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1 Introduction

One observed feature of many financial time series, such as returns on stocks
or exchange rate differences, is that they have a non-constant variance. Such
series typically exhibit periods of high volatility interspersed with periods of low
volatility. The ARCH model of Engle (1982) and its GARCH generalisation by
Bollerslev (1986) are simple models to capture such observed behaviour.

2 The ARCH(q) Model

Consider the model
yt = x′tβ + ut , t = 1, · · · , T (2.1)

where xt is a k × 1 vector of regressors at time period t, and ut is a disturbance
process. The disturbance ut has a constant mean

E(ut) = 0

but u2t is time varying and follows an autoregressive process of order q

u2t = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q + εt (2.2)

where εt is a disturbance with mean zero and unit variance, assumed to be dis-
tributed independently of ut.

In order to ensure that u2t > 0, we impose the restrictions that α0 > 0 and
αi ≥ 0, i = 1, · · · , q. In addition, for the autoregressive process to be weakly
stationary we require that the roots of

α(L) = α1L+ α2L
2 + · · ·+ αqL

q
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all lie outside the unit circle. This implies the condition that

q∑
i=1

αi < 1.

The conditional variance of ut, defined by E(u2t |ut−1, ut−2, · · · ), is given by

E(u2t |ut−1, ut−2, · · · ) = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q = σ2

t . (2.3)

The unconditional variance, E(u2t ), is constant over time and is given by

E(u2t ) =
α0

1−
∑q

i=1 αi

= σ2. (2.4)

This model, first suggested by Engle (1982), exhibits AutoRegressive Condi-
tional Heteroscedasticity and is therefore known as the ARCH(q) model.

2.1 Leptokurtosis and ARCH models

Kurtosis is the scaled fourth moment of a probability distribution and is defined
(for a random variable xt with mean µ) by

κ(xt) =
E(xt − µ)4

[E(xt − µ)2]2
=
µ4

µ2
2

.

Kurtosis measures the fatness of the tails of a distribution, which is the probability
of ‘outliers’. For the normal distribution, κ(ut) = 3. Distributions with fatter
tails than the normal, like the t-distribution, have κ(ut) > 3 and are said to
be leptokurtic. Distributions with thinner tails than the normal have κ(ut) < 3
and are said to be platykurtic. In empirical investigation of financial data series,
many series show evidence of leptokurtosis. ARCH model disturbances have the
property of being leptokurtic. For the case of the ARCH(1) model, the kurtosis
of the unconditional distribution of ut is given by

κ(ut) = 3
(1− α2

1)

(1− 3α2
1)
> 3

for α1 > 0 and 3α2
1 < 1 (otherwise the kurtosis is not finite). Thus ARCH models

exhibit fatter tails than the normal distribution although this may not be enough
fully to account for the kurtosis observed in real financial data series.

Kurtosis of Stock returns 6 January 1986 to 31 December 1997.
Source: Franses and van Dijk (2000)
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Stock Market Daily Weekly
Amsterdam 19.795 11.929
Frankfurt 15.066 8.093
Hong Kong 119.241 18.258
London 27.408 15.548
New York 99.680 11.257
Paris 10.560 9.167
Singapore 28.146 23.509
Tokyo 14.798 4.897

2.2 Estimation of the ARCH model

The parameters of the ARCH(q) model can be estimated by the maximum likeli-
hood method. Firstly, note that the joint log-likelihood function of all T observa-
tions of any model can always be written as the sum:

logL(y; θ) = logL(y1) +
T∑
t=2

logL(yt|yt−1) (2.5)

where L(yt|yt−1) is the conditional density of yt given yt−1 and L(y1) is the
marginal density of the first observation, y1, which in practice is often dropped.

In the case of the ARCH(q) model, the conditional density of yt given yt−1 has
mean x′tβ and variance given by the conditional variance of ut, which is σ2

t . If we
assume a normal density for yt|yt−1, then we can write

L(yt|yt−1) ∼ N(x′tβ,σ
2
t )

= −1

2
log 2π − 1

2
log σ2

t −
1

2σ2
t

(yt − x′tβ)2.

and the joint log-likelihood function is defined by

logL(y; β, α) = logL(y1)−
T − 1

2
log 2π− 1

2

T∑
t=2

log σ2
t −

1

2

T∑
t=2

(yt − x′tβ)2

σ2
t

(2.6)

where

σ2
t = α0 +

q∑
i=1

αi(yt−i − x′t−iβ)2.

Maximising this log-likelihood function with respect to the unknown parameters,
β, α0, αi, i = 1, · · · , q, defines the maximum likelihood estimators, β̃, α̃0, α̃i.
No explicit expression for these estimators is possible but the estimators can be
found by numerical maximisation of (2.6). Note that the first q observations of
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the sample must be dropped in order to define σ2
t . In general, some restrictions on

the likelihood function may also need to be imposed to ensure that the estimators
satisfy the conditions that α̃0 > 0 and α̃i ≥ 0, i = 1, · · · , q.

It is also possible to choose a non-normal conditional density function for
yt|yt−1. One alternative choice which is sometimes used is the t-distribution. This
has fatter tails than the normal distribution, with kurtosis κ = 3+6/(λ−4) where
λ is the degrees of freedom parameter. Use of the t-distribution is consistent with
the excess kurtosis often found in financial data. Maximum likelihood estimation
with the t-distribution proceeds as before, using (2.5) to define the joint density
function for all observations and maximising this with respect to the unknown
parameters.

3 The GARCH(p,q) model

Bollerslev (1986) proposed a generalised ARCH or GARCH model, in which the
conditional variance of ut, σ

2
t , depends not only on lagged u2t but also on lags of

σ2
t itself. The GARCH(p,q) model is defined by

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + · · ·+ βpσ

2
t−p (3.1)

or
β(L)σ2

t = α0 + α(L)u2t

where
β(L) = 1− β1L− β2L2 − · · · − βpLp.

This is a form of ARMA process for u2t as can be seen by adding u2t to each side
of (3.1) and rewriting the equation as

u2t = α0 + (α1 + β1)u
2
t−1 + (α2 + β2)u

2
t−2 + · · ·+ (αm + βm)u2t−m

+(u2t − σ2
t )− β1(u2t−1 − σ2

t−1)− β2(u2t−2 − σ2
t−2)− · · · − βp(u2t−p − σ2

t−p)

where m = max(p, q) and αj = 0, j > q, and βj = 0, j > p. Defining εt = u2t −σ2
t ,

this is

u2t = α0 + (α1 + β1)u
2
t−1 + (α2 + β2)u

2
t−2 + · · ·+ (αm + βm)u2t−m

+εt − β1εt−1 − β2εt−2 − · · · − βpεt−p

which is an ARMA(m,p) process for u2t . Thus the GARCH(p,q) model is an
ARMA(m,p) process and GARCH(0,q) coincides with the pure AR process ARCH(q).
The advantage of a GARCH process over a pure ARCH process is parsimony. A
GARCH model can capture complicated patterns of time variability in the con-
ditional variance using fewer parameters than an ARCH model. In empirical
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applications, the GARCH(1,1) model has often proved sufficiently general to cap-
ture the heteroscedasticity in financial time series.

For weak stationarity of σ2
t , we require that

q∑
i=1

αi +

p∑
j=1

βj < 1.

In that case the unconditional variance σ2 is given by

σ2 =
α0

1−
∑q

i=1 αi −
∑p

j=1 βj

=
α0

β(1)− α(1)
.

To ensure that σ2
t and σ2 are always positive, a sufficient condition is that α0 ≥ 0

and that αi ≥ 0 and βj ≥ 0, ∀i, j.

3.1 Testing for (G)ARCH effects

When ARCH effects are suspected, we can consider testing the null hypothesis of
homoscedasticity

σ2
t = σ2 = α0

against the alternative hypothesis of an ARCH(q) model:

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q.

On the null hypothesis, OLS is an appropriate estimator and so a Lagrange Mul-
tiplier diagnostic test can be constructed, based on the residuals, ût, from the
OLS regression of equation (2.1). The test is based on the R2 from the following
regression of the squared OLS residuals:

û2t = α̂0 + α̂1û
2
t−1 + · · ·+ α̂qû

2
t−q

and Engle (1982) showed that, on the null hypothesis,

TR2 ∼a χ
2
q.

Testing the null of homoscedasticity against the more general alternative of
a GARCH(p,q) model is less straightforward and, in fact, no test exists for the
general case. However, tests for some special cases are available. In particular, a
test of homoscedasticity against the GARCH(p,0) model does exist and coincides
with the ARCH test just considered, for the alternative hypothesis ARCH(p).
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