
Econometrics Lecture 9:
Cointegration in VAR Models

R. G. Pierse

1 Introduction

In last semester’s course, the topics of testing for unit roots and cointegration
were introduced. This lecture revisits these topics in the context of the VAR
model and looks in detail at the Johansen (1988, 1991) procedure for testing for
cointegration. This introduction briefly reviews the basic concepts. For more
details, last semester’s lecture notes should be consulted.

1.1 Stationarity

Definition 1.1. Weak stationarity
A variable yt is weakly stationary if its mean and variance are both constant

over time.

Most economic variables do not satisfy the conditions of weak stationarity.

1.2 Two Simple Models

1.2.1 Deterministic Trend

yt = γ + βt+ εt, εt ∼ iid(0, σ2) (1.1)

This model has a non-constant mean, and a constant variance. Stationarity is
achieved by detrending.

1.2.2 Random walk with drift

yt = c+ yt−1 + εt, εt ∼ iid(0, σ2) (1.2)

This model has both a non-constant mean, and a non-constant variance. Station-
arity is achieved by first differencing. A series that can be made stationary by
differencing is said to be integrated, or to possess a unit root.
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Definition 1.2. A time series yt is integrated of order d, denoted I(d), if ∆dyt is
stationary. Then the series yt has d unit roots.

1.3 Testing for Unit Roots

The two models (1.1) and (1.2) have very different properties. In the deterministic
trend model shocks to yt are merely temporary and have no permanent effect on
the future path of the variable. In the unit root model shocks have a permanent
effect. We would like to be able to test between these two models. Consider the
equation

∆yt = αyt−1 + bt+ c+ εt (1.3)

A unit root test is a test of the null of

H0 : α = 0 against H1 : α < 0

in this equation. However, the distribution of the parameter α in (1.3) is non-
standard and we cannot use standard t-tests to test the hypothesis that α =
0. Instead, new tests with non-standard distributions have to be used. Dickey
and Fuller (1979, 1981) propose a test based on the t-ratio t(α) in the OLS
regression (1.3). The distribution of this statistic is non-standard and depends on
the presence of the nuisance parameters, b and c. Critical values of the statistic
are given in Fuller (1976) Table 8.5.2 and in Banerjee et al. (1993).

The Dickey-Fuller test is based on the assumption that εt is ‘white noise’ i.e.
serially uncorrelated. If εt is serially correlated then the serial correlation needs
to be corrected before the unit root test is performed. If it is assumed that the
serial correlation in εt can be represented by an AR(p) process, then it can be
corrected by adding the p lagged terms ∆yt−1, · · · ,∆yt−p to the regression (1.3)
to give

∆yt = αyt−1 + bt+ c+ γ1∆yt−1 + · · ·+ γp∆yt−p + εt. (1.4)

The distribution of the test statistic is unaffected by the addition of these lagged
differences. This procedure is called the augmented Dickey-Fuller test or ADF
test.

1.4 Cointegration

Suppose that y1t, y2t, · · · , ykt are a set of I(1) variables. In general, any linear
combination of them such as

k∑
i=1

wiyit
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will also be I(1) for all set of weights wi 6= 0. However, suppose there exists some
linear combination such that

k∑
i=1

w∗i yit is I(0), w∗i 6= 0 .

Then we say that the variables Yit are cointegrated and that the weights w∗i form
a cointegrating vector.

1.5 The Meaning of Cointegration

If I(1) variables are cointegrated, this means that although they are individually
non-stationary, they are moving together so that there is some long run relation-
ship between them. Consider a static equation between two I(1) variables which
may possibly be cointegrated:

yt = a+ bxt + ηt. (1.5)

If yt and xt are not cointegrated then there is no possible value of the parameters
a and b such that ηt can be stationary. If they are cointegrated however, then
there is a single value for the two parameters such that the linear combination
yt − a − bxt is stationary. This is when the parameters are the weights of a
cointegrating vector. For this unique value of the parameters, (1.5) is a valid
econometric equation with stationary error term ηt. It represents the long run
equilibrium relationship between the two variables and this can only exist when
there is cointegration.

Cointegration can thus be seen as the existence of a long run relationship be-
tween variables and economic theory leads us to expect that cointegration should
exist. Cointegration is a long run property of variables. In the short-run, the
variables can be moving in different ways, driven by different dynamic processes.
However, cointegration ties the variables together in the long run.

1.6 Testing Cointegration

If a set of variables are cointegrated, then the residuals from a static regression
of any one of the variables on all the others will be stationary. If not, then the
residuals will be integrated. Thus Dickey-Fuller tests on the OLS residuals et
from a static regression provide a way of testing cointegration. This was proposed
by Engle and Granger (1987).

The critical values will be different from those from the standard Dickey-
Fuller tests because et is based on estimated parameters. The null hypothesis in
the test is that et ∼ I(1), i.e. zero cointegrating vectors, and the alternative is
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that et ∼ I(0), i.e. one cointegrating vector. Critical values for the ADF tests are
given in MacKinnon (1991).

1.7 Error Correction Mechanisms

The cointegrating vector represents the long run relationship between two coin-
tegrated variables. What about the short-run relationship? Granger and Engle
(1987) show that this can be represented by an error correction model or ECM.

Suppose that two I(1) variables y1t and y2t are cointegrated with cointegrating
relationship

ηt = y1t − a− by2t. (1.6)

Then the short run relationship can be represented by

∆y1t = a0+a1∆y1,t−1+· · ·+ap∆y1,t−p+b1∆y2,t−1+· · ·+bp∆y2,t−p+γηt−1+ut (1.7)

which is an ECM representation. Note that all the terms in the representation
(1.7) are I(0) so that the coefficients in the equation will all have standard distri-
butions.

The ECM can be given an economic interpretation as an adjustment mecha-
nism whereby deviations from the equilibrium relationship in the previous period,
as measured by ηt−1, lead to adjustments in y1t. This is the reason why it is known
as an error correction mechanism.

It can be shown that the ECM representation (1.7) is simply a reparameteri-
sation of the general dynamic model

y1t = α0 + α1y1,t−1 + · · ·+ αp+1y1,t−p−1 + β1y2,t−1 + · · ·+ βp+1y2,t−p−1 + ut (1.8)

but one that makes explicit the long-run cointegrating relationship (1.6) and which
is expressed entirely in terms of stationary variables. Note that this equation is
the first equation from a bivariate VAR system of order p+ 1.

2 Cointegration in VAR Models

Let us now consider cointegration in the multivariate context. Let yt be an n× 1
set of variables, all of which are I(1). In general, any linear combination

a′yt

will also be I(1) for arbitrary a 6= 0. However, suppose there exists an n × 1
vector αi such that

α′i yt is I(0), αi 6= 0 .
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Then we say that the variables yt are cointegrated and αi is a cointegrating vector.
Note that if αi is a cointegrating vector, then so is kαi for any k 6= 0 since

kα′i yt ∼ I(0).

Definition 2.1. If

yt ∼ I(d) and α′i yt ∼ I(d− b), αi 6= 0

then
yt ∼ CI(d, b), d ≥ b > 0.

There can be r different cointegrating vectors, where 0 ≤ r < n. Note that r
must be less than the number of variables n. If a test for r produces the result
that r = n then this is incompatible with the assumption that yt ∼ I(1) and
suggests some problem in the analysis.

Let
α =

[
α1 · · · αi · · · αr

]
denote the n× r matrix of rank r, comprising all the cointegrating vectors. Then
the r × 1 vector

α′yt ∼ I(0)

and, for any nonsingular r × r matrix K, it also follows that

α′yt = α∗′yt ∼ I(0).

In order to uniquely identify the cointegrating vectors, it is necessary to impose
r2 restrictions to pin down K.

3 VECM Representation

Let yt ∼ I(1) be the pth order VAR model

yt = Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + ut.

If and only if the y’s are cointegrated, with cointegrating vectors α, then the
reparameterisation

∆yt = A1∆yt−1 + A2∆yt−2 + · · ·+ Ap−1∆yt−p+1 + γα′yt−1 + ut

will consist entirely of I(0) variables. This result is called the Granger Representa-
tion Theorem, and the parameterisation is known as the Vector Error Correction
Mechanism or VECM. It is a vector generalisation of the simple error correction
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mechanism considered in the introduction. The terms α′yt−1 are called the error
correction terms. There are r of them with coefficients given by the n× r matrix
γ . Note that

γα′yt−1 = γK−1Kα′yt−1 = γ∗α∗′yt

so that the coefficients γ are only uniquely identified when K has been determined.

4 Estimating a Single Cointegrating Vector

Consider estimating a single cointegrating vector, α′1yt ∼ I(0) in the VAR model

Φ(L)yt = ut

4.1 Static Regression

Partition yt and α1 conformably as

y′t =
[
y1t : y′2t

]
and

α′1 =
[

1 : −α∗′
]
.

This is an (arbitrary) normalising restriction. Then consider estimating the static
regression

y1t = β′y2t + wt.

From the definition of cointegration we know that for β = α∗, wt ∼ I(0), but for
all other values of β, then wt ∼ I(1). Since OLS estimation minimises the mean
square error, it is intuitively obvious that

plim
T→∞

β̂ = α∗

and in fact it can be shown that the rate of convergence is O(T ) as opposed to
O(
√
T ) in conventional models with I(0) variables. This property of OLS with

I(1) variables is known as super consistency.

4.2 Testing Cointegration

Static regression provides a framework for testing cointegration, based on the
OLS residuals ŵt. Any of the standard unit root tests can be used, but the
critical values will be different because ŵt is based on estimated parameters. The
null hypothesis in the test is that ŵt ∼ I(1), i.e. zero cointegrating vectors, against
the alternative that ŵt ∼ I(0), i.e. one cointegrating vector. Critical values for
the ADF test, based on fitting response surfaces to simulation results, are given
in MacKinnon (1991).
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4.3 Engle-Granger Two-Step Procedure

Engle and Granger (1987) propose a two-step procedure for estimation.
Step 1: Estimate α∗ from the static regression
Step 2: Estimate the dynamics from the VECM

b1(L)′∆y1t = b2(L)′∆y2t + γŵt−1 + ut

4.4 Problems with Static Regression

The static regression approach is simple and easy-to-use. However, it has certain
drawbacks:

1. It ignores dynamics

2. It ignores simultaneity

3. It is based on an artibrary normalisation

4. If r > 1, then it will find a linear combination of the r cointegrating vectors.

Although OLS estimates of α∗ are super consistent, they can still be heavily
biased in finite samples, as has been found in simulation studies. Because of the
problems of bias in the static regression, Phillips and Hanson (1990) have sug-
gested a non-parametric correction for bias. This corrected OLS static regression
is called the Fully-Modified LS estimator.

5 Estimating Several Cointegrating Vectors

The Johansen (1988, 1991) procedure is based on the maximum likelihood esti-
mation of the VECM model

∆yt =

p−1∑
i=1

Ai∆yt−i + γα′yt−p + µ + δ′xt + ut (5.1)

where the VAR model has been generalised to include an intercept term µ and
a set of I(0) exogenous variables xt. Note that the cointegration term has been
redated at t − p rather than t − 1. (The dating of the cointegration term makes
no essential difference to the analysis).

The log-likelihood function of this model, after concentrating out the nuisance
parameters Ai, µ, and δ, can be written as

logL(α) = c− T

2

p∑
i=1

log(1− λi) (5.2)
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where λi are generalised eigenvalues that are the solution to the problem∣∣λSkk − Sk0S
−1
00 S0k

∣∣ = 0

where Sij = T−1
∑T

t=1 RitR
′
jt, ii, j = 0, k, and R0t and Rkt are the vectors of

residuals from regressing ∆yt and yt−p respectively, on {∆yt−1, · · · , ∆yt−p+1, µ,
xt}. The number of cointegrating vectors, r, is equal to the number of non-zero
eigenvalues, λi.

5.1 Tests of the order of r

Let the eigenvalues λi, i = 1, · · · , n be ordered from largest to smallest. Then
a test of the null hypothesis of r cointegrating vectors against the alternative of
more than r can be based on either the trace statistic

H0 : −T
n∑

i=r+1

log(1− λ̂i) = 0 (5.3)

or the maximal eigenvalue statistic

H0 : −T log(1− λ̂r+1) = 0. (5.4)

Both tests are used but the maximal eigenvalue test (5.4) is generally regarded as
the more powerful.

In both cases the sequence of testing is as follows: firstly test r = 0 against ṙ >
0. If the null is not rejected then this implies that there is no cointegration. If, on
the other hand, the null is rejected, then there is at least one cointegrating vector.
In this case, we then test the hypothesis r = 1 against r > 1. If this null is rejected,
then we next test r = 2 against r > 2 and so on. This procedure continues until
a null is not rejected, at which point the the order of r is determined. Note that
the last possible test is of the hypothesis r = n − 1 against r > n − 1. If this
hypothesis is rejected, then something has gone wrong with the analysis since we
know that r < n. The most likely cause of this problem is that at least one of the
variables in yt is actually I(0) and not I(1).

5.2 The Distribution of the Test Statistics

The distribution of the trace and maximal eigenvalue statistics are non-standard
and have been tabulated by Johansen (1995) and Osterwald-Lenum (1992). Un-
fortunately, as with the Dickey-Fuller statistic, the distribution depends on the
nuisance parameter µ. Several models can be considered:

1. no intercept: µ = 0
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2. restricted intercept (intercept only in error correction term)

∆yt =

p−1∑
i=1

Ai∆yt−i + γ(α′yt−p + α0) + δ′xt + ut

where γα0 = µ.

3. unrestricted intercept

It is also possible to consider the case where the data is generated by model
2 but model 3 is estimated. The three models are nested and it is possible to
test the restricted models against the less restricted using likelihood ratio tests,
provided that the number of cointegrating vectors is known.

However, often the model can be chosen on a priori grounds. For example, if
the variables are trended then an intercept should be included.

5.3 Identification in the Johansen Procedure

In order to identify α, r2 restrictions need to be imposed on the VECM. Johansen
imposes the statistical restrictions

α′iSkkαi = 1 and α′iSkkαj = 0,∀i, j j 6= i.

These restrictions exactly identify the parameters but do not have any obvious
economic interpretation. Since any set of restrictions that exactly identifies the
parameters is equally valid, several authors have proposed alternative identifica-
tion restrictions that are more intuitively appealing.

5.3.1 Phillips Triangular Form

Phillips (1991) proposed the triangular form identification restriction

α =

[
Ir
−α

]
where α is (n− r)× 1 and is unrestricted. This corresponds to a partitioning of
the variables into two sets

y′t =
[

y′1t y′2t
]

such that
α′yt = y1t −α′y2t ∼ I(0)

or
y1t = α′y2t + vt

where the n− r variables, y2t, are not themselves cointegrated.
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5.3.2 Pesaran and Shin

Pesaran and Shin (1997) propose imposing the r2 identifying restrictions on the
basis of a priori economic theory. This is like imposing structural restrictions on
the VAR. This procedure is available in MicroFit Version 4.

5.4 Hypothesis Testing

It is possible to test overidentifying restrictions on the cointegrating vectors. This
makes it possible to test the validity of interpreting the vectors as long run equilib-
rium relationships corresponding to economic theory. The Johansen identification
restrictions can make hypothesis testing a little awkward, and it is often easier to
perform these tests in one of the alternative parameterisations considered above.
However, the principle is straightforward. For example, a set of homogeneous
restrictions can be tested by

H0 : R′iαi = 0, i = 1, · · · , r

where Ri is an n× s matrix of known constants. The test statistic will be asymp-
totically distributed as χ2 with r (n− s) degrees of freedom.
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