
Introduction to Computer Programming: Class 5

 1

INTRODUCTION TO COMPUTER PROGRAMMING

Richard Pierse

Class 5:

Graphics and Windows Programming

Windows Programs

Windows programs are very different from the conventional
programs we have looked at before now. The most obvious
difference is to do with the interface between user and program.
Windows programs use a graphical user interface (GUI) where, in
addition to using the keyboard, the user can click on buttons or
select items from lists or from drop-down menus. All Windows
programs use the same interface, so all will have a familiar feel to
the user.

More fundamentally however, Windows programs also operate in a
completely different way from conventional programs. When the
user executes a conventional program, the program starts working
immediately. It runs without a break (apart from occasional pauses
to request user input), performing its tasks in a set order determined
by the program logic. When it has finished its tasks, it terminates
automatically.

The typical Windows program works very differently. When it is first
executed, a new window opens on the desktop but then the
program stops running and just waits until the user chooses to do
something. Tasks are performed at the user’s request when a menu
item is selected or a button is clicked. It is the user, therefore, rather
than the program who decides the order in which tasks are
performed and, when each task is completed, the program goes
back to waiting again. The program does not terminate
automatically but waits until the user requests it to do so.

Windows programs spend most of their time just waiting, doing
nothing. While one program is waiting, other Windows programs
may be executing and the operating system controls this, sharing
the CPU between all the programs that are running.

Introduction to Computer Programming: Class 5

 2

Event-Driven Programming

Windows programs are event-driven programs. An event is a user
action: a button click, the press of a key on the keyboard or the
selection of an item from a drop-down menu or list. The Windows
program responds to each event by taking an action and the
program code that responds to the event is called an event
handler, typically, a subroutine or function. There must be an event
handler for every possible Windows event.

The structure underlying a Windows program can be illustrated in
the following flow chart. It consists of a loop that runs continuously,
checking for events. When an event takes place, it is processed and
control returns to the loop. The loop only terminates when the user
requests to exit the program, the ‘exit program’ event.

 START

 Open program main window

 Has
 there been
 No an event
 ?

 Yes

 Request No Call appropriate event
 to exit program handler to process event
 ?

 Yes

 Close program main window

 STOP

Introduction to Computer Programming: Class 5

 3

Opening a Graphics Window

Instead of the standard output window, Windows programs use
special graphics windows for input and output. Graphics windows
have to be opened using an open command of the form

open ”title” for graphics as #hndl

where #hndl is a handle for the window. Each window must have a

unique handle which may be a name or a number. ”title” is a

title to be displayed in the window’s title bar.

By default, Liberty BASIC always opens a standard output window
in addition to any graphics windows that you open. Generally, this is
unnecessary since Windows programs don’t use the standard
output window and you can stop the compiler opening one by
issuing the command

NoMainWin

at the beginning of your program.

Controls

Controls are items like buttons, text boxes, list boxes etc. that
Windows uses for interaction with the user. Controls are actually
windows themselves but unlike other windows, their position is
anchored to the parent window and they cannot be moved about by
the user.

Positioning Controls Within Windows

You can choose to place your windows anywhere on the computer
screen. Similarly, when placing controls within windows, they can be
positioned anywhere in the main or parent window. Positions are
specified in terms of pixels. In standard VGA mode there are 640

horizontal pixels and 480 vertical pixels and any position can be

specified in terms of two numbers: horizontal (x) and vertical (y)
position. For example, position 1,1 is the top left-hand corner of the

screen and 640,480 is the bottom right-hand corner. Similarly, a

window of width w pixels and height h pixels with upper left-hand

corner positioned at pixel position x, y can be specified as the

quadruple x, y, w, h.

Introduction to Computer Programming: Class 5

 4

Static Text Box Controls

To put text into a graphics window you need to define a special text
box. A static text box is a control for text that cannot be changed by
the user. A static text box is defined with the command

statictext #hndl.ext, ”text”, x,y,w,h

 #hndl.ext is an identifier for the text box where #hndl is the

handle of the window in which the text box is to appear

 ”text” is the text displayed when the window is first opened

 x,y,w,h specifies is the position of text box within the window

The text in a static text box can be changed using the command

print #hndl.ext, ”replacement string”

Command Button Controls

Command buttons are controls that appear in a window and cause
some action to be taken when they are clicked. The button

command declares a button and specifies its name, location and the
event handler to be called when the button is clicked.

button #hndl.ext, ”text”, [handler], corner, x, y

 #hndl.ext is an identifier for the button where #hndl is the

handle of the window in which the button is to appear

 ”text” is the text to be displayed on the button. It also possible

to specify the filename of a bitmap image instead of text

 [handler] is the label of the event handler to be called

 corner is an identifier specifying the corner to which the button

is anchored. It is one of UL (upper left), UR (upper right), LL (lower

left) or LR (lower right)

 x, y is the horizontal and vertical position of the button relative

to corner.

Note that controls must always be defined before the window in
which they are to appear is opened. The correct format is e.g.

button #win.but, ”OK”, [ok], UL, 10, 10

open ”myprog” for graphics as #win

Introduction to Computer Programming: Class 5

 5

An Example

The following is an example of a simple Windows program,
illustrating the use of push buttons and static text. The main window
has three buttons labelled “Hello”, “Clear” and “Goodbye”. When the
user clicks the “Hello” button, the program executes the event
handler labelled [hi], which prints the string “Hello #n” to a

static text control (where n is the number of times the button has

been clicked). When the “Clear” button is clicked, the program
executes the event handler labelled [clr], which clears the static

text control and resets n. When the “Goodbye” button is pressed,

the program executes the event handler labelled [bye] which

closes the window and terminates the program.

NoMainWin ’ no standard output window
statictext #win.txt, ””, 80,70,150,40

button #win.but1, ”Hello”, [hi], UL, 25, 25

button #win.but2, ”Clear”, [clr], UL, 110, 25

button #win.but3, ”Goodbye”, [bye], UR, 60, 25

open ”My program!” for graphics as #win

n=0

[continue] ’ start of main program loop

wait ’ wait for an event

[hi] ’ event handler for “Hello” button
n=n+1

print #win.txt, ”hello #”; n

goto [continue] ’ return to main loop

[clr] ’ event handler for “Clear” button
n=0

print #win.txt, ””

goto [continue] ’ return to main loop

[bye] ’ event handler for “Goodbye” button
close #win

end

The main loop in this program is the single wait command, which

causes the computer to pause and wait for an event. When the user
clicks on a button, the button command causes the appropriate

event handler to called (the code labelled [hi], [clr] or [bye]).

After processing the “Hello” or “Clear” buttons, control is returned to
the main loop through a goto command.

Introduction to Computer Programming: Class 5

 6

Input Text Boxes

The input text box control allows the user to enter input to the
program. The format is

textbox #hndl.ext, x,y,w,h

The text box can be initialised with default text using the command

print #hndl.ext, ”default text”

The program reads input from the text box using the command

input #hndl.ext, vble

where vble is the variable to hold the input value, numeric or

character as appropriate.

List Boxes

The list box control allows the user to select from a list of items. The
format is

listbox #hndl.ext, ary$(),[handler],x,y,w,h

where ary$() is a character array containing the list of items,

(which should be initialised before the control is displayed), and
[handler] is the label of the event handler to call when the user

selects an item.

The list box is displayed using the command

print #hndl.ext, ”singleclickselect”

which specifies that the user can select items by single clicking on
the selected item. ”doubleclickselect” forces double clicking.

The list box event handler can read the selected string using the
command

input #hndl.ext, item$

where item$ is the character variable to hold the selected item.

Introduction to Computer Programming: Class 5

 7

Combo Boxes

A combo box control is a combination of a text box and an input
box. The user can either type input into a text box window or can
select items from a list. The list is generally hidden but can be
displayed by clicking on the box’s down arrow. The format is

combobox #hndl.ext, ary$(),[handler],x,y,w,h

The combo box is displayed using the command

print #hndl.ext, ”selection?”

which specifies that the combo box hides the list as soon as an item
is selected.

Check Boxes

A check box is a box that can either be selected or deselected by
the user. This allows a yes/no or true/false response. The format is

checkbox #hndl.ext, ”text”,[h1],[h2],x,y,w,h

where ”text” is the text associated with the check box, [h1] is

the event handler to be called when the user checks the box and
[h2] is the event handler to be called when the user unchecks the

box.

Radio Buttons

Radio buttons (or option buttons) are similar to check boxes except
that they group choices that are mutually exclusive. Selecting one
button from the group automatically deselects all the others (as with
buttons on old car radios). All radio buttons in a window form a
single group so that one and only one can be selected. The format
is the same as for check boxes:

radiobutton #hnd.ext, ”txt”,[h1],[h2],x,y,w,h

Introduction to Computer Programming: Class 5

 8

Liberty BASIC Graphic Commands

Liberty BASIC has several of its own graphics commands that work
within graphical windows. These are specific to Liberty BASIC and
won’t work in other versions of BASIC. However, they are very easy
to use. Here is a list of the main commands. Have fun!

print #hndl, ”fill green” ‘fills window with colour green

print #hndl, ”up” ‘lift pen from the page - turns off drawing

print #hndl, ”down” ‘put pen on the page - turns on drawing

print #hndl, ”color red” ‘set pen colour to red

print #hndl, ”goto 20, 40” ‘draw line to 20,40

print #hndl, ”line 2,6,7,9” ‘draw line from 2,6 to 7,9

print #hndl, ”box 100, 100” ‘draw box size 100x100

print #hndl, ”backcolor blue” ‘set background colour

print #hndl, ”boxfilled 5, 9” ‘draw box in backcolor

print #hndl, ”circle 100” ‘draw circle radius 100

print #hndl, ”circlefilled 100” ‘draw filled circle

print #hndl, ”ellipse 10,20” ‘draw ellipse 10x12

print #hndl, ”ellipsefilled 10, 20” ‘draw filled ellipse

loadbmp ”pic”, ”c:\logo.bmp” ‘load bitmap file

print #hndl, ”drawbmp pic 8,10” ‘draw bitmap at 8,10

To see some of these commands in action, have a look at some of
the example files in the Liberty BASIC directory such as:
buttons1.bas, boxes.bas, mandala.bas, graphics.bas,

spaceshp.bas.

Introduction to Computer Programming: Class 5

 9

A Graphics Example

The following program modifies the earlier simple Windows program
to draw boxes and circles of increasing size making use of some of
the simple graphics commands listed above.

NoMainWin

button #win.but1, ”Square”, [square], UL, 25, 25

button #win.but4, ”Circle”, [circle], UL, 100, 25

button #win.but2, ”Clear”, [clr], UL, 175, 25

button #win.but3, ”Bye”, [bye], UL, 250, 25

open ”My program!” for graphics as #win

n1=0

n2=0

[continue] ' start of main program loop

 wait ' wait for an event

[square] ' event handler for “Square” button
 print #win, ”goto ”; 70+n1; ” ”; 70+n1

 print #win, ”down”

 print #win, ”backcolor red”

 print #win, ”boxfilled ”; 100+n1; ”, ”; 100+n1

 print #win, ”up”

 n1=n1+5

 goto [continue] ' return to main loop

[circle] ' event handler for “Circle” button
 print #win, ”goto ”; 100+n2; ” ”; 100+n2

 print #win, ”down”

 print #win, ”backcolor green”

 print #win, ”circlefilled ”; 40+n2

 print #win, ”up”

 n2=n2+5

 goto [continue] ' return to main loop

[clr] ' event handler for “Clear” button
 print #win, ”cls”

 n1=0

 n2=0

 goto [continue] ' return to main loop

[bye]

 close #win

 end

