
Econometrics Lecture 1:
Review of Matrix Algebra

R. G. Pierse

1 Introduction

A matrix is a rectangular array of numbers. If the matrix has n rows and m
columns it is said to be an n × m matrix. This is called the dimension of the
matrix. A matrix with a single column ( n × 1) is called a column vector. A
matrix with a single row ( 1×m) is called a row vector. A matrix with only one
row and one column ( a single number) is called a scalar.

The standard convention for denoting a matrix is to use a capital letter in
bold typeface as in A, B, C. A column vector is denoted with a lowercase letter
in bold typeface as in a, b, c. A row vector is denoted with a lowercase letter in
bold typeface, followed by a prime, as in a′, b′, c′. A scalar is generally denoted
with a lowercase letter is normal typeface as in a, b, c.

An n ×m matrix A can be written out explicitly in terms of its elements as
in:

A =



a11 a12 · · · a1j a1m
a21 a22 · · · a2j a2m
...

...
. . .

ai1 ai2 aij aim

an1 an2 anj anm


.

Each element has two subscripts: the first is the row index and the second the
column index so that aij refers to the element in the ith row and jth column of
A.

2 Matrix Operations

The standard operations of addition, subtraction and multiplication can be defined
for two matrices as long as the dimensions of the matrices satisfy appropriate
conditions to ensure that the operation makes sense. If so, then the two matrices
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are said to be conformable for the operation. If not, then the operation is not
defined for these matrices.

2.1 Matrix Addition and Subtraction

C = A + B; cij = aij + bij

C = A−B; cij = aij − bij
For A and B to be conformable for addition or subtraction, they must be of the
same dimension (n ×m). Then the resultant matrix C will also be n ×m with
each element equal to the sum (difference) of the corresponding elements of A
and B. Matrix addition obeys the rules that

A + B = B + A

and
A + (B + C) = A + B + C.

2.2 Matrix Multiplication

C = AB; cij =
∑
k

aikbkj

For A and B to be conformable for matrix multiplication, the number of
columns of A must be equal to the number of rows of B. If A is of dimension
n × m and B is of dimension m × p, then the resultant matrix C will be of
dimension n×p. The ijth element of C is the sum of the product of the elements
of the ith row of A and the jth column of B.

Note that, except under very special conditions,

AB 6= BA

and in fact both products will only be defined in the special case that p = n.
Because of the fact that the order of multiplication matters, it is important to
distinguish between pre-multiplying and post-multiplying a matrix.

Matrix products obey the rules of

A(BC) = ABC

and distribution
A(B + C) = AB + AC.
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2.3 Matrix Transposition

The transpose of an n×m matrix A, denoted as A′, is the m× n matrix defined
by

C = A′; cij = aji

so that the ith row of C is the ith column of A. The transpose operator obeys
the rules that

(A + B)′ = A′ + B′

and
(AB)′ = B′A′.

3 Square Matrices

A matrix with the same number of columns as rows is called a square matrix.
The number of rows (columns) is called the order of the matrix. The elements
with row index equal to column index as in a11, a22, etc. are called the diagonal
elements and the elements aij, i 6= j are called the off-diagonal elements.

3.1 The trace operator

The trace of a square matrix, denoted tr, is the sum of its diagonal elements

tr(A) =
n∑

i=1

aii.

The trace operator obeys the rules that

tr(A + B) = tr(A) + tr(B)

and
tr(AB) = tr(BA)

if both AB and BA exist.

3.2 Special matrices

3.2.1 Symmetric matrices

A square matrix A that satisfies the property A = A′ is said to be symmetric. It
has the property that aij = aji for all values of the indices i and j.
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3.2.2 Diagonal matrices

A square matrix with all off-diagonal elements equal to zero is called a diagonal
matrix. A diagonal matrix is symmetric.

3.2.3 Triangular matrices

A square matrix with all elements below the diagonal equal to zero is called an
upper triangular matrix. Similarly a matrix with all elements above the diagonal
equal to zero is called a lower triangular matrix.

3.2.4 The Identity matrix

The square matrix of order n with all diagonal elements equal to one, and all
off-diagonal elements equal to zero is called the identity matrix of order n and
is denoted as In. The identity matrix is symmetric aand diagonal. It has the
property that, for any n×m matrix A,

InA = A and AIm = A

so that any matrix when pre- or post-multiplied by the identity matrix is un-
changed. The identity matrix is the equivalent of the number one in standard
(scalar) algebra.

4 Matrix Inversion

If A is a square n×n matrix, then it may or may not be possible to find a square
n× n matrix B such that

AB = In.

If B does exist then it is called the inverse of A and is written A−1. Where the
matrix inverse exists, it satisfies

AA−1 = In and A−1A = In.

To state the conditions for the existence of the matrix inverse A−1 we need to
consider the concept of linear independence of a set of vectors and the concept of
the rank of a matrix.
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4.1 Linear independence

Let a1, a2, · · · , am be a set of column vectors of dimension n× 1, and let λ1, λ2,
· · · , λm be a set of scalar weights. Then the vector c defined by

c =
m∑
i=1

λiai

is called a linear combination of the vectors a1, a2, · · · , am.
Under what conditions on the weights λi will this linear combination be equal

to the n× 1 zero column vector 0n? Clearly this will be the case if all the weights
are zero, λi = 0, ∀i. If this is the only condition under which c = 0 then the
vectors a1, a2, · · · , am are called linearly independent. However, if there are values
for λi such that

∑m
i=1 λiai = 0 where at least one λi 6= 0, then the vectors ai are

said to be linearly dependent.
If a set of vectors are linearly dependent, then it is possible to write one of the

vectors as a linear combination of the others. For example if
∑m

i=1 λiai = 0 with
λj 6= 0 then

aj = − 1

λj

m∑
i=1
i 6=j

λiai.

Note that if m > n, then the set of m column vectors a1, a2, · · · , am must be
linearly dependent. Similarly, if any vector is equal to 0n, then the set of vectors
must be linearly dependent.

4.2 The rank of a matrix

The column rank of an n×m matrix A is defined to be the maximum number of
linearly independent columns of A. The row rank is defined to be the maximum
number of linearly independent rows of A. Since it can be shown that the column
rank and row rank of a matrix are always equal, we can simply refer to the rank
of A, denoted rank(A). The following results hold for the rank of a matrix:

0 ≤ rank(A) ≤ min(n,m)

and
rank(A′) = rank(A).

If rank(A) = min(n,m) then the matrix is said to be of full rank.
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4.3 The matrix inverse

The inverse of a square n× n matrix A exists if and only if

rank(A) = n

so that A is of full rank. The matrix inverse has the following properties:

(A−1)−1 = A

(A′)−1 = (A−1)′

(AB)−1 = B−1A−1.

4.4 Example: solving linear equations

Consider the set of n linear equations in the n variables x1, x2, · · · , xn defined by

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2
...

an1x1 + an2x2 + · · ·+ annxn = cn

or, in matrix form,
Ax = c.

If the matrix A is nonsingular, then these equations have a solution which is given
by pre-multiplying the set of equations by the matrix inverse A−1 to give

A−1Ax = x = A−1c.

If the matrix is singular, then no solution to these equations will exist. In par-
ticular, this will be the case if A is not square, with either too few or too many
equations to uniquely determine x. More generally, linear dependence of the
equations will mean that no solution exists, corresponding to the singularity of
the matrix A.

5 Determinants

The determinant of a square n× n matrix A is defined by the expression

det(A) = |A| =
∑

(±) a1ia2j · · · anr
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where the summation is taken over all permutations of the second subscripts. Each
term has a plus sign for even permutations and a minus sign for odd permutations.
For example, for the second order matrix

A =

[
a11 a12
a21 a22

]
the determinant is given by the expression

det(A) = |A| = a11a22 − a12a21.

A singular matrix has determinant equal to zero while a nonsingular matrix has
a non-zero determinant.

6 Quadratic Forms

Let A be an n× n square, symmetric matrix, and x be an n× 1 column vector.
Then the scalar expression

x′Ax =
n∑

i=1

n∑
j=1

aijxixj

is called a quadratic form. If A is a nonsingular matrix then the quadratic form
x′Ax can only be equal to zero if x = 0.

A positive definite (pd) matrix is one for which all quadratic forms are greater
than zero for all values of x 6= 0. Formally

x′Ax >0, ∀x 6= 0.

A negative definite (nd) matrix is one for which all quadratic forms are less than
zero for all values of x 6= 0. Formally

x′Ax <0, ∀x 6= 0

Similarly, a positive semi-definite (psd) matrix is one for which

x′Ax ≥0, ∀x

and a negative semi-definite (nsd) matrix is one for which

x′Ax ≤0, ∀x
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7 Eigenvalues and Eigenvectors

Let A be an n× n square matrix. Consider the equation system

Ax = λx

where x is an n× 1 vector with x 6= 0 and λ is a scalar. A value of x that solves
this system of equations is called an eigenvector (or characteristic vector or latent
vector) of the matrix A. λ is the corresponding eigenvalue (or characteristic value
or latent root). In general there will be n solutions to this system of equations
although these need not be distinct. If the matrix is not symmetric, then the
eigenvalues λi may include complex numbers.

The eigenvalues of a matrix have many useful properties. In particular, the
trace of a matrix is the sum of its eigenvalues

tr(A) =
n∑

i=1

λi

and the determinant of a matrix is the product of its eigenvalues

det(A) =
n∏

i=1

λi.

A positive definite matrix has eigenvalues that are all positive and a negative def-
inite matrix has eigenvalues that are all negative. In addition, if A is a symmetric
matrix, then its rank is equal to the number of its non-zero eigenvalues.

If A is a symmetric matrix, then the n eigenvectors x1, · · · , xn have the
property of orthogonality that

x′ixj = 0 i 6= j and x′ixi = 1 , i, j = 1, · · · , n.

Stacking these eigenvectors into a matrix

X = [x1 : x2 : · · · : xn]

with the property that X−1 = X′, it follows that

A = XΛX′

where Λ is an n × n diagonal matrix with the eigenvalues λ1, · · · , λn along the
diagonal. This result is called the eigenvalue decomposition of the symmetric
matrix A.
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8 Cholesky Decomposition

Let A be an n×n symmetric positive-definite matrix. Then it can be shown that

A = HH′

where H is a lower triangular matrix of order n×n. This is known as the Cholesky
decomposition of the symmetric positive-definite matrix A.

It follows that
A−1= H−1′H−1 .

9 Idempotent Matrices

A square n× n matrix A is idempotent if

AA = A.

If the matrix is symmetric it also follows that

A′A = A.

Idempotent matrices are also called projection matrices. The eigenvalues of an
idempotent matrix are all either zero or one. It follows that most idempotent
matrices are singular. The exception is the identity matrix In. If A is idempotent,
then so also is In −A.

Idempotent matrices have the property that their rank is equal to their trace,
or,

rank(A) = tr(A).

Idempotent matrices are very important in econometrics. Let X be an n× k
matrix of data of rank k. Then the matrix

M = X(X′X)−1X′

is a symmetric idempotent matrix since

MM = X(X′X)−1X′X(X′X)−1X′

= X(X′X)−1X′ = M.

The rank of M can be determined using the results above since

rank(M) = tr(M) = tr(X(X′X)−1X′)

= tr(X′X(X′X)−1) = tr(Ik) = k.
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10 The Kronecker Product

The Kronecker product (or tensor product) of the n×m matrix A and the p× q
matrix B, which is denoted A⊗B, is defined by the np×mq matrix

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .

an1B an2B anmB

 .
The Kronecker product has the following properties:

(A⊗B)(C⊗D) = AC⊗BD

(A⊗B)′ = A′ ⊗B′

and
(A⊗B)−1 = A−1 ⊗B−1.

11 Vectorisation

Let A be an n×m matrix with columns

A = [a1 : a2 : · · · : am] .

Then the column vectorisation of A, denoted by vec(A), is defined by the nm× 1
vector

vec(A) =


a1

a2
...

am


constructed by stacking the columns of A.

The vec operator has the property that

vec(ABC) = (C′ ⊗A) vec (B).

12 Matrix Derivatives

The rules of differential calculus carry over to matrices in a straightforward way.
The only issue is that of adopting a convention for ordering the derivatives.
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12.1 Derivatives of a scalar wrt a matrix

The derivatives of a scalar function f with respect to a matrix argument X of
dimension n×m is defined by the n×m dimensional matrix

∂f

∂X
=


∂f
∂x11

· · · ∂f
∂x1m

...
. . .

∂f
∂xn1

∂f
∂xnm

 .
12.2 Derivatives of a vector wrt a vector

The derivatives of an n× 1 vector y with respect to an m× 1 vector x is defined
by the n×m dimensional matrix

∂y

∂x′
=


∂y1
∂x1

· · · ∂y1
∂xm

...
. . .

∂yn
∂x1

∂yn
∂xm

 .
12.3 Derivatives of a matrix wrt a matrix

There is no obvious way to order the derivatives of one matrix with respect to
another matrix. In this case the most sensible procedure is to vectorise both
matrices and look at the matrix of derivatives

∂ vec(Y)

∂ vec(X)′
.

If Y is of order p× q and X is of order n×m, then this matrix of derivatives is
of order pq × nm.

12.4 Some useful results

Two general rules allow the calculation of derivatives of complicated functions.
These are followed by some useful derivatives of commonly used matrix functions.

12.4.1 Function of a function rule

∂y

∂x′
=
∂y

∂z′
∂z

∂x′

12.4.2 Product rule

∂ vec(AB)

∂x′
= (B′ ⊗ I)

∂ vec(A)

∂x′
+ (I⊗A)

∂ vec(B)

∂x′
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12.4.3 Derivative of an inner product

∂a′x

∂x
= a

12.4.4 Derivative of a quadratic form

∂x′Ax

∂x
= (A + A′)x

12.4.5 Derivative of the trace of a matrix

∂ tr(A)

∂A
= I

12.4.6 Derivative of the determinant of a matrix

∂ det(A)

∂A
= det(A)(A′)−1

12.4.7 Derivative of the log determinant of a matrix

∂ ln det(A)

∂A
= (A′)

−1

12.4.8 Derivative of a matrix inverse

∂ vec(A−1)

∂ vec(A)′
= −

(
(A′)

−1 ⊗A−1
)


