
Econometrics Lecture 7:
Simultaneous Equations Models: Identification,

Estimation and Testing

R. G. Pierse

1 Introduction

So far this course has concentrated on models with a single dependent variable.
The only exception was in lecture 3 where we looked at the seemingly unrelated
regressors (SURE ) model. However, that model was essentially a set of single
equations related solely through the covariances between error terms. In this
lecture we look at systems of equations determining several dependent variables
jointly.

In economics we are often interested in the interaction of several equations,
simultanously determining more than one variable. An example is the demand
and supply model. Here we have a demand function

Q = α1 + α2P + α3Y + u1 (1.1)

where Q is the quantity demanded, P is the price, Y is income and u1 is a
disturbance term representing random shocks to demand. We expect that there
is a negative relationship between price and quantity demanded so that α2 should
be negative. There is also a supply function

P = β1 + β2Q+ β3W + u2 (1.2)

relating price to the quantity supplied and an unspecified variable W with distur-
bance term u2 representing shocks to supply. We expect a positive relationship
between price and quantity supplied so that β2 should be positive.

Jointly, the demand and supply equations determine price and quantity. Note
that it is entirely arbitrary to write quantity as the dependent variable of the
demand function and price as the dependent variable of the supply function. We
could equally well have written price on the left-hand side of the demand function
and quantity on the left-hand side of the supply function, or even written both
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equations with the same variable on the left-hand side. The important thing
is to distinguish the variables that are determined within the system (price and
quantity) from the variables (Y and W ) that appear in the equations but which
are assumed to be determined outside the system.

However, it is very much an assumption as to which variables can be treated
as being determined outside the system. In the context of demand and supply
for a single product it might be reasonable to treat income as outside the sys-
tem. In considering demand and supply at the aggregate level, this would not be
reasonable.

1.1 Endogenous, Exogenous and Predetermined Variables

The variables that are determined within a simultaneous equations system are
known as endogenous variables. Any other variables that appear in the system but
are determined outside it are known as exogenous variables. In the example, price
and quantity are both endogenous variables and Y and W are exogenous variables.
Note that there are the same number of endogenous variables as equations. When
this is the case we say that the system is complete. When there are less equations
than endogenous variables then the system is incomplete. When there are more
equations than endogenous variables, the system is said to be overdetermined. In
this case, one or more equations is redundant and can be dropped.

The dependent variables in a system (those that appear on the left-hand side
of an equation) are necessarily endogenous. Since they are functions of a random
disturbance term, they are also random variables. This applies equally to any
endogenous variable since it can always be written as the dependent variable of
one of the system equations. Therefore all endogenous variables must be treated
as random variables.

Furthermore, where endogenous variables appear on the right-hand side of
an equation, they will be correlated with the error term in that equation. This
follows from the simultaneity of the system which means that all equations are
determined jointly. Consider a one unit positive shock to the disturbance term
u1 in the demand equation (1.1) leading to a one unit increase in quantity Q.
This in turn leads to an increase of β2 in the price variable P through the supply
equation (1.2). Thus P is correlated with u1 and this correlation is positive since
β2 is positive. Similarly, a positive unit supply shock to u2 leads to an increase of
α2 on Q through the demand equation. Since α2 is negative, it follows that Q is
negatively correlated with u2.

The exogenous variables in the system, by assumption, are independent of all
current, past and future values of the error term. This assumption is known as
strict exogeneity. It is important to stress, however, that this is just an assumption
and one that it is possible to test. Consider the case of a dynamic simultaneous
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system which includes lags of the endogenous variables, such as

Qt = α1 + α2Pt + α3Yt + α4Qt−1 + α5Pt−1 + u1t (1.3)

and
Pt = β1 + β2Qt + β3Wt + β4Pt−1 + β5Qt−1 + u2t (1.4)

where subscript t denotes the time period. As long as the error terms u1 and
u2 are not autocorrelated, lagged endogenous variables will be independent of all
current or future values of the error terms. Variables that satisfy this condition
are known as predetermined. Clearly, exogenous variables by assumption are also
predetermined, so that the lagged endogenous variables together with all current
and lagged exogenous variables form the set of predetermined variables.

Since the predetermined variables are independent of current and future values
of the error term, regression of the endogenous variables on the predetermined
variables alone satisfies the conditions of OLS

2 The Simultaneous Equations Model

The general linear simultaneous equations model with m equations can be written
formally as

Byt + Γzt = ut, t = 1, · · · , T (2.1)

where yt is an m×1 vector of observations on the m current endogenous variables
at period t, zt is a q×1 vector of observations on the q predetermined variables, ut

is an m×1 vector of disturbances, B is a m×m square matrix of coefficients on the
endogenous variables and Γ is an m×q matrix of coefficients on the predetermined
variables. It is assumed that

E(ut) = 0

and
var(ut) = Σ

where Σ is a positive definite matrix. Thus disturbances in different equations in
the same time period t are allowed to be correlated. However, the disturbances
are assumed not to be autocorrelated so that

cov(ut,us) = E(utu
′
s) = 0, ∀t 6= s.

The dynamic demand–supply model (1.3) and (1.4) can be rewritten in the
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form of (2.1) as

[
1 −α2

−β2 1

] [
Qt

Pt

]
+

[
−α1 −α4 −α5 −α3 0
−β1 −β5 −β4 0 −β3

]
1

Qt−1
Pt−1
Yt
Wt

 =

[
u1t
u2t

]
.

(2.2)
Equation (2.1) is known as the structural form of a simultaneous system. It

corresponds to the behavioural equations of the economic model and the coefficient
matrices B and Γ will typically contain zeros or other restrictions corresponding to
assumptions in the economic model. For example, in the demand–supply model,
the economic assumption is that variable Wt does not affect the demand function
and that Yt does not affect the supply function so that the matrix Γ contains two
zeros.

Assuming that the matrix B in (2.1) is nonsingular, it is possible to pre-
multiply through by B−1 giving

yt = −B−1Γzt + B−1ut (2.3)

or
yt = Πzt + vt. (2.4)

where Π = −B−1Γ and vt = B−1ut. This is known as the reduced form of the
system and it relates the endogenous variables y solely to the predetermined
variables z, removing the simultaneity in the structural form. In this formulation,
the economic assumptions in the model are less obvious but are embodied in
the restriction that Π = −B−1Γ. The reduced form disturbances vt no longer
correspond to disturbances on particular behavioural equations.

3 Identification in Simultaneous Equations

Consider pre-multiplying the simultaneous equation system (2.1) by the m ×m
nonsingular matrix F to give

FByt + FΓzt = Fut. (3.1)

The reduced form of this transformed model is

yt = −(FB)−1FΓzt + (FB)−1Fut

= −B−1F−1FΓzt + B−1F−1Fut

= −B−1Γzt + B−1ut
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which is identical to the reduced form (2.3) of the original model (2.1). Consider-
ing the observations yt as having being generated by the equation (2.3), there is
clearly a problem in determining whether the structural parameters are given by
(2.1) or by (3.1).

In general it is impossible to estimate the parameters of a simultaneous equa-
tion system unless there are sufficient restrictions on the elements of B and Γ
(or Σ) to uniquely identify the parameters of the model. This is known as the
problem of identification. Identification conditions can therefore be viewed as the
conditions under which it is possible to recover the structural form parameters
from the reduced form.

3.1 Rank and Order Conditions for Identification

Identification can be ensured by restrictions involving any of the structural form
parameters B , Γ and Σ. Consequently, the conditions for identification in the
most general case are complicated to state. Here we consider only the most com-
mon form of restriction, namely zero restrictions on B and Γ. These correspond to
the exclusion of some variables from particular equations and so these restrictions
are also known as exclusion restrictions.

It is possible that some equations in a model may be identified while others
are not. A model is identified only if all equations in the model are identified.
Therefore, identification needs to be checked separately for each equation in a
model .

Let the number of variables excluded from the jth equation by denoted by
rj. Then the order condition for identification of the jth equation by exclusion
restrictions is that rj is greater than or equal to m−1. This condition is necessary
but not sufficient . When the number of exclusion restrictions is strictly greater
than m−1 then the equation is said to be over-identified whereas when rj = m−1
then the equation is said to be exactly identified. The order condition has the
advantage of being very easy to check.

A condition which is both necessary and sufficient is the rank condition for
identification of the jth equation. This considers the rank of the matrix formed
from the columns of the matrices B and Γ, corresponding to the excluded variables
in the jth equation, but excluding the jth row. This matrix will be of dimension
(m−1)×rj. The rank condition states that the rank of this matrix must be equal
to m− 1.

3.2 Some examples

Consider the two equation dynamic demand–supply model (2.2). In each equation,
a single variable is excluded (Wt in the demand equation and Yt in the second).
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Thus both equations satisfy the order condition for identification.
Consider now the rank condition. for the first equation, the matrix to be

considered is the 1× 1 matrix
[−β3] .

Clearly this will have rank m− 1 = 1 as long as β3 6= 0. If β3 = 0 however, then
the equation will not be identified. Similarly, the rank condition for the second
equation is that the 1× 1 matrix

[−α3]

has rank m− 1 = 1. Again, this will be the case except if α3 = 0.
As a second example, consider a four equation IS-LM model based on Stewart

(1991) p 253

Ct = −γ11 − α14Yt + u1t

It = −γ21 − α23Rt − α24Yt + u2t

Rt = −α34Yt − γ32Mt + u3t

Yt = Ct + It + Zt

where Ct is consumption, It is investment, Rt is the rate of interest, Yt is income,
Mt is the money stock and Zt is autonomous expenditure. This model can be
rewitten in the form (2.1) as

1 0 0 α14

0 1 α23 α24

0 0 1 α34

−1 −1 0 1



Ct

It
Rt

Yt

+


γ11 0 0
γ21 0 0
0 γ32 0
0 0 −1


 1
Mt

Zt

 = ut.

Consider the first equation. The number of excluded regressors is 4 > m− 1 = 3
so that the order condition is satisfied. The rank condition is based on the rank
of the matrix  1 α23 0 0

0 1 γ32 0
−1 0 0 −1


which has rank 3 even if both parameters α23 and γ32 are equal to zero. This
equation is over-identified.

For the second equation, the number of excluded regressors is 3 and the rank
condition is based on the matrix 1 0 0

0 γ32 0
−1 0 −1


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which has rank 3 as long as the parameter γ32 is not equal to zero. In this case,
the equation is exactly identified. If however, γ32 = 0 then it is clear that the
rank of this matrix is only 2 in which case the equation is not identified.

The third equation has four exclusion restrictions and the rank condition de-
pends on the matrix  1 0 γ11 0

0 1 γ21 0
−1 −1 0 −1


which has rank 3 so that the rank condition is satisfied. the equation is over-
identified.

Finally, the fourth equation has 3 exclusion restrictions and the rank condition
depends on the matrix  0 γ11 0

α23 γ21 0
1 0 γ32


which has rank 3 as long as all coefficients are non-zero. Then the equation is
exactly identified. However, if γ32 = 0 then the matrix only has rank 2 so that
the equation is then not identified.

In practice, it can not be known whether any of the parameters have true value
zero. Thus in specifying a model, only the order condition can be guaranteed to
hold by construction. It is still possible that the model may not be identified
through failure of the rank condition. If this happens, then estimation will break
down.

4 Estimation: Single Equation Methods

In the estimation of simultaneous equations systems there are two basic ap-
proaches. The first is to consider the estimation of each equation in isolation.
This approach ignores the information about the covariances between the equa-
tions given by the covariance matrix Σ and information about the exclusion re-
strictions on all other equations. Consequently, this approach is called a limited in-
formation approach. The second approach estimates the complete system jointly,
taking into account all the identifying restrictions in the model and the covariance
information provided by Σ. Since this approach uses all available information, it
is known as the full information approach.

When the model is correctly specified, then full information estimation is more
efficient than limited information estimation. However, because of its system
nature, any mistakes made in the specification of one equation will affect the
estimates of all the equations. Consequently, if there is uncertainty about the
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specification of the system, there may be an argument in favour of using limited
information methods. They also have the advantage of being computationally
much cheaper to implement.

Consider the estimation of the jth equation from the system (2.1). This equa-
tion can be written as

yjt = x′jβj + ujt, t = 1, · · · , T

where the k × 1 vector xj represents all the variables in yt and zt that have
unrestricted coefficients. Note that the number of regressors k is equal to m−1 +
q − rj and the order condition for identification ensures that k ≤ q.

Stacking all the T observations together we can write

yj = Xjβj + uj

where yj is a T ×1 vector, Xj is a T×k matrix, and uj is a T ×1 vector satisfying

E(uj) = 0 and var(uj) = σjjIT .

5 Indirect Least Squares

Consider the two equation demand and supply model

Qt = α1 + α2Pt + α3Yt + u1

and
Pt = β1 + β2Qt + β3Wt + β4Rt + u2

which differs from the model (1.1) and (1.2) in that the supply equation now
includes an extra exogenous variable R. In matrix form the model can be written
as

[
1 −α2

−β2 1

] [
Qt

Pt

]
+

[
−α1 −α3 0 0
−β1 0 −β3 −β4

]
1
Yt
Wt

Rt

 =

[
u1t
u2t

]
.

and by inspection it can be verified that the first equation is overidentified while
the second equation is exactly identified.
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The reduced form of the system is given by

[
Qt

Pt

]
=

[
1 −α2

−β2 1

]−1 [
α1 α3 0 0
β1 0 β3 β4

]
1
Yt
Wt

Rt

+

[
v1t
v2t

]

=

[
π11 π12 π13 π14
π21 π22 π23 π24

]
1
Yt
Wt

Rt

+

[
v1t
v2t

]

where πij represent the reduced form parameters.
Noting that [

1 −α2

−β2 1

]−1
=

1

(1− α2β2)

[
1 α2

β2 1

]
we have the parameter correspondence[

π11 π12 π13 π14
π21 π22 π23 π24

]
=

1

(1− α2β2)

[
α1 + α2β1 α3 α2β3 α2β4
β1 + α1β2 α3β2 β3 β4

]
.

Can the structural form parameters αi and βi be uniquely recovered from the
reduced form parameters πij? For the parameters of the second equation, the
answer is yes with the results

β1 = π21 − π11π22/π12 ; β2 = π22/π12

β3 = π23 − π13π22/π12 ; β4 = π24 − π14π22/π12.

This unique correspondence is the result of the fact that the second equation is
exactly identified.

For the first equation, there is no unique way to recover all the structural
parameters since, for example

α2 = π13/π23 = π14/π24

so that there are two alternative ways of defining α2. This is the meaning of the
fact that the first equation is overidentified.

For an exactly identified equation, one possible way of estimating the param-
eters is to estimate the unrestricted reduced form parameters by OLS on the
reduced form equations

yj = Zjπj + uj, j = 1, · · · ,m
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where Zj is the matrix of predetermined variables appearing in the jth equation.
The structural parameters can then then recovered from π̂j using the relationships

β̂1 = π̂21 − π̂11π̂22/π̂12 ; β̂2 = π̂22/π̂12

β̂3 = π̂23 − π̂13π̂22/π̂12 ; β̂4 = π̂24 − π̂14π̂22/π̂12 .

This is known as indirect least squares. It can be shown that the indirect least
squares (ILS ) estimator is an instrumental variables (IV ) estimator.

5.1 The Method of Instrumental Variables

We have seen that the endogenous variables on the right-hand side of an equation
from a simultaneous equation system are correlated with the disturbance term.
This violates the fundamental assumption of the regression model that regressors
and error term are uncorrelated, or formally that

E(X′u) = 0

or, in large samples, that

plim
X′u

n
= 0.

Consequently, since this assumption is violated, OLS estimates will be both biased
and inconsistent.

Consider the model
y = Xβ + u

where there are k regressors and

E(X′u) 6= 0.

Suppose that we can find a set of k variables W satisfying the condition that

E(W′u) = 0

and

plim
W′u

n
= 0

where the variables W are correlated with X, then the variables W are called
instruments for X and the estimator

β̃ = (W′X)
−1

W′y (5.1)

is called an instrumental variables or IV estimator.
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Note that
β̃ = (W′X)

−1
W′y = β + (W′X)

−1
W′u

so that, as long as

plim

(
W′X

n

)
= Q, 0 < Q <∞.

then

plim(β̃ = β + plim

(
W′X

n

)−1
plim

(
W′u

n

)
= β

so that the IV estimator is consistent.
Sometimes there may be more instruments W available than there are regres-

sors X. In this case we can take a subset of any k columns from W. This will
be a valid set of instruments. However, the higher the correlation between the
instrument set and the regressors X the better, and so a better strategy is to use
the T × k linear combination of the instruments

X̂ = W(W′W)−1W′X.

Note that X̂ can be interpreted as the fitted values from a regression of X on
the set of instruments W. This is the linear combination that maximises the
correlation with X and is hence the best combination of instruments.

The IV estimator is then given by

β̃ =
(
X̂′X

)−1
X̂′y =

(
X̂′X̂

)−1
X̂′y

= (X′W(W′W)−1W′X)−1X′W(W′W)−1W′y (5.2)

This estimator is known as the Two Stage Least Squares or 2SLS estimator. This
can be regarded as a generalised IV estimator or GIVE estimator since, when
the number of instruments and regressors is the same, it collapses to the standard
form (5.1).

In general, the problem with IV estimation is to find a set of variables that
satisfy the conditions for being valid instruments.

5.2 Two Stage Least Squares Estimator

In the simultaneous equations context of estimating the equation

yj = Xjβj + uj
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there is a ready set of valid instruments available. This is the T × q matrix of
predetermined variables Z from the system (2.1) defined by

Z =

 z′1
...

z′T


These variables comprise lagged dependent variables plus exogenous variables that
by assumption satisfy the condition that

E(Z′uj) = 0, j = 1, · · · ,m

and

plim
Z′uj

T
= 0.

In general, q > kj so that there are more instruments than regressors.
Hence the application of IV leads to the 2SLS estimator

β̃j = (X′jZ(Z′Z)−1Z′Xj)
−1X′jZ(Z′Z)−1Z′yj (5.3)

This estimator can be interpreted as a two stage estimation procedure. In the
first stage, the regressors Xj are regressed on the set of instruments Z. This is an
estimation of the parameters of the jth equation of the reduced form (2.3). Then
yj is regressed on the fitted values from this regression

X̂j = Z(Z′Z)−1Z′Xj = PzXj

where Pz = Z(Z′Z)−1Z′ is an idempotent projection matrix, to give the second
stage estimates

β̃j = (X̂′jX̂j)
−1X̂′jyj

which is formally identical to (5.3). The X̂j are sometimes called constructed
regressors. They are defined so that, by construction, they are not correlated
with the error term uj. In this interpretation of 2SLS, the original regressors are
replaced by the constructed regressors in the second stage of estimation. Although
this was the original rationale for the 2SLS estimator that was invented by Theil
(1958), it is generally more helpful to think of 2SLS as the instrumental variables
estimator

β̃j = (X̂′jXj)
−1X̂′jyj

where the original regressors are not replaced but are instrumented by X̂j, even
though formally, the two expressions are identical in this case.
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The variance of the 2SLS estimator is given by

var(β̃j) = σjj(X
′
jZ(Z′Z)−1Z′Xj)

−1

and a consistent estimator of σjj can be obtained from the 2SLS residuals

e = yj −Xjβ̃j (5.4)

using the expression

σ̃jj =
e′e

T − k
.

The degrees of freedom correction in the denominator of this expression does not
affect the consistency. Note that the 2SLS residuals (5.4) are not the same as the
residuals obtained from the second stage of the two stage estimation procedure,
which would be given by

ê = yj − X̂jβ̃j.

This is one reason why it can be unhelpful to think of 2SLS as a two stage esti-
mation procedure, since it would lead to an incorrect expression for the estimated
error variance σ̃jj.

In the special case of an exactly identified equation where q = kj, then the
estimator (5.3) collapses to

β̃j = (Z′X−1j Z′yj.

This is equivalent to the indirect least squares (ILS ) estimator.
On the assumption that the plims of the moment matrices

plim
Z′Z

T
= QZZ and plim

X′jZ

T
= QXZ

exist and are finite, it can be shown that the 2SLS estimator is consistent since

β̃j = (X′jZ(Z′Z)−1Z′Xj)
−1X′jZ(Z′Z)−1Z′(Xjβj + uj)

= βj + (X′jZ(Z′Z)−1Z′Xj)
−1X′jZ(Z′Z)−1Z′uj

and

plim β̃j = βj +

(
plim

X′jZ

T

(
Z′Z

T

)−1
Z′Xj

T

)−1
plim

(
X′jZ

T

(
Z′Z

T

)−1
Z′uj

T

)
= βj.

Finally, we can apply a central limit theorem

T−
1
2 Z′uj ∼a N(0, σjjQZZ)
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to show that β̃j is asymptotically normally distributed with

√
T (β̃j − βj) ∼a N(0, σjj(QXZQ−1ZZQZX)−1). (5.5)

This result can be used as the basis for hypothesis testing in the simultaneous
equations model, using the same large sample principles as those considered for
the classical model.

5.3 Limited Information Maximum Likelihood

The maximum likelihood principle can also be used to construct an estimator in
the simultaneous equations system using limited information. This estimator is
known as the LIML estimator. The details will not be presented here. However,
it can be shown that the LIML estimator is asymptotically equivalent to the 2SLS
estimator and so has the same asymptotic distribution (5.5).

5.4 Testing Overidentifying Restrictions

When an equation is overidentified, there are more restrictions on its parameters
than are necessary to identify it. Therefore it is possible to construct a test of
these extra restrictions. Such a test was developed by Sargan (1964). It is based
on the quantity

e′Pze

where e = yj − Xjβ̃j is the vector of equation residuals (2SLS or LIML) and
Pz = Z(Z′Z−1)Z′ is the instrument projection matrix. The test for overidentifying
restrictions is given by

e′Pze

σ̃jj
∼a χ

2
q−kj

and is asymptotically distributed as a chi-squared variate with degrees of freedom
q − kj which is the degree of overidentification of the equation. This test is
sometimes called the Sargan validity of instruments test.

5.5 Testing Exogeneity

Consider the equation

yj = Xjβj + uj = Y1αj + Z1γj + uj (5.6)

where the regressors Xj have been partitioned into the set of p current endogenous
variables Y1 and the kj − p predetermined variables Z1 appearing in the jth
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equation. The special estimation methods for simultaneous equations are needed
because the assumption of exogeneity that

E(Y1
′uj) = 0

will not be expected to hold. If however, this condition did hold, then OLS
estimation would be appropriate. It is possible to devise a test of the exogeneity
of the regressors Y1. This is known as the Wu-Hausman test for exogeneity
and was developed independently by Wu (1973) and Hausman (1978). The test
is computed by first estimating the equation (5.6) by OLS and computing the
residual sum of squares S0. Then the equation is re-estimated by OLS including
as additional regressors the instrumental variables

Ŷ1 = Z(Z′Z−1)Z′Y1

to give residual sum of squares S1. then the test statistic is given by

S0 − S1

σ̂2
∼a χ

2
p

where σ̂2 is the estimated error variance from the first estimation. The test
statistic is asymptotically distributed as chi-squared with degrees of freedom equal
to p, the number of columns of Y1 and so the number of potentially endogenous
regressors. Rejection of the null hypothesis of exogeneity would show that IV
estimation is needed.

6 Estimation: System Methods

System methods of estimation in simultaneous equation systems use all the infor-
mation in the model to estimate the parameters of all equations jointly. They will
be more efficient than single equation methods but are liable to the problem that
misspecification of any one equation will affect the estimates in all the equations.
These methods are more costly in computational terms than single equation meth-
ods and may not be feasible when the instrument set is large. However, many
econometric packages such as TSP, E-Views and Pc-FIML offer these estimation
techniques.

6.1 Three Stage Least Squares

Consider stacking the all the equations of the model

yj = Xjβj + uj, j = 1, · · · ,m
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to form the stacked equation y1
...

ym

 =

 X1 0 0

0
. . . 0

0 0 Xm


 β1

...
βm

+

 u1
...

um

 (6.1)

or
y = Xβ + u

where

var(u) =

 σ11IT · · · σ1mIT
...

. . .
...

σm1IT σmmIT

 = Σ⊗ IT (6.2)

The stacked system (6.1) has a non-constant variance covariance matrix (6.2). It
also has the problem that the regressors X are correlated with the error term u.

The solution is to apply a combination of instrumental variables estimation
and generalised least squares to correct these two problems. The instrument set
is the matrix X̂1 0 0

0
. . . 0

0 0 X̂m

 =

 PzX1 0 0

0
. . . 0

0 0 PzXm

 = (Im ⊗Pz)X (6.3)

where Pz = Z(Z′Z)−1Z′ is the instrument projection matrix.
Applying both GLS using (6.2) and IV using instrument set (6.3) results in

the Three Stage Least Squares (3SLS) Estimator of Zellner and Theil (1962)

β̃ =
(
X
′
(Im ⊗Pz)

′(Σ⊗ IT )−1(Im ⊗Pz)X
)−1

X
′
(Im ⊗Pz)

′(Σ⊗ IT )−1y

=
(
X
′
(Σ−1 ⊗Pz)X

)−1
X
′
(Σ−1 ⊗Pz)y. (6.4)

In practice the unknown covariance matrix Σ needs to be replaced by a consistent
estimator Σ̂. Such an estimator can be based on the expression

σ̂ij =
e′iej

T

where ej is the vector of residuals

ej = yj −Xjβ̃j

from 2SLS regression on the jth equation.
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Note that in the case where Σ is a diagonal matrix, 3SLS estimation is identical
to 2SLS estimation on each equation. This is also the case if every equation is
exactly identified. The reason is that in these cases there is no informational gain
in considering all the equations together.

The 3SLS estimator is consistent and asymptotically efficient in the class of
full information models with

√
T (β̃ − β) ∼a N

(
0,

(
plim

1

T
X
′
(Σ−1 ⊗Pz)X

)−1)
. (6.5)

6.2 Full Information Maximum Likelihood

The maximum likelihood principle can also be used to construct an estimator
in the simultaneous equations system using full information. This estimator is
known as the Full Information Maximum Likelihood or FIML estimator.

Consider again the general linear simultaneous equations model with m equa-
tions

Byt + Γzt = ut, t = 1, · · · , T

where it is now assumed that ut is distributed independently normally as

ut ∼ IN(0,Σ).

The probability distribution function for ut is given by

f(ut) = (2π)−m/2 |Σ|−1/2 exp(−1

2
u′tΣ

−1ut)

and the likelihood function for yt is given by

f(yt) =

∥∥∥∥∂ut

∂yt

∥∥∥∥ f(ut) = ‖B‖ f(ut)

= (2π)−m/2 |Σ|−1/2 ‖B‖ exp(−1

2
u′tΣ

−1ut).

where ‖‖ denotes the absolute value of the determinant. ‖∂ut/∂yt‖ is called the
Jacobian of the transformation from ut to yt.

The likelihood of the whole sample is therefore given by

L(B,Γ,Σ; y, z) =
T∏
t=1

f(yt)

= (2π)−mT/2 |Σ|−T/2 ‖B‖T exp(−1

2

T∑
t=1

u′tΣ
−1ut)
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The FIML estimator is derived by maximising this likelihood function numerically
with respect to the unknown parameters B, Γ, and Σ, taking into account all the
identifying restrictions imposed on these matrices.

It can be shown that the FIML estimator is asymptotically equivalent to the
3SLS estimator and so has the same asymptotic distribution (6.5). FIML has the
advantage over 3SLS that all parameters are estimated jointly whereas in 3SLS,
Σ is pre-estimated from 2SLS residuals. On the other hand, it requires iterative
numerical optimisation and so is computationally more costly than 3SLS.
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