
Econometrics Lecture 10:
Applied Demand Analysis

R. G. Pierse

1 Introduction

In this lecture we look at the estimation of systems of demand equations. Demand
equations were some of the earliest economic relationships to be analysed using
statistical techniques. Demand analysis is an example of an applied area where
there is a very well developed economic theory, consumer theory, that implies sev-
eral parameter restrictions. Various econometric models have been developed in
which it is possible to test at least some of these restrictions. From an econometric
point of view, these models are interesting in that they involve nonlinearity and
complete system estimation methods.

Demand analysis is a large subject and several books have been written in this
area. In this lecture we will only be able to touch on some of the issues. For those
who are interested in reading further, the following are recommended: the books
by Deaton and Muellbauer (1980b), Phlips (1983) and Thomas (1987) as well as
the survey article by Deaton (1986).

2 The Economic Theory

The neo-classical theory of consumer behaviour assumes that each consumer
chooses demand so as to maximise utility subject to a budget constraint. Formally
the problem can be written as

max
q
u(q) subject to p′q ≤ m (2.1)

where u(q) is the utility function, q is an n × 1 vector of quantities demanded
of each of the n commodities, p is an n × 1 vector of prices, and m is total
expenditure. The solution to this problem is given by the indirect utility function

v(p,m) .
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Generally, it is more convenient to work with the dual of this maximisation prob-
lem which is the problem of minimising expenditure subject to a given level of
utility, u. Formally this is written as

min
q

p′q subject to u(q) ≥ u . (2.2)

The solution to this problem is the cost function

c(p, u)

which is assumed to be concave in prices. The partial derivatives of the cost
function with respect to prices

∂c(p, u)

∂pi
≡ hi(p, u) = qi

are the compensated or Hicksian demand functions. These give the demand for
good i, qi, when the consumer is compensated so as to maintain a constant utility
level u.

The second derivatives

∂2c(p, u)

∂pi∂pj
=
∂hi(p, u)

∂pj
= sij

form a matrix

S =

 s11 · · · s1n
...

. . .
...

sn1 · · · snn

 =
∂h(p,u)

∂p′
=
∂2c(p, u)

∂p∂p′
(2.3)

which is known as the substitution matrix or the Slutsky matrix. It follows from
the concavity of the cost function that this matrix has to be symmetric and
negative semi-definite. In particular, the diagonal terms of this matrix which are
the own-price substitution effects should always be negative. This means, that as
long as a consumer is compensated so as to maintain a constant utility, then a
rise in the price of a good should lead to a fall in demand.

The Marshallian demand function

qi = φi(p,m)

gives demand as a function of prices and expenditure. This can be derived from
the cost function since the solution to the maximisation problem (2.1) and the
minimisation problem (2.2) is the same so that

qi = hi(p, u) = hi(p, v(p,m)) = φi(p,m)
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where the indirect utility function has been substituted into the cost function to
derive an expression for the demand function in terms of observables.

Differentiating this expression with respect to prices gives

sij ≡
∂hi(p, u)

∂pj
=
∂φi(p,m)

∂pj
+
∂φi(p,m)

∂m

∂m

∂pj

=
∂φi(p,m)

∂pj
+
∂φi(p,m)

∂m
qj (2.4)

and the second line of this can be rearranged as

∂φi(p,m)

∂pj
= sij −

∂φi(p,m)

∂m
qj . (2.5)

This equation is called the Slutsky equation. The first term is the substitution
effect of a change in price and the second is the income effect. For i = j we
have seen that the substitution effect must be negative. The income effect may
be positive or negative. If it is positive then the good is a normal good and the
net effect of a price increase is to reduce demand. If the income effect is negative,
then the good is an inferior good. In this case it is possible but unlikely for the
income effect to outweigh the substitution effect so that the net effect of a price
increase is to increase demand. A good with this peculiar property is known as a
Giffen good.

2.1 Properties of Demand Functions

Consumer demand theory implies that demand functions have four properties:
additivity, homogeneity, negativity, and symmetry.

Additivity is the requirement that total expenditure on all goods exhausts the
budget so that

m =
n∑
i=1

piqi = p′q. (2.6)

It can be shown that both the Hicksian and Marshallian demand functions must
be homogeneous of degree zero in prices and total expenditure, so that if all prices
and expenditure change proportionally, then there is no change in demand and

qi = φi(p,m) = φi(kp, km) (2.7)

for any k.
It follows from the Slutsky equation (2.5) that

sii =
∂hi(p, u)

∂pi
=
∂φi(p,m)

∂pi
+
∂φi(p,m)

∂m
qi < 0
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This is the negativity restriction for the compensated demand functions that fol-
lows from the negative definiteness of the Slutsky matrix S. This restriction of
negativity must also apply to all linear combinations of commodities.

Finally the cross-price derivatives of the compensated demand functions must
be symmetric so that, allowing for compensation to maintain utility constant, the
effect of a change in the price of good i on the demand for good j is the same as the
effect of a change in the price of good j on the demand for good i. Algebraically,
this restriction is given by

∂hi
∂pj

=
∂hj
∂pi

or
∂qi
∂pj

+ qj
∂qi
∂m

=
∂qj
∂pi

+ qi
∂qj
∂m

. (2.8)

3 Single Equation Estimates

A single equation from a demand system takes the general form

qi = φi(p1, · · · , pn,m) . (3.1)

Only two of the four conditions derived from economic theory are relevant to single
equations: the homogeneity restrictions and the negativity restrictions. Demand
theory does not specify any particular functional form for the utility function and
consequently neither for the demand functions (3.1). In specifying an equation to
estimate, the applied econometrician needs to make some assumption about the
functional form to be used which implies a corresponding assumed functional form
for the utility function. The earliest applied work used linear functional forms.
These have the advantage of adding-up easily. However, the linear function form
implies that price elasticities are not constant but depend on the absolute level of
prices. Thus logarithmic functional forms, in which elasticties are constant have
been more popular.

One important issue is that of simultaneity. In general it is assumed that
prices are fixed to the consumer, and so can be treated as exogenous. However,
total expenditure m includes the expenditure on commodity i, piqi which involves
the dependent variable, qi. Thus expenditure is in principle an endogenous vari-
able. Some applied work does take this into account and uses an instrument for
expenditure in the equation (3.1). On the other hand, the majority of empirical
work takes m as exogenous, arguing that this is a good enough approximation, as
long as qi is small as a component of m. This justifies the use of OLS estimation.

Another issue is that of dynamics. The equation (3.1) is static, relating current
consumption to current prices and current total expenditure. In practice, adjust-
ing consumption in reponse to a change in prices might be expected to take time,
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both because of habit persistence and the lumpiness of consumption. Where time
series data is available, then it is possible to estimate dynamic demand functions.
However, much work uses cross-sectional data from household budget surveys.

A seminal applied study for the UK was that of Stone (1954a). Stone started
from the logarithmic model

log qi = αi + ei logm+
n∑
j=1

eij log pj (3.2)

where ei is the total expenditure elasticity and eij are the cross-price elasticities
of the jth price on demand for good i. This model has n + 2 parameters. Stone
wished to use this model to estimate demand for 48 categories of food consumption
with UK data over the period 1920-38 (19 observations). Clearly estimation is
impossible without imposing some prior restrictions. Setting some of the price
elasticities eij to zero imposes both no substitution effect but also no income
effect. Whereas the former might be expected to be zero for ‘unrelated goods’,
the latter would not be exxpected to be zero. Stone solved this problem by using
consumer theory to decompose the elasticities.

From the Slutsky equation (2.5) it follows that

∂φi(p,m)

∂pj

pj
qj

=
∂hi(p, u)

∂pj

pj
qj
− ∂φi(p,m)

∂m

m

qj

pjqj
m

or
eij = e∗ij − eiwj (3.3)

where

e∗ij =
∂hi(p, u)

∂pj

pj
qj

is the compensated cross-price elasticity and wj is the budget share defined by

wj =
pjqj
m

. (3.4)

Substituting (3.3) into (3.2) gives

log qi = αi + ei(logm−
n∑
j=1

wj log pj) +
n∑
j=1

e∗ij log pj

but the term
∑n

j=1wj log pj can be thought of as the logarithm of a general price
index P so that the equation can be rewritten as

log qi = αi + ei log(m/P ) +
n∑
j=1

e∗ij log pj . (3.5)
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This gives demand in terms of real expenditure and compensated prices. Since the
compensated price elasticities comprise pure substitution effects, it is reasonable
to allow that many of these will be zero for unrelated goods, so that the summation
in (3.5) can be taken over the subset of related goods only.

Finally, homogeneity of (3.5) implies that∑
j

e∗ij = 0 .

This can be imposed by deflating all prices by the general price index P to give

log qi = αi + ei log(m/P ) +
∑
j

e∗ij log(pj/P ) . (3.6)

This equation was the basis for Stone’s analysis. Sample results from Stone
(1954a) are given in a table at the end of this handout, taken from Deaton and
Muellbauer (1980).

An advantage of the specification (3.6) is that it estimates income and sub-
stitution effects with constant elasticities. It imposes homogeneity but allows the
possibility of testing negativity restrictions on own-price elasticities. A drawback
is that the equation (3.6) cannot be derived from a reasonable utility function
except in the trivial case where income and own-price elasticities are unity and
cross-elasticities are zero. Thus it is theoretically a little unsatisfactory. Despite
this, it was used with considerable effect by Stone to predict the effect on con-
sumption of the ending of rationing after the Second World War.

4 Demand Systems

Estimating single equations from a demand system is simple and comparatively
cheap. However, it ignores the important economic restrictions of additivity and
symmetry which involve cross-equation restrictions that cannot be imposed equa-
tion by equation. As a result, single equation parameter estimates will be less
efficient than those that come from estimation of the complete system. On the
other hand, it is possible to estimate much larger systems with single equation
methods than with system methods because the latter will involve more parame-
ters.

For these reasons, there have been several attempts to estimate complete sys-
tems of demand equations, imposing all the restrictions of economic theory. One
problem is finding an appropriate specification that makes it possible to impose
the adding-up restriction. We look at three different demand systems that have
been estimated: the Linear Expenditure System, the Rotterdam model and the
Almost Ideal Demand System.
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5 The Linear Expenditure System

The Linear Expenditure System or LES can be derived by imposing the restric-
tions of adding-up, homogeneity and symmetry on the linear functional form

piqi = βim+
n∑
j=1

pjαij .

The resulting model is defined by the equation

piqi = piγi + βi(m−
n∑
j=1

pjγj) + ui (5.1)

where
∑m

i=1 βi = 1. This model was used by Stone (1954b). It can be interpreted
as a hypothesis that expenditure on good i can be decomposed into two com-
ponents. The first is a certain minimum expenditure on the good given by the
quantity piγi. This corresponds to a subsistence level of expenditure that always
takes place regardless of income. The second component is a function of that part
of income m above the subsistence income

∑n
j=1 pjγj used to purchase the subsis-

tence expenditure on all goods. This super-numerary income is allocated between
the goods in the fixed proportions βi. Note that this interpretation requires that
the coefficients βi are positive which is not actually required in the model.

The Linear Expenditure System implies a utility function of the form

u(q) =
n∏
j=1

(qj − γj)βj .

This is known as the Stone-Geary utility function. Since the model has already
imposed the restrictions of economic theory, these cannot be tested within the
model. There are 2n parameters in the model, only 2n− 1 of which can be deter-
mined independently. This is far fewer than the 1

2
n(n+ 1)− 1 that are permitted

by economic theory. This is because the assumption of a linear functional form
is very restrictive, and imposes restrictions over and above those that derive from
economic theory. In the LES model no two goods can be complements; every
good has to be a substitute for every other good. On the other hand, the small
number of parameters does mean that quite large demand systems, with more
than 40 goods, can be estimated.

The model is linear in the variables but not in the parameters βi and γi. Thus
it requires a nonlinear estimation method. If the γ parameters are known, then
(5.1) is linear in the β parameters. Conversely, if the β parameters are known,
then the model is linear in the γ’s. Stone (1954b) estimated the model by using
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this fact to iterate between the β’s and γ’s. However, with modern computers,
the nonlinear problem can be solved directly using maximum likelihood methods.

One technical problem arises from the identity that

m∑
i=1

piqi = m. (5.2)

Summing the equations (5.1) gives

m∑
i=1

piqi =
m∑
i=1

piγi +m

m∑
i=1

βi −
m∑
i=1

βi

n∑
j=1

pjγj +
m∑
i=1

ui

but
∑m

i=1 βi = 1 which implies that
∑m

i=1 ui = 0 so that the covariance matrix

var(u) = Σ

will be singular. This result follows from the fact that the system adds up so that
the errors are not linearly independent but sum to zero. Luckily, this problem
can easily be solved by dropping one of the equations and estimating the other
n − 1 by maximum likelihood. The parameters for the missing equation can be
recovered from those of the other equations and the adding-up identity (5.2). It
can be proved that it makes no difference which of the equations is dropped from
the analysis.

The Linear Expenditure System was the first complete demand system to be
estimated. It has the advantages of imposing all the restrictions of economic
theory, having a small number of parameters to be estimated, and coming from
a well-defined utility function. On the other hand, this utility function is very
restrictive, and rules out complementary goods. It also imposes approximate
proportionality of price and expenditure elasticities, which is a restriction not
demanded by economic theory. Furthermore, the economic restrictions imposed
on the model cannot be relaxed. Thus it is not possible to test the restrictions
implied by consumer demand theory against the data.

6 The Rotterdam Model

The Rotterdam model was first developed by Theil (1965) and Barten (1966). It
can be derived from first differencing the equation (3.6) from the Stone (1954a)
model to give

∆ log qi = ei(∆ logm−
n∑
j=1

wj∆ log pj) +
∑
j

e∗ij∆ log pj .
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Multiplying this equation by the budget share wi defined by (3.4), it can be
rewritten in the form

wi∆ log qi = bi∆ logm+
n∑
j=1

cij∆ log pj (6.1)

where

∆ logm ≡ ∆ logm−
n∑
j=1

wj∆ log pj =
n∑
j=1

wj∆ log qj

and the parameters bi and cij are defined by

bi = wiei and cij = wie
∗
ij .

This transformation makes it very easy to specify the economic restrictions of
additivity, homogeneity and symmetry in terms of the parameters of the model.

The adding-up restrictions on this model imply that
n∑
j=1

bj = 1 and
n∑
k=1

ckj = 0 .

These restrictions will hold in the model and cannot be tested. Homogeneity
implies that

n∑
k=1

cik = 0 , i = 1, · · · , n

and symmetry implies that

cij = cji, , ∀i, j .

These two sets of restrictions can be tested in the model.
The Rotterdam model was estimated by Barten (1969) using Dutch data for

the post-war period on 16 commodity groups. The restrictions of homogeneity
were strongly rejected. Symmetry was also rejected but less convincingly.

The Rotterdam model has been criticised on theoretical grounds because the
parameters bi and cij in (6.1) are only strictly constant when all total expenditure
elasticities are equal to one, all own-price elasticities are equal to minus one and
all cross-price elasticities are equal to zero. This is because the differenced form of
demand function (6.1) is only consistent with the demand function in levels under
these conditions. In practice this criticism may not be too serious, as long as bi
and cij are close to being constant. It should always be borne in mind, however,
that the Rotterdam model is just an approximation to demand theory and may
not work well in all circumstances.

The Rotterdam model cannot be derived from a well-behaved utitility function,
unlike the LES system. On the other hand, it is less restrictive than the LES and
allows the economic restrictions to be tested.
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7 The Almost Ideal Demand System (AIDS)

The Almost Ideal Demand System or AIDS was developed by Deaton and Muell-
bauer (1980a). This model is defined by the equation

wi = αi +
n∑
j=1

γij log pj + βi log(m/P ) + ui (7.1)

where wi is again the budget share and P is a price index defined by

logP = α0 +
n∑
j=1

αj log pj +
1

2

n∑
j=1

n∑
k=1

γjk log pj log pk . (7.2)

Adding-up requires that

n∑
k=1

αk = 1 ,
n∑
k=1

βk = 0 ,
n∑
k=1

γkj = 0 ,

while homogeneity requires
n∑
k=1

γik = 0

and symmetry requires
γij = γji .

The adding-up restrictions will automatically be satisfied and so are not testable.
However, both the homogeneity and symmetry restrictions can be tested. The
negativity conditions can also be tested by the negative-definiteness of the matrix
formed from the elements

sij = γij + βiβj log(m/P )− wiδij + wiwj

where δij is the Kronecker delta taking the value 1 when i = j and zero otherwise.
The βi parameters will be negative for necessities and positive for luxury goods.

The γij parameters measure the change in the ith budget share following a pro-
portional change to pj where real income as measured by m/P is held constant.

The Almost Ideal Demand System has the advantage of being nearly linear.
Apart from the expression for P given by equation (7.2), the system can be
estimated equation by equation. P can be proxied by any appropriately defined
price index which can be calculated before estimation in which case equation
(7.1) can be directly estimated by OLS. This is one advantage of AIDS over the



Econometrics: Lecture 10 c©Richard G. Pierse 11

Rotterdam model. The other advantage is that AIDS can be derived from a well-
behaved utility function of the general PIGLOG class with cost function defined
by

log c(p, u) = u log b(p) + (1− u) log a(p)

where a(p) and b(p) are linear homogeneous functions. In the particular case of
the AIDS model, these functions are given by

log a(p) = log(P ) = α0 +
n∑
j=1

αj log pj +
1

2

n∑
j=1

n∑
k=1

γjk log pj log pk

and

log b(p) = log a(p) + β0

n∏
j=1

p
βj
j .

Deaton and Muellbauer (1980a) report estimates of this model for the UK
from 1954-74. The restriction of homogeneity was rejected for food, clothing,
housing and transport. The restrictions of symmetry were also rejected although
the evidence for this is less clear-cut. Own-price elasticities were generally found
to be less than one in absolute value. These results are similar to those obtained
by Barten (1969) on Dutch data using the Rotterdam model.
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