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1 Introduction

The ARCH model of Engle (1982) and its GARCH generalisation by Boller-
slev (1986) can be extended in many different ways. IGARCH models extend
the framework to allow volatility to have persistence, whereas ARCH-M models
allow a correlation between the mean and volatility of a series and EGARCH
models allow an asymmetry between the effect of positive and negative shocks.
Stochastic volatility models take a difference approach by treating volatility as an
unobservable stochastic variable.

2 Integrated (G)ARCH processes

In some empirical applications the stationarity condition that

q∑
i=1

αi +

p∑
j=1

βj < 1

is not met. In this case, the conditional variance will exhibit persistence to shocks.
A special case is where

q∑
i=1

αi +

p∑
j=1

βj = 1

which is known as an Integrated GARCH or I-GARCH process. In this model,
first considered by Engle and Bollerslev (1986), the ARMA process for u2t has a
unit root. However, although the process is not covariance stationary since the
unconditional variance of ut is infinite, Nelson (1990) showed that the IGARCH
model may still be strictly stationary, so that the effect of shocks to volatility will
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eventually die out. In the IGARCH(1,1) case, a necessary condition for this is
that

E(log(β1 + α1u
2
t−jσ

2
t−j)) < 0 j = 1, · · · , t.

The RiskMetrics methodology developed at J.P. Morgan uses a special case of the
IGARCH(1,1) model to explain the daily log return of a portfolio.

3 (G)ARCH-M processes

In the standard (G)ARCH model, the time-varying volatility of ut has no effect
on the conditional mean of the process, which is given by

E(yt|yt−1) = x′tβ.

In many financial applications, this might be unrealistic. For example, one might
expect that periods of high volatility in returns might correspond with periods
when expected returns are high. Engle, Lilien and Robins (1987) consider the
ARCH-in-Mean or ARCH-M model in which the conditional variance σ2

t is allowed
directly to influence the mean of the process. The model is defined by:

yt = x′tβ + γσ2
t + ut , t = 1, · · · , T (3.1)

where σ2
t follows the ARCH process

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q (3.2)

or the GARCH process

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + · · ·+ βpσ

2
t−p. (3.3)

In this model, the conditional mean

E(yt|yt−1) = x′tβ + γσ2
t

in linearly related to the conditional variance with coefficient γ.

4 EGARCH processes

In the standard (G)ARCH model, volatility is symmetric with respect to positive
and negative shocks. In actual financial data, it is often observed that there is an
asymmetry between the volatility associated with positive and negative shocks. A
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model which allows for such asymmetry is the exponential GARCH or EGARCH
model of Nelson (1991), with conditional variance σ2

t defined by

log σ2
t = α0 +

p∑
i=1

αi
ut−i
σt−i

+

p∑
i=1

γi
|ut−i| − E(|ut−i|)

σt−i
+

p∑
j=1

βj log σ2
t−j (4.1)

where |ut−i| is the absolute value of ut−i. In this model, positive and negative
values of ut−i have different effects on volatility. A positive shock in period t− i
has effect αi +γi whereas a negative shock has effect γi−αi. The logarithmic for-
mulation of this model means that the conditional variance σ2

t cannot be negative,
whatever values are taken by the coefficients.

5 Stochastic Volatility Models

(G)ARCH models represent one, very important, approach to modelling processes
with time-varying conditional volatility. An alternative approach is provided by
stochastic volatility models. The simplest stochastic volatility model, introduced
by Taylor (1986), is defined by the equations

yt = σtut (5.1)

where the log-volatility, log σt, follows the autoregressive process

log σt = φ0 + φ1 log σt−1 + ωεt. (5.2)

ut and εt are independent white noise processes with unit variance. One important
difference between this stochastic volatility model and the family of (G)ARCH
models is that here the conditional variance σt depends on an additional noise
process εt and so is itself an unobservable variable. This makes stochastic volatility
models much more difficult to estimate than GARCH models as the likelihood
function cannot be written down directly, and alternative estimation techniques
must be used. A survey of these techniques is presented in Shephard (1996). We
consider only the simplest case where the conditional mean of yt, yt|yt−1, is zero.
In this model, it is possible to transform the model into a linear form.

To convert the simple stochastic model to a linear form, we would like to
take logarithms of (5.1) but, since yt can be negative, we must first take absolute
values. Then

log |yt| = log σt + E log |ut|+ (log |ut| − E log |ut|). (5.3)

where the term in brackets is treated as a normally distributed zero mean distur-
bance. Equations (5.3) and (5.2) together form what is called a linear state-space
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form. In such a state-space form model, it is possible to compute the likelihood
recursively, using an algorithm called the Kalman filter. (See Harvey et al. (1994)
for details.) The estimation can be perfomed using the STAMP computer software
package of Koopman et al. (1995).

Stochastic volatility models are quite closely related to EGARCH models.
Both models use a logarithmic formulation of the conditional volatility so that no
further conditions are necessary to ensure that σ2

t is positive. Both models imply
excess kurtosis, since in the stochastic volatity model

κ(yt) = 3 exp(var(log σt)) = 3 exp
ω2

1− φ2
1

> 3,

although the excess kurtosis here will in general be larger than in GARCH models
and has no upper limit. This makes the stochastic volatility approach attractive
for dealing with processes with very large kurtosis. However, the difficulty of
estimation of these models compared with GARCH models has limited their use.
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