hours worked - 40) times the rate times 1.5

Otherwise,

 net pay equals 40 times the rate

 add 10 times the rate times 1.5

 add (hours worked - 50) times twice the rate

 Deduct taxes from the net pay

 Print the pay cheque.

Flow Charts

An alternative to pseudo-code is the use of flow charts. The flow
chart gives a pictorial representation of the logic of a program, using
arrows to indicate the flow and boxes of various shapes to indicate
different tasks: calculations, conditional branching, input / output
etc.

Flow charts have been around since the early days of computing
and are very useful in documentation and as a teaching tool.
However, they are rarely used by practical programmers.

Introduction to Computer Programming: Class 4

 3

 A Flow Chart

Here is a flow chart corresponding to the previous pseudo-code.

 START

 Did
 employee
 PAY equals work 40 or
 RATE times hours Yes fewer hours
 ?

 No

 Did
 employee
 work less than 50 PAY equals
 hours Yes RATE times 40
 ?

 No OVERTIME equals
 1.5 times RATE
 PAY equals times all hours over 40
 RATE times 40

 OVERTIME equals
 1.5 times RATE times 10

 DOUBLE OVERTIME
 equals two times RATE
 times all hours over 50

 Print Pay Cheque

 STOP

The arrows indicate the flow. Note the different symbol shapes: a
diamond for a question, a rectangle for a task, a rhombus to indicate
input/output, an oval for start or stop.

Introduction to Computer Programming: Class 4

 4

Structured Programming

Structured programming is a philosophy stating that programs
should be written in an orderly fashion without a lot of jumping
around. The keys to structured programming are:

 sequence

 decision

 iteration
Sequence means that commands should follow in a natural order.
Decision refers to the use of if...else...endif structures to

control the conditional execution of commands. Iteration means
that loops should be structured like the for...next and

while...endw loops in Liberty BASIC.

Modern programming languages are designed to encourage
structured programming and the block if...endif and the

for...next and while...endw loops in Liberty BASIC are

examples of structured commands.

To see an example of unstructured programming, we will look at a
Liberty BASIC command not covered before: the goto statement.

The format is:
 goto [label]

where label is a name or a number referring to a statement

somewhere else in the program. The command instructs the
program to find the labelled instruction and continue executing at
that point. Consider the following example:
 i = 1

 [start]

 print i

 i = i+1

 if(i > 10) goto [finish]

 goto [start]

[finish]

This code is equivalent to a for i=1 to 10...next i loop but

is considerably more clumsy and difficult to understand. (Note also
the use of an unstructured if statement in this example).

The wide use of goto statements and other unstructured

commands quickly results in spaghetti code, so-called because it
flows and swirls all over the place. Although goto statements

cannot always be avoided (e.g. to force premature exit from a loop),
they should be avoided whenever possible.

Introduction to Computer Programming: Class 4

 5

Functions and Subroutines

We came across functions in the first class in the form of standard
mathematical and character functions such as log(x), exp(x)

and char$(n). You can easily define your own functions to perform

common tasks. Functions can take one or more arguments (or no
arguments) and return a single value. As an example, consider the
following function to compute the area of a circle:

function area(r)

 a=3.141592654*r*r

 area=a

end function

This function takes a single argument, the radius r, and returns the

value of the variable area, the circle area r2. The value returned by

a function always has the same name as the function itself. Note
that the variable a, used within the function, is local and is not

accessible outside the function. The function can be referenced fro
the main program as in the command:
 a = area(8)-area(5)

Subroutines

Subroutines or procedures (known as subprograms in Liberty
BASIC) differ from functions in that they do not return a value. They
can take any number of parameters. The following example defines
a subroutine called maxmin with three parameters that prints the

maximum and minimum of the three arguments p1, p2 and p3. The

subroutine definition starts with the sub statement and ends with

the end sub statement.
 sub maxmin p1, p2, p3

 maxp = max(max(p1,p2),p3)

 minp = min(min(p1,p2),p3)

 print ” max ”; maxp; ” min ”; minp

 end sub

Variables defined within a subroutine are local to that subroutine
and inaccessible outside it. Similarly, the subroutine arguments are
also local so that, if changed within the subroutine, remain
unchanged outside it. A subroutine can be called in the main
program using the call command as in

call maxmin x1/x4, log(x2), abs(x3)

Introduction to Computer Programming: Class 4

 6

Programming Errors

Programmers inevitably make mistakes. An important part of
programming is to debug a program to remove all the errors.
There are three types of programming error:

 syntax errors

 runtime errors

 logical (semantic) errors

Syntax errors are caused by illegal instructions in the program
source code. These are mainly caused either by typing errors as in
endif (should be two words) or by failing to follow the rules as in

if (4 > 3)

where the keyword then has been omitted. Syntax errors are

almost always spotted by the compiler. When the Liberty BASIC
compiler tries to run a program containing syntax errors, it highlights
the first offending line of code in blue. This makes it easy to locate
the error and fix it.

Runtime errors are errors that occur during the running of a
program, generally causing it to crash. The most common cause of
runtime errors is an illegal mathematical operation such as division
by zero or taking the logarithm of a negative number. Two other
runtime errors are infinite loops and code over-writing caused by
overflowing array bounds. Runtime errors won’t be spotted by the
compiler, even when they are blatant as in the line x = 4 / 0.

The best way to avoid runtime errors is to program cautiously and
include careful checks before any potentially dangerous operations
such as division.

Logical errors are probably the most common errors but also the
most difficult to spot. This is because a program with logical errors
may well compile and run successfully. The problem is that the
program just doesn’t work correctly because of a fault in the
program logic. Consider the following example to print the minimum
of 10 numbers and see if you can spot the error.
 for i=1 to 10

 input ”enter number: ”; x

 if(x < minx) then

 minx = x

 end if

 next i

 print ”minimum is ”; minx

Introduction to Computer Programming: Class 4

 7

 Debugging Programs

Logical errors can be hard to locate. Liberty BASIC offers a tool to
help programmers locate logical errors and debug their programs.

Using the Debugger

The Liberty BASIC debugging tool is started by clicking on the
debug button on the toolbar (the one with a bug on it) or by
selecting debug from the run menu. Two new windows open: the
familiar output window which will display any output as the program
executes, and a debug window with two panes and several buttons.
The lower pane shows the source code with the next line to be
executed highlighted in blue. The upper pane displays the contents
of all variables in the program so that we are able to track their
values as the execution progresses.

Single Stepping through Code

Probably the most useful feature of the debugger is the single-step
feature. This allows the code to be executed a single line at a time.
Click on the step button in the debug window to start single
stepping. The highlighted line in the lower pane moves on to the
next line. The upper pane allows us to inspect data variables and
see how their values have changed after the execution of the line.
Continue to step through the code. As you step through loops and
conditional statements, the highlighted line will jump about, following
the flow of the program.

The walk and run buttons allow you to run the program at half or full

speed until you click on the step button to pause execution again.
This allows you to move quickly to a particular area of the program
code which you want to examine in detail.

The Liberty BASIC debugger is quite simple compared with some
other debugging tools but is still very useful. Running the problem
program from the previous page through the debugging tool should
make clear why that program doesn’t always work as intended.

Testing Programs

Programs should always be fully tested to ensure that all bugs have
been eliminated. Beta testers are used for large programs.

Introduction to Computer Programming: Class 4

 8

Solutions to last week’s exercise

A program to guess a user’s number between 1 and 100

print "Think of a number (1-100)"

gmax=100

gmin=1

tries=0

ans$="h"

while (ans$ <> "=")

 guess=int((gmax-gmin)/2)+gmin

 print "I guess "; guess

 tries=tries+1

print "Is it higher(h), lower(l) or OK(=) ";

input ans$

 if (ans$ = "h") then

 gmin=guess+1

 else

 gmax=guess-1

 end if

wend

print "Your number was "; guess

print "I got it in "; tries; " tries"

end

