
Introduction to Computer Programming: Class 7

 1

INTRODUCTION TO COMPUTER PROGRAMMING

Richard Pierse

Class 7:

Object-Oriented Programming

Introduction

One of the key issues in programming is the reusability of code.
Suppose that you have written a program to perform a certain
task. Later, you find that you need to write a program to perform a
new task, related to but slightly different from the original task.
Clearly, it would be efficient if the code written to solve the first
problem could be easily modified to solve the new one. Whether
this is possible will depend on the way that the code for the first
program was originally designed. Object-Oriented Programming
(OOP) is a way of designing programs that makes them very easy
to reuse. Java is an object-oriented language so that Java
programmers are forced to use OOP concepts in designing their
programs.

Object-oriented design is based on a few very abstract concepts:
objects, classes and inheritance. Initially, these ideas may
seem hard to relate to the practical business of computer
programming. However, once you get used to them, you will find
that OOP concepts will help you to write well-structured, reusable
code.

Objects

Look around you and you will see lots of examples of real-world
objects: your computer, your desk, your class mates. These real
world objects share two characteristics: states and behaviours.
States of an object are pieces of information associated with them.
For a computer, states include its make (IBM, Dell, Viglen), CPU
speed, colour, whether switched on/off etc. For your class mates,
states include their age, height, hair colour, whether standing up
or sitting down etc. The behaviour of an object is what an object
does or what can be done to an object. Behaviours associated
with a computer include switching on/off, pressing a key, inserting
a CD etc. Behaviours of your class mates include breathing,

Introduction to Computer Programming: Class 7

 2

talking, eating, sleeping etc. An object is completely defined by its
states and behaviour.

Software Objects

Software objects are modelled after real-world objects in that they
have both states and behaviour. A software object maintains its
states in variables. A software object implements its behaviour
with methods: functions (subroutines) associated with an object
that do something to the object. A software object is completely
defined by its variables and its methods.

Classes

In the real-world, there are often many objects of the same kind;
for example, your computer is one of many computers in this class
room. In object-oriented terminology, your computer is a particular
example of the class of objects known as computers. All objects in
the class of computer objects will share the same behaviour but
may have different states, for example your computer may be
switched off while another computer is switched on.

Similarly, a software object is a particular example (or instance) of
a class of objects. The class is a blueprint or prototype that
defines the variables and the methods that are common to all
objects in that class. Once the class has been defined, many
objects of the same class can be created, each sharing the same
behaviour but differing in their states.

Inheritance

There will be relationships between some classes of objects. For
example, the class of computers is a sub-class of a more general
class of electrical appliances. All electrical appliances (including
computers) will share some common states (colour, whether on or
off) and some behaviours (turning on or off) but will have other
states and behaviours that are appliance-specific. The common
states and methods are said to be inherited by all sub-classes.

A software class may be defined as a sub-class (or extension) of
a more general class. In this case it will inherit all the states and
methods of its mother class. However, it may add new states and

Introduction to Computer Programming: Class 7

 3

methods and may over-ride some of its inherited methods to
provide specialised implementations of those methods.

Introduction to Computer Programming: Class 7

 4

A Java Example

Here is an example of some Java code to define a class called
Box. This class has three variables: length, width, and colour

and three methods: area(), setcolour() and setsize().

public class Box

{

 float length,width;

 int colour;

 public int area() {return width*length;}

 public void setcolour (int mycolour) {

 colour=mycolour;

 }

 public void setsize {int w, int l) {

 width=w; length=l;

 }

}

The first line of this code declares the name of the class. This is a
new class that does not inherit from any other class. The keyword
public means that the class is visible and therefore accessible to

other classes. Note that all three methods in this class are also
declared public. It is possible to hide both classes and methods
from public view so that they are not accessible. The keyword
private means that a method is not accessible outside its class.

(Clearly, if a class is declared as private it will never be

accessible at all). The keyword protected means that a class or

method is only accessible within its class or by classes derived
from it (i.e. sub-classes).

The three methods area(), setcolour() and setsize() are

functions that operate on objects of the class Box. The first

method, area, takes no arguments but returns an integer value

(the area of the box) so is declared as type int . The second

method, setcolour, takes one argument but has no returns and

so is declared as void . The third method, setsize, is also

declared as type void since it takes two arguments but does not

return any value.

Introduction to Computer Programming: Class 7

 5

Defining Inherited Classes

Suppose now that we want to create a new class, Square, for

square boxes for which length = width. This class is clearly a

sub-class of Box and will inherit most of its variables and methods.

The class definition is simply:

public class Square extends Box

{

 public void setsize {int s) {width=length=s;}

}

The keyword extends means that class Square inherits all its

variables and methods from class Box. The only variables or

methods which need to be defined are any new ones that aren’t
already in the class Box plus any that we need to modify in the

new class. In this case, we want to modify the method setsize()

so that it only takes a single argument and sets both variables
width and length to the same value.

Class Constructors

Each class has a special method called a constructor that gets
called every time a new object of that class is created. The
purpose of the constructor is to do any initialisation that needs to
be done. For example, in our Box class, the class variables

length, width, and colour are not initialised. We could

initialise them, each time a new Box object is created, by including

the following constructor within the class definition:

 public Box() {

length=10; width=20; colour=7;
 }

The class constructor always has the same name as the class and
has no declared type. The constructor can take arguments that
are passed to it when a new object is created, as in

 public Box (int l, int w, int col) {

length=l; width=w; colour=col;
 }

If a class constructor is not explicitly defined, a null one is used.

Introduction to Computer Programming: Class 7

 6

Java Objects

Once a class has been defined, objects of that class can be
created using the new command. For example, the line

 Box box1,box2; Square sq3;

declares two objects box1 and box2 of the class Box and one

object sq3 of the class Square. Then the lines

 box1 = new Box();

box2 = new Box();

sq3 = new Square();

actually create these three new objects. Once the objects have
been created, their (public) methods and variables can be
accessed using the dot operator. For example:

 box1.setsize(15,20);

invokes the setsize() method to set the size of box1 and

 area3=sq3.area();

 returns the area of the object sq3 in the variable area3.

Similarly,

 box2.length=50;

sets the class variable length for object box2 to the value 50.

Introduction to Computer Programming: Class 7

 7

Example Program - Redux

Consider again the example program from the end of last week’s
class, which we are now in a better position to understand:

public class MyProg

{

 public MyProg() {}

 public static void main (String args[]) {

 int i;

 for(i=10;i>=1;--i) {

 System.out.println(i);

 }

 System.out.println(”Blast Off!”);

 System.exit(0);

 }

}

This program defines a new class called MyProg with two public

methods: MyProg() and main(). This class is the application

class. The first method is the class constructor (which actually
does nothing here). The second is the special method

public static void main (String args[])

This is declared as type void because it returns no value. It

takes, as single argument, a String array args[] (used to hold

any command line parameters passed to the application).

Note that main() is declared with the keyword static. This

keyword, when applied to a method, means that the method can
be called independently of an instance of a class. When the Java
virtual machine loads an application, it will expect to find a main()

method in the application class, which it will then execute.

In the example, the method main() uses two methods from the

class System: System.exit() and System.out.println().

This is a pre-defined Java class. Note that we do not have to
create an object of this class before calling these methods since
all methods of the class System are static.

Introduction to Computer Programming: Class 7

 8

Using the Java Swing Library

The real power of OOP comes from the ability to use and extend
pre-defined classes. Here is an example of an application using
the classes defined in the Java Swing library.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class SwingApplication {

 static String Prefix = "Number of button clicks: ";

 int numClicks = 0;

 public Component createComponents() {

 final JLabel label = new JLabel(Prefix + "0 ");

 JButton button = new JButton("I'm a button!");

 button.setMnemonic(KeyEvent.VK_I);

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 numClicks++;

 label.setText(Prefix + numClicks);

 }

 });

 label.setLabelFor(button);

 JPanel pane = new JPanel();

 pane.setBorder(BorderFactory.createEmptyBorder(

 30,30,10,30));

 pane.setLayout(new GridLayout(0,1));

 pane.add(button);

 pane.add(label);

 return pane;

 }

 public static void main(String[] args) {

 JFrame frame; SwingApplication app;

Component contents;

 frame = new JFrame("SwingApplication");

 app = new SwingApplication();

 contents = app.createComponents();

 frame.getContentPane().add(contents,

BorderLayout.CENTER);

 // Finish setting up the frame, and show it.

 frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e)

 { System.exit(0);}

 });

 frame.pack();

 frame.setVisible(true);

 }

}

Introduction to Computer Programming: Class 7

 9

Making Sense of the Program

 The main() method creates the objects frame and app

 frame is an instance of the swing library class JFrame which

defines a frame class for a user window with controls.

 app is an instance of the program’s own application class

SwingApplication. This is needed so that main can call the

method createComponents().

 createComponents() itself creates instances of the swing

classes JButton, JLabel and JPanel, which are the

Windows controls (a button with label and the panel in which to
place it) that will appear in the window. These controls are then
initialised using methods defined for the swing classes.

 Finally, the JFrame window is displayed.

When the program runs, it displays a button which counts the
number of button clicks.

The program can be downloaded from my web page.

