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DECISION MAKING 
 

Decision making under conditions of uncertainty 
 

Set of States of nature: S1, ..., Sj, ..., Sn 

Set of decision alternatives: d1, ...,di,...,dm 
 

The outcome of the decision Cij depends on the state of nature 
which is unknown when the decision is made. The outcome is 
usually measured as a monetary payoff. 
 
The outcomes can be represented in a table: 

 

 State of nature 

Decision S1 S2 ... Sn 

d1 C11 C12 ... C1n 

d2 C21 C22 ... C2n 

. 

. 

   . 
. 

dm Cm1 Cm2 ... Cmn 

 

 
 

Uncertainty versus risk 
 
Sometimes it is useful to draw a distinction between risk and 
uncertainty. Risk is where probabilities can be assigned to the 
states of nature. If not, then it is called ‘uncertainty’. 
 

 

 

A numerical example 
 

 State of nature 

Decision S1 S2 S3 max min ave 

d1 780 900 1020 1020 780 900 

d2 756 936 1056 1056 756 916 

d3 732 912 1092 1092 732 912 
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Decision Criteria not using probabilities 1 

 

Maximax criterion 
Choose the alternative where the maximum payoff is highest:  
 

  max{i} max{j} Cij. 
 
This is an optimistic criterion in that it only considers the best 
possible outcome. In the example it results in choice of d3. 
 

Maximin criterion 
Choose the alternative where the minimum payoff is highest  
 

  max{i} min{j} Cij. 
 
This is a pessimistic criterion in that it only considers the worst 
possible outcome. In the example it results in choice of d1. 
 
 

Hurwicz criterion 
This is a middle ground between the maximax and maximin 

criteria. It involves choosing a coefficient of optimism :  

0    1 . 
Then the criterion selects the alternative with the highest weighted 
payoff: 

  max{i} ( max{j} Cij + (1-) min{j} Cij ). 
 

For the choice =0.5 we have: 
 

 d1:  *1020 + (1-) *780 = 900 
 

 d2:  *1056 + (1-) *756 = 906 
 

 d3:  *1092 + (1-) *732 = 912 
 
so that the criterion results in the choice of d3. 
 

The interesting question here is how should  be chosen. 
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Decision Criteria not using probabilities 2 
 

Laplace criterion 
Choose the alternative where the average payoff is highest:  
 

  max{i} ((1/n) sum{j} Cij). 
 
This criterion treats all alternatives equally and can be regarded as 
making the assumption that all alternatives are equally likely. In 
the example, the criterion results in choice of d2. 
 

Savage (Minimax regret) criterion 
 
Choose the alternative that minimises the opportunity loss or 
regret from making the wrong decision. 
 

The opportunity loss Lij is defined by 
 

  Lij = max{i} Cij-- Cij. 
 
For the numerical example, the Opportunity Loss or regret can be 
represented in a table:  

 

Opportunity Loss Table 
 

 Opportunity Loss 

Decision S1 S2 S3 max 

d1 0 36 72 72 

d2 24 0 36 36 

d3 48 24 0 48 

 
For each state of nature, there is one (or more) decision that gives 
the best payoff. For this decision, the regret is zero since no better 
decision could have been taken given that state of nature. For all 
other decisions, the regret is the difference between the payoff for 
the decision and the best payoff for the state of nature. 
 
The Savage criterion tries to minimise disappointment from 
making the wrong decision. In the example this results in choice of 
d2. 



Lectures on Operations Research © Richard G. Pierse 

 

Decision criteria using probabilities 
 
We will now assume that we have the information to assign a 

probability pj to each state of nature. For the numerical example 
these probabilities are represented in the table: 

 

Probability Table 
 

 State of nature 

Probabilit

y 

S1 S2 S3 

pj 0.2 0.5 0.3 

 
We now consider two criteria that make use of this probability 
information about the relative likelihood of the different states of 
nature.  
 

Expected Monetary Value (EMV) Criterion 
 
Choose the alternative that maximises the expected monetary 
value of the payoff defined by: 
 

  max{i} sum{j} pj Cij. 
 
For the numerical example we have: 
 
 d1: EMV1 = 780 * 0.2 + 900 * 0.5 + 1020 * 0.3 = 912 
 
 d2: EMV2 = 756 * 0.2 + 936 * 0.5 + 1056 * 0.3 = 936 
 
 d3: EMV3 = 732 * 0.2 + 912 * 0.5 + 1092 * 0.3 = 930 
 
so that the alternative that maximises EMVi is d2. 
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Minimise Expected Regret Criterion 
 
Choose the alternative that minimises expected loss 
 

   min{i} sum{j} pj Lij. 

 

Expected Opportunity Loss Table 
 

 Opportunity Loss 

Decision S1 S2 S3 E(Li) 

d1 0 36 72 39.6 

d2 24 0 36 15.6 

d3 48 24 0 21.6 

 
For the numerical example we have: 
 
 d1: E(L1) = 0 * 0.2 + 36 * 0.5 + 72 * 0.3 = 39.6 
 
 d2: E(L2) = 24 * 0.2 + 0 * 0.5 + 36 * 0.3 = 15.6 
 
 d3: E(L3) = 48 * 0.2 + 24 * 0.5 + 0 * 0.3 = 21.6 
 
so that the alternative that minimises E(Li) is d2. 
 
It can be shown that the decision that minimises expected regret is 
always the same as the decision that maximises EMV value so 
that the two criteria can be regarded as equivalent. 
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The Expected Value of Perfect Information 
 
Suppose that we had perfect information about the state of nature 
that was going to occur. Then we would always choose the 
decision to maximise payoff (this also corresponds to the decision 
with zero regret). The resulting payoffs are shown shaded in the 
diagram: 

 

Payoffs with Perfect Information 
 

 State of nature 

Decision S1 S2 S3 

d1 780 900 1020 

d2 756 936 1056 

d3 732 912 1092 

 
The Expected Payoff from Perfect Information (EPPI) given the 
probability of each state of nature is defined by: 
 

  EPPI = sum{j} pj max{i} Cij. 
 
For the example: 
 
 EPPI = 780 * 0.2 + 936 * 0.5 + 1092 * 0.3 = 951.6. 
 
The Expected Value of Perfect Information (EVPI) is the difference 
between the expected payoff with perfect information (EPPI) and 
the expected payoff without any information (EMV). This is the 
most that a decision maker would be willing to pay for the 
information. 
 
  EVPI = EPPI - EMV 
 

   =  sum{j} pj max{i} Cij  - max{i} sum{j} pj Cij. 
 
For the numerical example EVPI = 951.6 - 936 = 15.6. 
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Attitudes to Risk 
 
The Expected Monetary Value criterion implicitly assumes that the 
decision maker has a neutral attitude to risk. This can easily be 
seen from another simple numerical example:  

 

Numerical example 2 

 

 State of nature 

Decision S1 S2 EMV 

d1 500 -250 50 

d2 35 60 50 

d3 50 50 50 

pj 0.4 0.6  

 
In this example, there are three decisions and two states of nature 
with probabilities 0.4 and 0.6 respectively. It can be seen that the 
expected monetary value of all three decisions is equal to 50 and 
so, using the EMV criterion, the decision maker should be 
indifferent between them. 
 

However, decision d1 involves a 60% probability of making a large 

monetary loss whereas decision d3 carries a certain payoff of 50 
and so involves no risk whatsoever.  
 
Differing attitudes to risk can be illustrated in the following 
diagram:  
  
 
Utility 
                                                                                      risk loving 
     
 
 
 
                                                                                     risk neutral           
 
 
 
                                                                                    risk averse 
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                                                                                        risk 
The risk neutral agent is indifferent to risk. We might expect risk 
neutral behaviour from large institutions such as Insurance 
companies that can afford to average out wins and losses.  
 
The risk averse agent wants to avoid risk. This might be expected 
of individuals and small companies that cannot   
 
Risk loving behaviour is the attitude exhibited by gamblers. In 
practice we might expect that agents may be risk loving for ‘small’ 
gambles although risk averse for larger gambles.   
 
If we could measure the risk attitude of the decision maker, then 
we could replace monetary payoffs by utility and use a decision 
criterion that maximises expected utility. 
 

Assigning utilities to monetary outcomes 
 
Von-Neumann and Morgenstern showed how revealed preference 
could be used to assign utility values to different gambles. 

Consider the gamble represented by decision d1 in the numerical 
example.  

 

Decision S1 S2 EMV 

d1 500 -250 50 

pj 0.4 0.6  

 
This gamble is a 40% chance of winning 500 and a 60% chance of 
losing 250. The expected (average) outcome is a win of 50. 
 
We now ask the question, what is the value of the probability p at 
which an agent is indifferent between a certain outcome or the 
gamble 
 
   p * 500 + (1 - p) * (-250) ? 
 
Without loss of generality we can arbitrarily assign utility values of 
1 and zero to the two payoffs 500 and -250 so that 
 
   U(500)=1    U(-250)=0. 
 
 Then the expected utility of the gamble  
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    p * U(500) + (1 - p) * U(-250)  = p 
 
is given by the probability p. 
 
A risk neutral agent will be indifferent when the certain outcome is 
equal to the EMV of the gamble  
 
   p * 500 + (1 - p) *(-250)  
. 
e.g. for a certain outcome of 50 a risk neutral agent will be 
indifferent for p=0.4. 
  
Probability 
 
 
            1                                                         
     
 
                                          risk averse 
 
                                                                                
 
          0.4 
           
                                                                            risk loving                                                                                
   
             0 
            -250                       50                                                500 
                                                    payoff 
 
In the diagram, the indifference curve for a risk neutral agent lies 
on the straight line from -250, 0 to 500, 1.   
 
A risk averse agent will have an indifference curve lying above this 
line since they require a probability of winning higher than the 
expected outcome to compensate them for bearing risk. 
 
A risk loving agent will have an indifference curve lying below the 
straight line since they are prepared to take a gamble in which 
they will lose on average.  
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QUEUING MODELS AND MARKOV PROCESSES 
 
Queues form when customer demand for a service cannot be met 
immediately. They occur because of fluctuations in demand levels 
so that models of queuing are stochastic. 

 

Some definitions 
 

 The number of servers is s 
 

 The mean arrival rate (number of customers per unit of time) is 

   
 

- this is assumed to follow a Poisson distribution 
 

  
where Pn is the probability of n arrivals in the time period. 

 

 The mean service rate (number of customers served per unit 

time per server) is  
 
 - this is assumed to follow an exponential distribution 
 

 
 where P(t) is the probability of being served by time period t.  
 

 We assume independence of the two processes  and  and 

require the condition that s *  > , otherwise the queue will 
grow indefinitely. 

 

 The average service time is given by 1 / . 
 

!n

ne
Pn




te1tP )(
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Costs of Queuing 

 

Waiting Cost (WC) 
 
This depends on the average time spent waiting in line 
 

  WC = Cw L   where    L /s  < 0 

 

and Cw is the waiting cost per customer per unit of time. 

 

Service Cost (SC) 
 
This is directly proportional to the number of servers s.  
 

  SC = Cs s 
 

where Cs is the cost per customer per unit of time. Increasing the 

number of servers s decreases WC but increases SC. 

 

Total Cost (TQC) 
 

  TQC = WC + SC 
 

Total costs are nonlinear in s with a minimum at s*, the optimal 
level of service. 

 
                            

£            

                            TQC  

               
           
        
           
   

             SC 
           
  

                                                                              

                      WC 
           

                       s*                      Level of service 
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A Simple Model with One Server 
 
Consider the simplest model with s=1. Then the following results 
hold: 
 

 the probability of the system being busy:  =  / . 

 the probability of n customers: Pn = (1-) n. 

 the average number of customers: L =  / ( - ). 

 the average time spent in the system: W = L /  

 the average time spent queuing: Wq =  / [ ( - )] = W - 

1/. 
 

A general result in a steady state queuing process is that L =  W. 
This relationship is known as Little’s law. 
 

A Model with s Servers 
 
Consider a model with s servers. Then the following results hold: 
 

 the probability of the system being busy:  =  /(s ). 

 the probability of 0 customers P0 is given by the formula 

 the probability of n customers: Pn is given by 

 the average number of customers: L is given by 
 

 

 the average time spent in the system: W = L /  
 

 the average time spent queuing: Wq  = W - 1/. 
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A general result in a steady state queuing process is that L =  W. 
This relationship is known as Little’s law. 
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MARKOV PROCESSES 
 
Markov processes are used to describe a system moving over 
time between different states. 
 
Suppose that there are n states: S1, ..., Sn 
and the probability of being in a state at time t: p1(t),  ..., pn(t) 
 
The probabilities are assumed to change over time following a 
simple stochastic process. 
 
The probabilities p1(t),  ..., pn(t) can be represented in a row vector 
 

  p(t+1) = [ p1(t) . . . pn(t) ]. 
 
 

Transitional Probability 
 
The transitional probability Pij(t) is the probability of moving from 
state i to state j at time t. This is the conditional probability 
 

Pij(t) = pj(t+1) | pi(t) 
 

A crucial assumption of the Markov model is that transitional 
probabilities are independent of time so that 
 

Pij = pj(t+1) | pi(t) 
 

The transitional probabilities can be represented in a transition 
matrix of dimension n x n: 

 

 

The elements in each row of the matrix P must sum to unity since, 
whatever state you are in at time t, you must end up in one of the 
n states in period t+1.  
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The First Order Markov Process 
 
The simplest Markov process is the first order process defined by 
the matrix equation 
 

 p(t+1) = p(t) P  
 
or, equivalently,  
 

 pj(t+1) = i pi(t) Pij. 

 
The first order Markov process is called a zero memory process 
because the state next period depends only on the current state 
and not on any past states. 
 

Higher Order Markov Processes 
 
More generally, a  kth order Markov process can be defined  by 
 

 p(t+1) = p(t) P1+ p(t-1) P2 + . . . + p(t-k+1) Pk  

 

where P1 , P2 , . . . , Pk are n x n transition matrices. The kth order 
Markov process depends on the state as far as k-1 periods back.  
 

Predicting Future States 
 
Starting from an initial state p(0) at time t=0 and assuming a first 
order Markov process, the state at time t=1 is determined by the 
matrix equation 
 

 p(1) = p(0) P . 
 
For period t=2 we have 
 

 p(2) = p(1) P = p(0) P2  
 

where P2 = P * P is the matrix product of P with itself. 
 
In general, by substitution, it can be seen that 
 

 p(t) = p(0) P t. 
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The Steady State of a Markov Process 
 
Most Markov processes eventually converge to a steady state. 
This is because in general  
 

Limit t  P t converges to a fixed matrix. 
 

 When this is true, after a certain time p(t) will not change anymore 

so that p(t) = p(t-1) = p* and p* will satisfy the equation 
 

 p* = p* P . 
 
The steady state, if it exists, can be computed analytically by 
solving this system of n equations subject to the adding-up 

restriction that the elements of p* must sum to one, or formally,  
 

  i p*i=1. 

 
This is a system of n+1 equations in n unknowns but it can be 
solved by dropping one of the equations. 
 

Special case: Absorbing states 

 
An absorbing state is a state from which, once the state is 
entered, there is no possibility of exit. An absorbing state is 
analogous to a black hole in astrophysics.  In the transition matrix, 
an absorbing state will have a row with a one on the diagonal and 
elsewhere zeroes. 
 
When a transition matrix has absorbing states, then in the limit, 
everything will end up in these states. 
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An Example 
 
Suppose the transitional matrix is given by 

 
with initial state 
 

  p(0) = [ 0.324 0.441 0.235] . 
 
Then  
 

  p(1) = p(0) P   
 
                          = [ 0.330 0.444 0.226] . 
 
and  

  p(2) = p(1) P = p(0) P2  
 
                          = [ 0.332 0.445 0.224] . 
 
Continuing to project forwards 
 

  p(11) = p(0) P11   
 
                          = [ 0.333 0.444 0.222]  
and 

  p(12) = p(0) P12   
 
                          = [ 0.333 0.444 0.222]  
 
at which point the process has converged to a steady state (to 3 
decimal places) so that 
 

  p(t >12) = p* = [ 0.333 0.444 0.222] . 
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