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1 Introduction

Let y; be an n x 1 set of I(1) variables. In general, any linear combination
a'y;
will also be I(1) for arbitrary a # 0. However, suppose there exists an n x 1
vector ¢; such that
o,y is I1(0) , a;#0.
Then we say that the variables y; are cointegrated and «; is a cointegrating
vector.

Note that if «; is a cointegrating vector, then so is kay; for any k& # 0 since
kol y, ~ 1(0).

Definition 1 If
yi~1(d) and oy, ~ I[(d—b) , a;#0
then
y:~CI(d,b) , d>b>0.

There can be r different cointegrating vectors, where 0 < r < n. Note
that » must be less than the number of variables n. If a test for r produces
the result that » = n then this is incompatible with the assumption that
y; ~ I(1) and suggests some problem in the analysis.

Let

a=[a - a - o]
denote the n x r matrix of rank r, comprising all the cointegrating vectors.
Then the r x 1 vector
o'y, ~ 1(0)
and, for any nonsingular r x r matrix K, it also follows that
Ka'y, ~ 1(0).

In order to uniquely identify the cointegrating vectors, it is necessary to
impose 72 restrictions to pin down K.
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2 VECM Representation
Let y; ~ I(1) be the pth order VAR model
yi=Piyio1 + Poyr o+ + Py, H Uy

If and only if the y’s are cointegrated, with cointegrating vectors «, then
the reparameterisation

Ay = A1AY 1 + AsAyr o+ -+ A 1Ay p vy +wy

will consist entirely of 7(0) variables. This result is called the Granger Rep-
resentation Theorem, and the parameterisation is known as the Vector Error
Correction Mechanism or VECM.

3 Estimating a Single Cointegrating Vector

Consider estimating a single cointegrating vector, o y; ~ I(0) in the VAR

model
®(L)y, =w,

3.1 Static Regression

Partition y; and a;conformably as

vi=1[vie + ¥y |
and

/ */

oy = [ 1l ' ~« ] .

This is an (arbitrary) normalising restriction. Then consider estimating the
static regression

y1e = B'yar +w; .
From the definition of cointegration we know that for 8 = a*, w; ~ I(0), but

for all other values of 3, then w; ~ I(1). Since OLS estimation minimises
the mean square error, it is intuitively obvious that

plimfﬂ =a*

T—o0

and in fact it can be shown that the order of convergence is O(T") as opposed
to O(v/T) in conventional models with I(0) variables. This property of OLS
with I(1) variables is known as super consistency.
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3.2 Testing Cointegration

Static regression provides a framework for testing cointegration, based on the
OLS residuals w;. Any of the standard unit root tests can be used, but the
critical values will be different because w; is based on estimated parameters.
The null hypothesis in the test is that w, ~ I(1), i.e. zero cointegrating
vectors, against the alternative that w, ~ I(0), i.e. one cointegrating vec-
tor. Critical values for the ADF test, based on fitting response surfaces
to simulation results, are given in MacKinnon (1991). A test based on the
Durbin-Watson statistic from the static regression is described in Sargan and
Bhargava (1983).

3.3 Engle-Granger Two-Step Procedure

Engle and Granger (1987) propose a two-step procedure for estimation.
Step 1: Estimate a* from the static regression
Step 2: Estimate the dynamics from the VECM

bi(L) Ayre = bo(L) Ayar + YW1 + we

3.4 Problems with Static Regression

The static regression approach is simple and easy-to-use. However, it has
certain drawbacks:

1. It ignores dynamics

2. It ignores simultaneity

3. It is based on an artibrary normalisation

4. If r > 1, then the static regression will find a linear combination

of the r cointegrating vectors.
Although OLS estimates of a* are super consistent, they can still be
heavily biased in finite samples, as has been found in simulation studies.

3.5 The Fully-Modified LS Estimator

Because of the problems of bias in the static regression, Phillips and Hanson
(1990) have suggested a non-parametric correction for bias. This corrected
OLS static regression is called the fully-modified LS estimator.



4 Estimating Several Cointegrating Vectors

The Johansen (1988, 1991) procedure is based on the maximum likelihood
estimation of the VECM model

p—1
Ay, = Z A Ay, ;i +7 a/Yt—p +p+ d'x; + wy

=1

where the VAR model has been generalised to include an intercept term g
and a set of I(0) exogenous variables x;. Note that the cointegration term
has been redated at ¢ — p rather than ¢t — 1. (The dating of the cointegration
term makes no essential difference to the analysis).

The log-likelihood function of this model, after concentrating out the
nuisance parameters A;, u, and d, can be written as

Lia) =c¢— ngog(l —\)

where \; are generalised eigenvalues that are the solution to the problem
| AS — SkoSgo Sor| =0

where S;; =T! Zthl RitR;-t 1,7 =0, k, and Ry; and Ry, are the vectors of
residuals from regressing Ay, and y,_, respectively, on {Ay;_1, -+, Ayi_pt1,
w, x;}. The number of cointegrating vectors, r, is equal to the number of

non-zero eigenvalues, \;.

4.1 Tests of the order of r

Let the eigenvalues \;, 2 = 1,--- ,n be ordered from largest to smallest. Then
a test of the null hypothesis of r cointegrating vectors against the alternative
of more than r can be based on either the trace statistic

Hy: =T ) log(1—2X) =0

i=r+1

or the maximal eigenvalue statistic

-~

Hy: =T log(l—X41)=0



4.2 The Distribution of the Test Statistics

The distribution of the trace and maximal eigenvalue statistics are non-
standard and have been tabulated by Johansen (1995) and Osterwald-Lenum
(1992). Unfortunately, as with the Dickey-Fuller statistic, the distribution
depends on the nuisance parameter p. Several models can be considered:
1. no intercept: g =0
2. restricted intercept (intercept only in error correction term)
p—1
Ay = Z A Ay, i+ (a/}’t—p + ap) + 0'x¢ + uy
i=1
where yo, = .
3. unrestricted intercept
It is also possible to consider the case where the data is generated by
model 2 but model 3 is estimated. The three models are nested and it is
possible to test the restricted models against the less restricted, provided
that the number of cointegrating vectors is known.

4.3 Identification in the Johansen Procedure

In order to identify a, 7? restrictions need to be imposed on the VECM.
Johansen imposes the statistical restrictions

aSya; =1 and o Spa; =0 , Vi,j j#i

However, several alternative identification restrictions have been proposed in
the literature.

4.3.1 Phillips Triangular Form

Phillips (1991) proposed the triangular form identification restriction

]

where @ is (n— 1) x 1 and is unrestricted. This corresponds to a partitioning
of the variables

yi = [ yllt yl2t ]
such that
o'y, =y —ayy ~ I1(0)
or
Yie = a'yy + vy

where the n — r variables, y9;, are not themselves cointegrated.



4.3.2 Pesaran and Shin

Pesaran and Shin (1994) propose imposing the r? identifying restrictions
on the basis of a priori economic theory. This is like imposing structural
restrictions on the VAR. This procedure is available in MicroFit Version 4.

4.4 Hypothesis Testing

It is possible to test overidentifying restrictions on the cointegrating vectors.
The Johansen identification restrictions make this a little awkward, however.
For example, a set of homogeneous restrictions can be tested by

Hy:R,a; =0 , i=1,---,r

where R; is an n X s matrix of known constants. The test statistic will be
asymptotically distributed as x? with r (n — s) degrees of freedom.

5 Further reading

Good textbook accounts are given by Johansen (1995), Chapters 19 and 20
of Hamilton (1994) and Banerjee et al. (1993). Engle and Granger (1991) is
a collection of readings that contains many of the classic papers in the field.

References

[1] Banerjee, A., J. Dolado, J.W. Galbraith and D.F. Hendry (1993), Coin-
tegration, Error-Correction, and the Analysis of Non-stationary Data,
Oxford University Press, Oxford.

[2] Engle, R.F. and C.W. J. Granger (1987), ‘Cointegration and error cor-
rection: representation, estimation and testing’, Econometrica, 55, 251—
276.

[3] Engle, R.F. and C.W.J. Granger (1991), Long Run Economic Relation-
ships: Readings in Cointegration, Oxford University Press, Oxford.

[4] Hamilton, J.D. (1994), Time Series Analysis, Princeton University
Press, Princeton, NJ.

[5] Johansen, S. (1988), ‘Statistical analysis of cointegrating vectors’, Jour-
nal of Economic Dynamics and Control, 12, 231-54.



[6]

[10]

[11]

[12]

[13]

Johansen, S. (1991), ‘Estimation and hypothesis testing of cointegration
vectors in Gaussian vector autoregressive models’, Fconometrica, 59,
1551-80.

Johansen, S. (1995), Likelihood-based Inference in Cointegrated Vector
Autoregressive Models, Oxford University Press, Oxford.

MacKinnon, J.G. (1991), ‘Critical values of cointegration tests’, in R.F.
Engle and C.W.J. Granger (eds.) Long Run Economic Relationships:
Readings in Cointegration, Oxford University Press, Oxford.

Osterwald-Lenum, M. (1992), ‘A note with fractiles of the asymptotic
distribution of the maximum likelihood cointegration rank test statistics:
four cases’, Oxford Bulletin of Economics and Statistics, 54, 461-472.

Pesaran, M.H. and Y. Shin (1994), ‘Long-run structural modelling’,
mimeo.

Phillips, P.C.B. (1991), ‘Optimal inference in cointegrated systems’,
Econometrica, 59, 282-306.

Phillips, P.C.B. and B.E. Hanson (1990), ‘Statistical inference in Instru-
mental Variables regression with I(1) processes’, Review of Economic
Studies, 57, 99-125.

Sargan, J.D. and A.S. Bhargava (1983), ‘Testing residuals from least
squares regression for being generated by the Gaussian random walk’,
Econometrica, 51, 153-174.



