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R. G. Pierse

1 Introduction

In this lecture we look at the econometrics of panel data. Panel data refers to the
pooling of observations on a cross-section of households, firms or countries over sev-
eral time periods. Panel data is increasingly becoming available, mainly through
large surveys, repeated over time. One of the earliest examples is the Panel Study
of Income Dynamics which started in 1968 at the University of Michigan. This
survey collects annual data on over 5000 variables on about 4800 families in the
USA and was designed to investigate the causes of poverty.

Panel data has several advantages. Panels typically have a very large number
of cross-sectional observations and so provide large samples for the econometrician
to work with. Furthermore, the observations are often at the level of the economic
decision making agent (household or firm) and so avoid the problems of aggregation
implicit in macroeconomic time series data. Panels can be used to look at issues
that can not be addressed using pure cross-section or time series data.

On the other hand, there are problems associated with data panels. The
panel needs to designed carefully to get representative coverage of the population
being studied. If not then there is a problem of selectivity, where the sample is
censored because some group in the population is not being observed. There is
also a related problem of attrition where observations may drop out of the sample
because individuals die, households move or emigrate, firms go bankrupt. This
may bias the sample since, for example, only the more successful firms will be
observed over time in a panel. Another problem stems from the fact that most
panels only have a small number of time observations so that dynamic effects may
only be poorly measured.

For a readable introduction to the econometrics of panel data, see Baltagi
(1995).
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2 Fixed and Random Effects Models

The panel data model can be written as

yit = xitβ + uit, i = 1, · · · , n t = 1, · · · , T
where yit is the observation on the dependent variable y for the ith cross-sectional
unit in the tth period, xit is a 1 × k vector of observations on k explanatory
variables for the ith individual in the tth period, and β is a k × 1 vector of
parameters.

uit is a disturbance term and we assume that

uit = µi + vit

so that the error contains an unobservable individual specific effect µi and a
remainder disturbance vit. µi captures characteristics of the individual i that are
not picked up by the explanatory variables xit but which are assumed to be time
invariant.

Stacking the observations first by time and then by individual, the model can
be rewritten as

y = Xβ + u (2.1)

where y is an nT × 1 vector, X is an nT × k matrix and u is an nT × 1 vector
defined by

u = (In ⊗ ιT )µ + v (2.2)

where ιT is a T × 1 vector of ones, µ is an n × 1 vector of individual specific
disturbances and v is an nT × 1 vector of remainder disturbances.

Two alternative models result from different assumptions about the indiviual
specific effects µ.

2.1 The Fixed Effects model

The fixed effects model asumes that the individual specific effects µ are fixed
(non-stochastic) parameters to be estimated and that the remaining disturbance
component is independently and identically distributed with

E(v) = 0, var(v) = σ2
vInT .

On these assumptions, the model (2.1) and (2.2) can be written as

y = Dµ + Xβ + v (2.3)

where D = (In⊗ ιT ) is an nT ×n matrix of dummy variables. This model can be
estimated by OLS.
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Note that, if X contains an intercept c, then the set of variables D : c will be
perfectly collinear. This is the familiar problem of a redundant dummy variable
and can be solved either by dropping one of the columns of D and the associated
element of µ or by imposing the restriction that ι′nµ = 0.

Often we are only interested in estimating the parameters β. From the familiar
formula for a partitioned regression estimator, we have

β̂ = (X′MX)−1X′My (2.4)

where M is the nT × nT idempotent matrix defined by

M = InT −D(D′D)−1D′

InT − (In ⊗ ιT )(In ⊗ (ι′T ιT )−1)(In ⊗ ι′T )

= InT − (In ⊗
ιT ι
′
T

ι′T ιT
) = InT − (In ⊗

1

T
ιT ι
′
T )

and the final equality comes from noting that ι′T ιT = T . Note also that ιT ι
′
T is a

T × T matrix of ones.
The matrix M has the effect of transforming the data by subtracting the

individual mean. Thus ỹ = My has typical element defined by ỹit = yit−yi where

yi = 1
T

∑
t yit. Similarly, X̃ = MX has typical element defined by x̃it,j = xit,j−xi,j

where xi,j = 1
T

∑
t xit,j. Then (2.4) can be rewritten as

β̂ = (X̃′X̃)−1X̃′ỹ (2.5)

Equation (2.5) is sometimes known as the within-groups estimator.

2.2 The Random Effects Model

The fixed effects assumption leads the inclusion of n dummy variables in the
model. When n is large, this results in a considerable loss of degrees of freedom
in the estimation of the parameters of interest, β. An alternative approach is to
assume that µ is random with

E(µ) = 0, var(µ) = σ2
µIn.

As in the fixed effects model, we continue to assume that

E(v) = 0, var(v) = σ2
vInT

and now make the additional assumption that the two error components µ and v
are independent of each other.
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On these assumptions, the combined error term (2.2) has mean zero and vari-
ance given by

var(u) = E(uu′) = (In ⊗ ιT ) E(µµ′)(In ⊗ ι′T ) + E(vv′)

= σ2
µ(In ⊗ ιT ι

′
T ) + σ2

vInT = Ω.

The covariance matrix Ω is homoscedastic but exhibits serial correlation of the
T th order with

cov(uitujs) =


σ2
µ + σ2

v , i = j, t = s

σ2
µ, i = j, t 6= s

0 otherwise.

On the assumption that the regressors X are fixed in repeated samples, OLS esti-
mates will be unbiased but inefficient.

The random effects model can be estimated efficiently using GLS with the
estimator given by

β̂ = (X′Ω−1X)−1X′Ω−1y . (2.6)

This is not a feasible estimator however since the variances σ2
µ and σ2

v are unknown.
Feasible estimates can be based on any consistent estimates of σ2

µ and σ2
v . A

consistent estimate of σ2
v can be obtained from

σ̂2
v =

ẽ′ẽ

nT − n− k

where ẽ are the residuals from the within-groups estimator (2.5). A consistent
estimator of σ2

µ can be obtained from the residuals from the between-groups esti-
mator

yi = xiβ + ui, i = 1, · · · , n (2.7)

leading to the estimator

σ̂2
1 =

e′e

n− k
where e are the residuals from (2.7) and

σ̂2
µ =

1

T
(σ̂2

1 − σ̂2
v) . (2.8)

Note that in principle from (2.8) it is possible that σ̂2
v > σ̂2

1 so that σ̂2
µ < 0.

The feasible GLS estimator is consistent and asymptotically efficient when
either n → ∞ or T → ∞. It is possible to view the GLS estimator (2.6) as a
linear combination of the within-groups and between-groups estimators given by

β̃ = W1β̂ + (I−W1)β
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where W1 is a matrix of weights. As σ2
v/σ

2
1 → 0, or as T → ∞, then W1 → I

and β̃ tends to the within-groups estimator. Conversely as σ2
v/σ

2
1 →∞, W1 → 0

and β̃ tends to the between-groups estimator.

2.3 Fixed versus random effects

How can we decide whether to use the fixed or random effects model? Mundlak
(1978) suggests an interpretation of the models which leads to an answer to this
question. He suggests that in both models we should view the effects µi as random.
However, in the fixed effects model, estimation is done conditional on the realised
µi in the sample. The random effects model estimates the model unconditionally
but requires the assumption that the effects µi are uncorrelated with the regressors
X. When this assumption is valid, then the random effects model uses more
information which makes it a more efficient estimator. However, if the assumption
of no correlation between µi and X is violated, then the random effects model
leads to inconsistent estimates, whereas the fixed effects model is still consistent.
Thus if there is uncertainty about whether the effects may be correlated with
the regressors, then the fixed effects model may be a safer choice. A test for
the validity of the assumption of orthogonality of regressors and errors has been
developed by Hausman (1978) and is discussed in the next section.

3 Hypothesis testing in Panel Data Models

3.1 Testing for poolability

One natural question that arises in panel data is whether it is appropriate to pool.
This amounts to testing the panel data model

yit = xitβ + uit, i = 1, · · · , n t = 1, · · · , T (3.1)

against the more general model

yit = xitβi + uit, i = 1, · · · , n t = 1, · · · , T (3.2)

where the β parameters are allowed to differ between individuals. The null hy-
pothesis that pooling is justified is given by

H0 : βi = β, i = 1, · · · , n

which imposes (n− 1)k restrictions on (3.2).
On the assumption that

u ∼ N(0, InT )
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this hypothesis can be tested by the F-statistic

SSRr − SSRu

SSRu

n(T − k)

(n− 1)k
∼ F ((n− 1)k, n(T − k))

where SSRu is the sum of squared residuals from OLS estimation of the unre-
stricted model (3.2) and SSRr is the sum of squared residuals from the restricted
model (3.1).

3.2 Testing the Random Effects model

A key assumption of the random effects model is that the random effects µ are not
correlated with the regressors X. If this assumption is violated then E(ui|X) 6= 0
and the GLS estimator is biased and inconsistent. It is very important therefore to
test for the validity of this assumption. Hausman (1978) proposes a specification
test based on the difference between the within-groups and the between-groups
estimators. The principle of the test is that if the assumption of orthogonality
of regressors and errors is violated, then the within-groups estimator remains
consistent but the between-groups estimator is inconsistent.

The test statistic is given by

(β̂ − β)′V(β̂ − β) ∼a χ2
k

which is asymptotically distributed as a chi-squared statistic with k degrees of
freedom on the null hypothesis that random effects and regressors are uncorre-
lated. The covariance matrix V is defined by

V = var(β̂ − β) = σ2
v(X

′MX)−1 + σ2
1(X′(I−M)X)−1.

4 Dynamic Panel Data Models

Many economic relationships are dynamic in nature. The dynamic panel data
model allows for this by including a lagged dependent variable.

The dynamic panel data model can be written as

yit = yit−1α + xitβ + uit, i = 1, · · · , n t = 1, · · · , T (4.1)

where α is a scalar coefficient on the lagged dependent variable yit−1 and, as
before, we assume

uit = µi + vit .

Introducing a lagged dependent variable causes problems in the panel data
model. This is because µi is correlated with yit and hence with yit−1 so that the
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regressors and error term are correlated. In the random effects model, the error
term uit is autocorrelated so that OLS estimation of (4.1) will be biased and
inconsistent.

In the fixed effects model, Nickell (1981) showed that the within-groups estima-
tor leads to biased estimates since the transformed lagged dependent variable ỹ−1
will be correlated with the transformed error ṽ. This bias disappears as T → ∞
but in panel data T is typically small so that biases will be significant.

One alternative approach is to transform the model by first differencing. This
results in the transformed model

∆yit = ∆yit−1α + ∆xitβ + ∆uit, i = 1, · · · , n t = 2, · · · , T (4.2)

and
∆uit = ∆vit

that eliminates the individual effects µi but introduces serial correlation (a unit
root moving average error) in the disturbances.

The model (4.2) can be estimated by instrumental variables using instruments
for ∆yit−1. Possible instruments are ∆yit−2 or yit−2 which will not be correlated
with ∆vit so long as vit are not serially correlated. Arellano and Bond (1991) argue
that additional instruments can be found by taking account of the orthogonality
conditions in the model. They suggest using the instrument set {yi1, yi2, · · · , yit−2}
so that the number of instruments increases with t.
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