
Econometrics Lecture 5:
Limited Dependent Variable Models: Logit and

Probit

R. G. Pierse

1 Introduction

In lecture 5 of last semester’s course, we looked at the reasons for including di-
chotomous variables as explanatory variables in the regression model. Such vari-
ables can take only a limited number of possible values. They are often used as
proxies for effects that cannot be quantified and are known as dummy variables.
In the binary case only two values are possible and these can be represented by
the numbers zero and one.

In this lecture we look at models where the dependent variable y is itself a
dichotomous variable. Such models are called limited dependent variable models,
or also qualitative or catagorical variable models. We concentrate on the binary
case where yi can take only two values. One example would be a model of success
in job interviews based on observations on interview candidates. The dependent
variable in this case would take the value one if the candidate was offered a job
and zero if not. Various explanatory variables could be included: both continuous
variables such as age and dichotomous variables such as gender or educational
achievement. Other examples might include models of bank failure, or mortgage
applications. In the context of survey data it is very often the case that a variable
such as the purchase of a washing machine or car which might be considered as a
continuous variable in the aggregate, are dichotomous when the observations are
of individuals over a short time span.

2 The Linear Probability Model

The linear probability model applies the linear model

y = Xβ + u (2.1)
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to the case where y is a dichotomous variable taking the value zero or one, where
we require the assumption that

E(u) = 0.

The conditional expectation of the ith observation is given by

E(yi|xi) = x′iβ

where xi is the k × 1 vector of values of the k regressors for the ith observation,
corresponding to the transpose of the ith row of matrix X. The conditional
expectation E(yi|xi) in this model has to be interpreted as the probability that
yi = 1 given the particular value of xi. In practice, however, there is nothing in
this model to ensure that these probabilities will lie in the admissible range (0, 1).

Since yi can only take the two values of 0 or 1, it follows that the error term
ui can only take the two values of −x′iβ or (1 − x′iβ). From the assumption
that E(ui) = 0 it follows that the probabilities of these two events are given by
(1− x′iβ) and x′iβ respectively. Thus the probability distribution of ui, f(ui) can
be represented by the table

ui Pr(ui)
−x′iβ (1− x′iβ)

(1− x′iβ) x′iβ
.

It is obvious that ui is not normally distributed. Its distribution has zero mean
but not constant variance since

var(ui) =
∑

u2i f(ui) (2.2)

= (−x′iβ)2(1− x′iβ) + (1− x′iβ)2x′iβ

= x′iβ(1− x′iβ)

Clearly, since this variance depends on xi, ui is heteroscedastic so that OLS esti-
mation of (2.1) will not be efficient.

It is possible to devise a feasible GLS procedure to correct for the heteroscedas-
tic form of (2.2). Denoting the fitted values from the OLS regression of (2.1) by

ŷi = x′iβ̂

then
σ̂2
i = ŷi(1− ŷi)

is a consistent estimate of var(ui) so that the weighted least squares regression

Ly = LXβ + Lu
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where

L =


1
σ̂1

0 0

0
. . . 0

0 0 1
σ̂n

 .
will give feasible GLS estimates. However, it is theoretically possible for x′iβ̂ to
take values outside the interval (0, 1). In this case the estimator σ̂2

i < 0 so that the
GLS procedure will fail. This illustrates the problem that the linear probability
model is not really an appropriate way to estimate limited dependent variables
models since it does not impose the fundamental property of the model which is
that

E(yi|xi) = P (yi) ∈ (0, 1).

3 The Probit and Logit Models

Consider a different approach. Suppose that we have a regression model

y∗ = Xβ + u (3.1)

where y∗ is unobserved and is called a latent variable. This is related to the
observed dichotomous variable y by

yi =

{
1, if y∗i > 0

0, otherwise.
(3.2)

In this model there is no reason why the error term u and hence the latent
variable y∗ should not be expected to have a continuous distribution. Note that
the observation equation (3.2) is independent of the scale of the latent variable
y∗ in (3.1). This means that the scaling of the error process u can be chosen for
convenience and we will assume that ui has unit variance

var(ui) = 1.

It follows from (3.1) and (3.2) that

Pi = Pr(yi = 1) = Pr(y∗i > 0)

= Pr(ui > −x′iβ)

= 1− F (−x′iβ)

where F () is the cumulative distribution function of ui defined by

F (a) = Pr(ui ≤ a) =

∫ a

−∞
f(ui)dui.
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If the distribution of ui is symmetric then F (a) = 1− F (−a) so that

Pi = Pr(yi = 1) = F (x′iβ). (3.3)

The dichotomous observations yi will follow a binomial distribution with likelihood
function given by

L(y) =
∏
yi=1

Pi
∏
yi=0

(1− Pi). (3.4)

The exact form of Pi in (3.3) will depend on the assumption made about the
distribution of the error term u. If it is assumed that ui follows a standard
normal distribution with unit variance

f(ui) = (2π)−
1
2 exp(−1

2
u2i )

then

Pi = F (x′iβ) =

∫ x′iβ

−∞
f(ui)dui. (3.5)

This is known as the probit model.
Alternatively, if ui is assumed to follow the logistic distribution defined by

f(ui) =
exp(ui)

(1 + exp(ui))2
(3.6)

then

Pi = F (x′iβ) =
exp(x′iβ)

1 + exp(x′iβ)
=

1

1 + exp(−x′iβ)
. (3.7)

The function (3.7) is known as the logit function and hence the model using as-
sumption (3.6) is known as the logit model. The logistic distribution (3.6) has
variance π2/3 so that the estimates of β obtained from the logit model are con-
ventionally rescaled by the factor

√
3/π so as to conform with the assumption

that var(ui) = 1. Other scalings are possible. Amemiya (1981) recommends using
the factor 1/1.6 = 0.625 as providing a closer approximation of the logistic and
standard normal distribution.

Note for the logit model that

log
Pi

1− Pi
= x′iβ.

This is known as the log-odds ratio and it can be seen that for this model it is
linear in the variables xi.

The cumulative normal and logistic distributions (3.5) and (3.7) are very close
to each other except at the tails, so that both assumptions will give very similar
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results except when there are a large number of observations (and hence a lot of
observations in the tails). The logit model has the advantage that its cumulative
distribution function has an explicit form, whereas the integral in (3.5) must be
evaluated numerically. Nevertheless, in either case, the parameter vector β can be
obtained in a straightforward manner by numerically maximising the likelihood
function (3.4) or its logarithm

logL(β; y,X) =
∑
yi=1

logPi +
∑
yi=0

log(1− Pi). (3.8)

For the case of the logit model

∂ logPi
∂β

= xi −
exp(x′iβ)xi

1 + exp(x′iβ)
= (1− Pi)xi

and
∂ log(1− Pi)

∂β
=
− exp(x′iβ)xi
1 + exp(x′iβ)

= −Pixi

so that the first order condition for maximising the log-likelihood function (3.8)
is

∂ logL

∂β
=

∑
yi=1

(1− Pi)xi −
∑
yi=0

Pixi

=
∑
yi=1

xi −
n∑
i=1

Pixi = 0.

These equations are nonlinear in β so that an iterative solution technique is
required.

The probit and logit models can be generalised to the case of dependent vari-
ables that can take on more than two values.

3.1 Interpreting the Coefficients

Having estimated the parameters in the Logit or Probit model, we need to under-
stand how to interpret the coefficients. For the Logit model we have

log
Pi

1− Pi
= ri = x′iβ

where ri represents the log-odds ratio, so that the jth coefficient

βj =
∂ri
∂xij
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represents the effect of a change in the jth variable on the log-odds ratio. This
effect is constant. The effect of a change in the jth variable on the probability Pi
is given by

∂Pi
∂xij

= βjPi(1− Pi) .

Note that this is different for different observations xi.
For the Probit model we have

∂Pi
∂xij

= βjf(x′iβ)

where f is the standard normal density function, which again depends on the
observations. The effect of a change in the jth variable on Pi can be evaluated
for different values of xi or at the sample means x or P = y.

3.2 Goodness of fit measures

The conventionalR2 measure of goodness of fit is problematic in limited dependent
variable models where the predicted values are probabilities and the actual values
are either 0 or 1. Different ways of expressing R2 that are equivalent in the
linear regression model are no longer equivalent. Several alternative goodness of
fit measures have been proposed.

The conventional R2 measure can be written as

R2 = 1−
∑

(yi − ŷi)2∑
(yi − yi)2

.

In a binary limited dependent variable model the denominator can be written as

n∑
i=1

(yi − yi)2 =
∑

y2i − ny2 = n1 − n(
n1

n
)2 =

n1n2

n

where n1 is the number of successes (yi = 1) and n2 is the number of failures
(yi = 0) in the sample.

The R2 measure of Efron (1978) is given by

R2 = 1− n

n1n2

∑
(yi − ŷi)2 .

In the standard linear regression model

R2 = 1−
(
Lr
Lu

)2/n
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where Lu is the maximum of the unrestricted likelihood function and Lr is the
maximum of the likelihood function where all coefficients except for the intercept
have been restricted to zero. This can be used to derive an R2 measure for the
limited dependent variables model. However, in this model Lr ≤ Lu ≤ 1 so that

R2 ≤ 1− L2/n
r

and the measure needs to be rescaled to lie in the interval [0, 1]. Cragg and Uhler
(1970) propose the pseudo-R2 measure

R̃2 =
L
2/n
u − L2/n

r

(1− L2/n
r )L

2/n
u

.

Finally, McFadden (1974) proposes another measure based on the likelihood
ratio index

R2 = 1− logLu
logLr

.

4 Multi-response models

The limited dependent variable model can be extended to the situation where
there are more than two possible values of the dependent variable. Two cases
need to be distinguished. In the first case, the values have a natural ordering, for
example owning no car, one car, or two or more cars. This gives rise to the ordered
logit or ordered probit model. In the other case, there is no natural ordering of the
values. An example would be the choice of country to invest in, where the possible
values might be Europe, Asia, or USA. This case gives rise to the multinomial
logit model.

4.1 Ordered response models

In the ordered response model with m categories, the regression equation

y∗ = Xβ + u (4.1)

with unobserved y∗, is related to the observed variable y by the conditions

yi = j if γj−1 < y∗i ≤ γj, j = 1, · · · ,m, (4.2)

where the γj are unknown parameters, with γ0 = −∞ and γm = ∞. Standard
normalisation restrictions, needed to pin down the scale, are that γ1 = 0 and
E(u2i ) = 1. Assuming that ui is i.i.d. standard normal gives the ordered probit
model, whereas assuming that ui follows the logit distribution gives rise to the
ordered logit model.
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4.2 Multinomial models

When the responses are unordered, then there is no obvious way to relate the
underlying latent variable y∗i to the observed outcome yi. One way to impose a
structure is to assume the existence of a utility function Uij, giving the utility
that individual i associates with alternative j. The utility function is assumed
to be stochastic and is a linear function of a set of observable variables that may
depend on the individual i and/or the alternative j. We can write this as

Uij = x′ijβ + εij

where xij is a k × 1 vector of observations on the k observable variables and εij
is a disturbance term. The probability that individual i chooses alternative j, is
then given by

P (yi = j) = P (Uij = max{Ui1, · · · , Uim}).

Assuming that the disturbances εij are independent, with a log Weibull distri-
bution, it can be shown that

P (yi = j) =
exp(x′ijβ)

exp(x′i1β) + exp(x′i2β) + · · ·+ exp(x′imβ)
(4.3)

which is the multinomial logit model. To normalise the model, it is normally
assumed that xi1 = 0. When m = 2, this model reduces to the standard binary
logit model.

5 Censored Variables: The Tobit Model

The techniques of the logit and probit model can also be applied to a different
problem: that of a variable which, though continuous, is censored so that it is
never observed when it falls below a certain value, taken without loss of generality
to be zero. It is important to note that non-positive values are supposed to
exist, but are simply not observed. The observations of the explanatory variables
corresponding to these unobserved negative values of the dependent variable are,
however, available and form part of the estimation data set.

This model can be represented by the latent variable model

y∗ = Xβ + u

where u is normally distributed with

u ∼ N(0,σ2I).
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The variable y∗ is unobserved and is related to the observed variable y by

yi =

{
y∗i , if y∗i > 0

0, if y∗i ≤ 0.
(5.1)

This model was first analysed by Tobin (1958) and is known as the Tobit (Tobin’s
probit) model. It is also known as the censored regression model because some
observations are not observed.

The application originally used by Tobin was that of expenditure on automo-
biles in the context of sample survey data of household expenditure. In a given
year, some households will have bought a car so that an expenditure is observed.
Other households will not have bought a car that year so that their expenditure
is zero. Negative expenditure of course is never observed. On the other hand, it
is not clear that this example is really a censored variables problem since negative
expenditure is not merely unobservable but cannot exist because it is logically
impossible. Despite this, there are less controversial examples of censored regres-
sion models such as measuring average earnings where only the earnings of the
employed are available.

We can write down the likelihood function for the censored regression model.
For the positive observations,

f(yi) ∼ N(x′iβ, σ
2)

so that
f((yi − x′iβ)/σ)

is standardised normal, while for the non-positive observations

ui ≤ −x′iβ

with

P (ui ≤ −x′iβ) = P (ui/σ ≤ −x′iβ/σ)

= F (−x′iβ/σ)

where F () is the cumulative distribution function of a standardised normal density.
Therefore the likelihood function can be written as

L(y) =
∏
yi>0

1

σ
f((yi − x′iβ)/σ)

∏
yi≤0

F (−x′iβ/σ).

This likelihood function has to be maximised numerically for the ML estimators
of β and σ2.
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6 Truncated Variables Model

The truncated regression model deals with the case where we have no data for y∗i
or for the explanatory variables xi when y∗i is below a certain value, known as the
truncation point. These observations are simply not sampled. OLS estimates will
be biased.

The untruncated regression model is

y∗ = Xβ + u

where u is normally distributed with

u ∼ N(0,σ2I).

However, only observations with y∗i ≥ y are observed.
The area of the density function that is truncated is given by

P (ui < y − x′iβ) = P (ui/σ < (y − x′iβ)/σ)

= F ((y − x′iβ)/σ)

= 1− F ((x′iβ − y)/σ)

where F () is the cumulative distribution function of a standardised normal density,
and the final line follows since F (a) = 1 − F (−a) for a symmetric distribution.
Since the total area under any distribution should be equal to one, the density
function of the truncated distribution needs to be rescaled. Thus the probability
density function of the truncated sample is given by

g(yi) =
f((yi − x′iβ)/σ)/σ

F ((x′iβ − y)/σ)
if y∗i ≥ y

and 0 otherwise.
The likelihood function is defined by

L(y) =
∏
y∗i≥y

g(yi)

=
∏
y∗i≥y

1

σ
f((yi − x′iβ)/σ)/

∏
y∗i≥y

F ((x′iβ − y)/σ)

Maximising this expression with respect to β and σ defines the maximum likeli-
hood estimator in the truncated variables model.
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