
Econometrics Lecture 2:
OLS Estimation With Matrix Algebra

R. G. Pierse

1 The Classical Linear Regression Model

The classical linear regression model can be written as

yi =
k∑
j=1

βjxij + ui, i = 1, · · · , n

where yi is the ith observation on the dependent variable y, βj is the coefficient
on the jth explanatory variable or regressor xij, and ui is the ith observation on
an unobserved error term u. There are n observations and k regressors. All n
observations in the model can be written as the set of equations

y1 = β1x11 + β2x12 + β3x13 + · · ·+ βkx1k + u1

y2 = β1x21 + β2x22 + β3x23 + · · ·+ βkx2k + u2
...

yn = β1xn1 + β2xn2 + β3xn3 + · · ·+ βkxnk + un.

This system itself can be re-expressed succinctly using matrix notation as
y1
y2
...
yn

 =


x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk



β1
β2
...
βk

+


u1
u2
...
un


or

y = Xβ + u (1.1)

where y and u are n× 1 column vectors, β is a k × 1 column vector and X is an
n× k matrix, each column corresponding to a different regressor. By convention,
where the regression contains an intercept, this will be the first column of the
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matrix X will consist of a vector of ones, corresponding to an intercept in the
model. β1 will then represent the coefficient on this intercept.

The error term u is a vector of random variables. It has an associated mean
vector given by

E(u) =


E(u1)
E(u2)

...
E(un)


where E represents the expectations operator. Note that, because E is a linear
operator, it can be taken inside matrices.

The variances and covariances of the n elements of u can be arranged into the
n× n symmetric matrix

var(u) = Σ = E(u− E(u))(u− E(u))′

=


E(u1 − E(u1))

2 · · · E(u1 − E(u1))(un − E(un))
E(u2 − E(u2))(u1 − E(u1)) · · · E(u2 − E(u2))(un − E(un))

...
. . .

...
E(un − E(un))(u1 − E(u1)) · · · E(un − E(un))2



=


var(u1) cov(u1u2) · · · cov(u1un)

cov(u2u1) cov(u2) · · · cov(u2un)
...

...
. . .

...
cov(unu1) cov(unu2) · · · var(un)

 .
This matrix is called the variance-covariance matrix of u. Note that the variances
are the diagonal elements and the covariances the off-diagonal elements. The
variance-covariance matrix is both symmetric and positive-definite.

1.1 Assumptions of the Classical Model

The standard assumptions on u in the classical linear model are given in the
familiar form by:

E(ui) = 0, i = 1, · · · , n

E(u2i ) = σ2, i = 1, · · · , n

E(uiuj) = 0, i, j = 1, · · · , n j 6= i.

The first of these assumptions can be re-expressed in matrix terms as

E(u) = 0 (A1)
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where the right-hand side is a zero vector is of order n× 1. The second and third
assumptions can be re-expressed in matrix terms in the single assumption

var(u) = E(uu′) = σ2In. (A2)

The diagonality of this matrix corresponds to the assumption of zero autocovari-
ance while the constancy of the diagonal elements corresponds to the assumption
of constant variance or homoscedasticity.

In addition we make the assumptions on the regressors that

The n× k matrix X has rank k (A3)

and that

The matrix X is fixed in repeated sampling . (A4)

The first of these assumptions is that no single regressor can be expressed as an
exact linear function of the other regressors. This is the assumption of no perfect
collinearity in the regressors. The second assumption allows X to be treated as
non-random so that it can be taken outside the expectations operator.

2 The Ordinary Least Squares Estimator

Let b be an estimator of the unknown parameter vector β. Then

y = Xβ + e (2.1)

where e is an n× 1 vector of residuals that are not explained by the regression.
The OLS estimator β̂ is the estimator b that minimises the sum of squared

residuals s = e′e =
∑n

i=1 e
2
i .

min
b

s = e′e = (y −Xb)′(y −Xb)

or, expanding the last expression,

s = y′y − y′Xb− b′X′y + b′X′Xb.

Differentiating s with respect to b gives the vector of first order conditions:

∂s

∂b
= −2X′y + 2X′Xb = 0 (2.2)

or, rearranging, the vector of normal equations

X′Xb = X′y. (2.3)
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Note that this can also be written as

X′(y −Xb) = X′e = 0.

On the assumption that the matrix X is of rank k, the k × k symmetric matrix
X′X will be of full rank and its inverse (X′X)−1 will exist. Premultiplying (2.3)

by this inverse gives the expression for the OLS estimator β̂:

β̂ = (X′X)
−1

X′y. (2.4)

3 OLS Predictor and Residuals

The regression equation
y = Xβ̂ + e

separates the dependent variable into two components: the predicted part Xβ̂
and the residuals e. Firstly, consider the OLS residuals

e = y −Xβ̂.

From the definition of the OLS estimator (2.4)

e = y −X (X′X)
−1

X′y

= (In −X (X′X)
−1

X′)y

= My

where M = (In −X (X′X)−1 X′) is a symmetric idempotent matrix satisfying

MM = M and M′M = M.

M has the property that MX = 0 since

MX = (In −X (X′X)
−1

X′)X

= X−X (X′X)
−1

X′X

= X−X = 0.

Therefore, substituting from (1.1)

e = My

= M(β + u)

= Mu. (3.1)
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Finally, it is useful to determine the rank of the matrix M. Since M is idempotent,
it follows that rank(M) = tr(M) and by the rules of the algebra of traces

tr(M) = tr(In −X (X′X)
−1

X′)

= tr(In)− tr(X (X′X)
−1

X′) = tr(In)− tr(X′X (X′X)
−1

)

= tr(In)− tr(Ik) = n− k

so that
rank(M) = n− k.

Consider now the OLS predictor

Xβ̂ = X(X′X)−1X′y = (I−M)y.

Note that predictor and residuals are orthogonal components since

M(I−M) = 0.

4 Properties of the OLS Estimator

Substituting the OLS expression (2.4) into the model (1.1) gives

β̂ = (X′X)
−1

X′(Xβ + u)

= (X′X)
−1

X′Xβ + (X′X)
−1

X′u

= β + (X′X)
−1

X′u (4.1)

4.1 The OLS Estimator β̂ is Unbiased

The property that the OLS estimator is unbiased or that

E(β̂) = β

will now be proved.

Proposition 4.1. E(β̂) = β

Proof. Taking expectations of (4.1),

E(β̂) = β + E((X′X)
−1

X′u)

= β + (X′X)
−1

X′ E(u)

where, in the second line, X is taken out of the expectation because of assumption
(A4), but, from assumption (A1), the second term is zero so that

E(β̂) = β (4.2)

and the estimator β̂ is unbiased.
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4.2 The Variance of the OLS Estimator

From (4.1) and (4.2)

β̂ − E(β̂) = (X′X)
−1

X′u

and it follows that

var(β̂) = E((X′X)
−1

X′uu′X(X′X)−1)

= (X′X)
−1

X′ E(uu′)X(X′X)−1

from assumption (A4). Then, using assumption (A2)

var(β̂) = (X′X)
−1

X′(σ2In)X(X′X)−1

= σ2 (X′X)
−1

X′X(X′X)−1

and, cancelling X′X and its inverse (X′X)−1

var(β̂) = σ2 (X′X)
−1
. (4.3)

4.3 The OLS estimator of σ2

The error variance σ2 that appears in formula (4.3) is itself unknown and so in
practice it needs to be estimated. We now show that the estimator

σ̂2 =
e′e

n− k
(4.4)

is an unbiased estimator of σ2.
Note that from (3.1)

e′e = u′M′Mu = u′Mu

by the idempotency and symmetry of M.
Firstly, note that

E(e′e) = E(tr(e′e)) = tr(E(e′e))

since e′e is a scalar expression and so is trivially equal to its trace. The second
equality holds because both the expectations and trace operators are linear so
that their order can be swapped and E(tr(A)) = tr(E(A)). Hence

E(tr(e′e)) = E(tr(u′Mu))

= E(tr(Muu′)) = tr(E(Muu′))
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using the result that tr(AB) = tr(BA).
But by assumption (A4), M is fixed and can be taken out of the expectation

so that
tr(E(Muu′)) = tr(M E(uu′)) = tr(σ2M)

by assumption (A2). Finally, since we have shown that tr(M) = n− k, it follows
that

E(e′e) = σ2(n− k)

or that

E

(
e′e

n− k

)
= σ2

which proves that σ̂2 is an unbiased estimator of the error variance σ2.

5 The Gauss-Markov Theorem

Definition 5.1. A linear estimator is one that can be written in the form

β̃ = Cy

where C is a k × n matrix of fixed constants.

Note that the OLS estimator β̂ is a linear estimator with

C = (X′X)−1X′.

Theorem 5.1. The OLS estimator β̂ is the Best Linear Unbiased Estimator
( BLUE) of the classical regresssion model. By best we mean the estimator in the
class that achieves minimum variance.

Proof. Taking expectations

E(β̃) = C E(y) = C E(Xβ + u) = CXβ + C E(u)

so the condition for unbiasedness of β̃ is that

CX = Ik

The variance of the estimator β̃ is given by

var(β̃) = var(CXβ + Cu) = var(Cu)

= E(Cuu′C′) = σ2CC′

by assumption (A2).
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To prove that OLS is the best in the class of unbiased estimators it is necessary
to show that the matrix

var(β̃)− var(β̂)

is positive semi-definite. We use the result that for any matrix A, the matrix
products A′A and AA′ are both positive semi-definite. This is easy to show
since the quadratic form x′A′Ax can be written as z′z where z = Ax and z′z =∑
z2i ≥ 0 for all x. Similarly, x′AA′x can be written as w′w where w = A′x and

w′w =
∑
w2
i ≥ 0 for all x.

We use a trick and write

C = (X′X)−1X′ + D

where D is the difference between an arbitrary estimator and the OLS estimator.
Note that

CX = (X′X)−1X′X + DX = Ik + DX

but since, for unbiasedness CX = Ik, it follows that DX = 0. Consequently,

CC′ = [(X′X)−1X′ + D][X(X′X)−1 + D
′
]

= (X′X)−1X′X(X′X)−1 + DD
′

= (X′X)−1 + DD
′

so that

var(β̃) = σ2CC′

= σ2(X′X)−1 + σ2DD
′

= var(β̂)+σ2DD
′

or
var(β̃)− var(β̂) = σ2DD

′

which proves the result since DD′ must be positive semi-definite.

6 Hypothesis Testing

6.1 The Joint Normal Distribution

A p× 1 vector of random variables x that follows the distribution function

f(x) = (2π)−
p
2 |Σ|−

1
2 exp(−1

2
(x− µ)′Σ−1(x− µ))
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is said to be jointly normally distributed with mean µ and variance covariance
matrix Σ, written as

x ∼ N(µ,Σ).

In the case that p = 1 this reduces to the one-dimensional normal density function.
Note that any linear function of x, Ax, will also be jointly normally distributed
with distribution given by

Ax ∼ N(Aµ,AΣA′).

6.2 The Chi-squared distribution

Suppose that x is a p× 1 vector of random variables, jointly normally distributed
with

x ∼ N(0, Ip).

Then the scalar sum of squares x′x is distributed with a chi-squared distribution
with p degrees of freedom or algebraically

x′x ∼ χ2
p.

It follows that, more generally, if x ∼ N(0, q2Ip), then (x′x/q2 ∼ χ2
p.

We now prove the result that, if A is a symmetric idempotent matrix, then
the quadratic form x′Ax/q2 ∼ χ2

r where r is the rank of the matrix A. Consider
the eigenvalue decomposition of A

A = VΛV′

where V is the p × p matrix of eigenvectors of A satisfying V′V = Ip, and Λ is
the p× p diagonal matrix of associated eigenvalues. Then the quadratic form

x′Ax = x′VΛV′x = z′Λz

where z = V′x is a p× 1 vector with normal distribution given by

z = V′x ∼ N(0, q2V′V) = N(0, q2Ip).

However, since A is symmetric idempotent, all its eigenvalues are either equal to
zero or one, with the number of unit eigenvalues being equal to the rank of A,
which is r. Thus

z′Λz =

p∑
i=1

λiz
2
i =

r∑
i=1

z2i = z′1z1

where the eigenvalues have been ordered so that the first r are equal to one and
the last p−r equal to zero, and z1 is an r×1 vector comprising the first r elements
of z. It follows that

x′Ax

q2
=

z′1z1

q2
∼ χ2

r.
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6.3 The F Distribution

Two chi-squared distributions of idempotent quadratic forms x′Ax and x′Bx are
defined to be independent if

AB = BA = 0.

Consider the ratio of two independent chi-squared variates with m and n de-
grees of freedom, respectively. It can be shown that

1
m
χ2
m

1
n
χ2
n

∼ Fm,n

where Fm,n is Fisher’s F distribution with m and n degrees of freedom.
Note that if x is distributed as F1,n then

√
x is distributed as tn where tn is

the Student t distribution with n degrees of freedom.

6.4 Distributions of the OLS Parameter Estimates

In order to make statistical inferences on the parameter estimates β̂ and σ̂2we
must add a further assumption to the classical regression model:

u ∼ N(0, σ2In) (A5)

which is that the error vector u is distributed jointly normally. It follows that,
since y and β̂ are both linear combinations of u, they are both also distributed
normally with

y ∼ N(Xβ, σ2In)

and
β̂ − β ∼ N(0, σ2(X′X)−1). (6.1)

To make this practical we need to replace the unknown parameter σ2 with the
estimator σ̂2 defined in (4.4) which was shown above to be equal to

σ̂2 =
e′e

n− k
=

u′Mu

n− k

where the matrix M = In−X(X′X)−1X′ is symmetric and idempotent with rank
n− k. It follows from assumption (A5) and the result just proved on idempotent
quadratic forms in normal variables that

(n− k)
σ̂2

σ2
∼ χ2

n−k. (6.2)

where χ2
n−k is the Chi-squared distribution with n− k degrees of freedom.
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6.5 Jointly testing all the coefficients

Consider a test of the hypothesis that

H0 : β − β0 = 0 (6.3)

for some set constants β0. This hypothesis involves all of the coefficients in the

model. A joint test on all the components of the estimated parameter vector β̂
can be based on the expression

(β̂ − β)′X′X(β̂ − β)

= u′X(X′X)−1X′X(X′X)−1X′u

= u′X(X′X)−1X′u = u′(I−M)u.

This is a symmetric idempotent quadratic form in the normally distributed error
vector u. It follows that

(β̂ − β)′X′X(β̂ − β)

σ2
∼ χ2

k. (6.4)

This expression still involves the unknown error variance σ2 and so is not opera-
tional. However, the chi-squared statistic (6.4) is independent of the chi-squared
statistic (6.2) since the idempotent matrices M and I−M satisfy

M(I−M) = 0.

Consequently, the ratio of the two chi-squared statistics (6.4) and (6.2), divided
by their degrees of freedom

(β̂ − β)′X′X(β̂ − β)/σ2

(n− k)σ̂2/σ2

n− k
k

= (β̂ − β)′
1

σ̂2
X′X(β̂ − β)/k ∼ Fk,n−k

has an F distribution with k and n − k degrees of freedom. This statistic is
operational since the unknown error variance cancels from both numerator and
denominator. Note that the expression X′X/σ̂2 in the centre of this quadratic
form is the inverse of the estimated parameter variance covariance matrix

v̂ar(β̂) = σ̂2(X′X)−1. (6.5)

hence, on the null hypothesis (6.3)

1

k
(β̂ − β0)′(v̂ar(β̂))−1(β̂ − β0) ∼ Fk,n−k.
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6.6 Testing a linear combination of the coefficients

Now consider tests involving a linear combination of the coefficients

H0 : w′β = w0 (6.6)

where w is a k × 1 vector of constants and w0 is a scalar. We know that

w′(β̂ − β) ∼ N(0, σ2w′(X′X)−1w)

so that
w′β̂ −w′β

σ
√

w′(X′X)−1w
∼ N(0, 1).

From (6.2) it follows that the ratio

w′β̂−w′β
σ
√

w′(X′X)−1w

√
n− k√

(n− k)σ̂2/σ2

=
w′β̂ −w′β

σ̂
√

w′(X′X)−1w
∼ tn−k

follows a Student t distribution with n− k degrees of freedom.
Hence on the null hypothesis (6.6) it follows that

=
w′β̂ − w0

σ̂
√

w′(X′X)−1w
∼ tn−k (6.7)

A particular example of this test is a test of the hypothesis that βj = 0. In this
case the vector w consists of zeros except for a one in the jth position, and the
scalar w0 is equal to zero. The denominator in (6.7) in this case will pick out
the square root of the jjth diagonal element in the estimated variance covariance
matrix (6.5) which is the estimated standard error of the coefficient βj. Thus the
test statistic is the familiar t-ratio

β̂j

sE(β̂j)
∼ tn−k.


