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Lecture 5: The Capital Asset Pricing Model

Richard G. Pierse

1 Introduction

So far in this module, the models for stock returns we have considered have been
purely statistical. In this lecture we look at an economic model from finance
theory that explains the expected return on a financial asset as a function of its
relative risk and on the excess return of the market portfolio.. This is the famous
Capital Asset Pricing Model (CAPM ) developed by Sharpe (1964) (who won a
Nobel prize in 1990 for his work), Lintner (1965) and Mossin (1966).

2 Derivation of the CAPM

The Capital Asset Pricing Model (CAPM ) of Sharpe (1964), Lintner (1965) and
Mossin (1966) is the first and most widely used model in asset pricing. A portfolio
comprises n risky assets and one risk-free asset. Let xi be the proportion of the
portfolio in asset i so that 1 −

∑
xi is the proportion in the risk-free asset. The

return on the portfolio, rp, is then defined by

rp = x′r + rf (1− x′ι) (2.1)

where r is an n× 1 vector of returns on the n risky assets, rf is the return on the
risk-free asset and x is an n × 1 vector of the portfolio proportions with typical
element xi. Since the return on the risky assets is uncertain, so is the return on
the portfolio, and it will have expected value

E(rp) = x′ E(r) + rf (1− x′ι) (2.2)

and variance
var(rp) = σ2

p = x′ var(r)x

where var(r) is an n× n variance covariance matrix.

1



Investors are assumed to choose their portfolio to minimise its risk, defined by
the square root of variance, σp, for a given rate of expected return. Formally they
must choose x to solve the Lagrangian problem

min
x
c = var(rp)

1
2 + λ(E(rp)− x′ E(r)−rf (1− x′ι)) (2.3)

where λ is a Lagrangian multiplier. First order conditions for this constrained
minimisation problem are

∂c

∂x
= σ−1p var(r)x− λ(E(r)− rf ι) = 0 (2.4)

and
∂c

∂λ
= E(rp)− x′ E(r)−rf (1− x′ι) = 0. (2.5)

Premultiplying (2.4) by x′ gives

σ−1p x′ var(r)x− λ(x′ E(r)− rfx′ι)
= σp − λ(x′ E(r)− rfx′ι) = 0.

Now consider a special portfolio where x′ι = 1 so that the risk-free asset is
excluded. This portfolio will be called the market portfolio. The return on the
market portfolio, denoted rm, is given by

rm = x′r

with expected value
E(rm) = x′ E(r)

and risk, σm, given by
σm = λ(E(rm)− rf ) (2.6)

Substituting (2.6) into (2.4) gives

E(r) = rf +
1

λ
σ−1m var(r)x

= rf + (E(rm)− rf )σ−2m var(r)x.

Note that var(r)x = cov(r, rm) since, by definition,
.

var(r)x = E(r− E(r))(r− E(r))′x

= E(r− E(r))(x′r− x′ E(r))′

= E(r− E(r))(rm − E(rm))′

= cov(r, rm).
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Thus we can write

E(r) = rf + (E(rm)− rf )
cov(r, rm)

var(rm)

= rf + (E(rm)− rf )β

where β = cov(r, rm)/ var(rm) can be considered as an n×1 vector of parameters.
For an individual asset in the portfolio, the expected return, E(ri), is given by

E(ri) = rf + (E(rm)− rf )βi (2.7)

which is the familiar formulation of the CAPM model, where the coefficient.

βi =
cov(ri, rm)

var(rm)

represents the relative riskiness of the ith asset in the market portfolio. The
CAPM equation says that the expected excess return of any asset E(ri) − rf is
proportional to the expected excess return of the market portfolio E(rm) − rf ,
where the constant of proportionality is the relative riskiness of the asset, βi.
Note that the market portfolio has a βi equal to unity.Assets for which βi > 1
are described as aggressive stocks and assets for which βi < 1 are described
as defensive stocks. The Lagrange multiplier λ in (2.6) is sometimes known as
the market price of risk. It represents the slope of a straight line in expected
return/risk space known as the capital market line. All portfolios held by investors
will lie along this line.

The CAPM has some important implications. Firstly, it implies that all in-
vestors will hold their risky assets in the same relative proportions, xi/(ι

′x), re-
gardless of their preferences for risk versus return. These proportions correspond
to those of the market portfolio. ι′x represents the proportion of an individual’s
portfolio in risky assets. Individuals with different preferences for risk will choose
to hold different proportions of risky to risk-free assets.

3 The zero-beta CAPM

Sometimes it is not reasonable to assume the existence of a risk-free asset. For
example, in a world of inflation and in the absence of index-linked bonds, the
real return of any asset will be uncertain. Also, it is generally not possible for
investors to borrow unlimited amounts at a riskless rate. The CAPM model can
be extended to the case where there is no risk-free asset. Instead we assume the
existence of a portfolio, with expected return E(r0), which is uncorrelated with
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the market portfolio so that

cov(r0, rm)

var(rm)
= β0 = 0

In this model it is possible to derive a version of the CAPM, due to Black (1972),
called the zero-beta CAPM in which it can be shown that

E(ri) = E(r0) + (E(rm)− E(r0))βi. (3.1)

In this model, it is no longer true that all investors hold their risky assets in the
same relative proportions. This is because the combination of market portfolio
and zero-beta portfolio is not unique. However, every investor can achieve his
own optimal portfolio by combining any mean-variance efficient portfolio m with
its corresponding zero-beta portfolio.

4 Estimating the CAPM

We now turn to consider the estimation of the CAPM. The standard Sharpe-
Lintner form of the CAPM where a risk-free asset is assumed to exist is straight-
forward to estimate. The Black or zero-beta form of the CAPM is more com-
plicated because the zero-beta portfolio is not directly observed and implies a
nonlinear parameter restriction. In both cases, in order to estimate the parame-
ters we need time-series data and, since the CAPM is a single-period model, this
means making extra assumptions about the time-series behaviour of the model.
The simplest assumption is that returns are independently and identically dis-
tributed through time and jointly multivariate normal.

4.1 Estimating the Sharpe-Lintner CAPM

First, consider the estimation of the standard Sharpe-Lintner form of the CAPM
defined by (2.7). We will assume that returns are independently and identically
distributed through time and jointly multivariate normal. Then we can write

yit = αi + βixt + uit, i = 1, · · · , n, t = 1, · · · , T (4.1)

where yit = rit − rft are the excess returns in period t of asset i over the riskless
asset rft (usually proxied by a short term interest rate) and xt = rmt− rft are the
excess returns in period t of the market portfolio (usually proxied by returns on
an all-share index). The CAPM predicts that the intercepts αi should be zero.
Stacking the observations over t, t = 1, · · · , T we have the n equations

yi = αi + βix + ui, i = 1, · · · , n. (4.2)
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The T × 1 disturbance vectors ui are assumed to have the properties that

E(ui) = 0

and
E(uiu

′
j) = σijIt. (4.3)

This is a particular case of a SURE model where the regressors are the same for
all n equations and in which OLS is an efficient estimator. Thus the equations
(4.2) can be estimated separately, without loss of information.

Consider maximum likelihood estimation of all the n equations jointly. Stack-
ing the observations in (4.1) over assets i, i = 1, · · · , n we have, for the tth
observation:

yt = α + βxt + ut (4.4)

where yt is an n×1 vector of observations on the excess returns of each asset and
α and β are n× 1 vectors of parameters with

E(ut) = 0 and E(utu
′
t) = Σ.

Each time observation is, by assumption, independently normally distributed and
so the likelihood function is given by

L(yt|xt) =
T∏
t=1

(2π)−
n
2 |Σ|−

1
2 exp(−1

2
(yt −α− βxt)

′Σ−1(yt −α− βxt))

= (2π)−
nT
2 |Σ|−

T
2 exp(−1

2

T∑
t=1

(yt −α− βxt)
′Σ−1(yt −α− βxt))

and its logarithm is

logL(y;α,β,Σ|x) = −nT
2

log(2π)− T

2
log |Σ| (4.5)

−1

2

T∑
t=1

(yt −α− βxt)
′Σ−1(yt −α− βxt).

The first order conditions for maximisation of (4.5) are

∂ logL

∂α
= Σ−1

T∑
t=1

(yt −α− βxt) = 0

∂ logL

∂β
= Σ−1

T∑
t=1

[(yt −α− βxt)xt] = 0
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and
∂ logL

∂Σ−1
=
T

2
Σ− 1

2

T∑
t=1

(yt −α− βxt)(yt −α− βxt)
′ = 0.

These equations can be solved to give the maximum likelihood estimators

α̂ = y − β̂x (4.6)

β̂ =

∑T
t=1(xt − x)(yt − y)∑T

t=1(xt − x)2
(4.7)

and

Σ̂ =
1

T

T∑
t=1

(yt − α̂− β̂xt)(yt − α̂− β̂xt)
′ (4.8)

where y = 1
T

∑T
t=1 yt and x = 1

T

∑T
t=1 xt are the sample means of yt and xt

respectively.
It can be seen that the maximum likelihood estimators of α and β defined

by (4.6) and (4.7) are just the OLS estimators and can be computed by separate
OLS for each asset. The maximum likelihood estimator of Σ defined by (4.8) has
typical element

σ̂ij =
e′iej

T

where ei = yi − α̂i − β̂ix is the T × 1 vector of OLS residuals from estimation of
the equation for asset i.

4.2 Estimating the Black zero-beta CAPM

In the Black version of the CAPM, there is no risk-free asset and the expected
return on the zero-beta portfolio, E(r0) in (3.1), is not directly observable. Instead
it is treated as an unknown model parameter. From (3.1) we have

E(ri) = (1− βi) E(r0) + βi E(rm)

which gives rise to the regression equation

yit = αi + βixt + uit, i = 1, · · · , n, t = 1, · · · , T (4.9)

where now yit = rit is the return in period t of asset i, xt = rmt is the return in
period t of the market portfolio and the intercept αi is defined by

αi = (1− βi)γ (4.10)
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where γ estimates the expected return of the zero-beta portfolio, E(r0). Note
that the model implies that αi is proportional to 1−βi, with the same constant of
proportionality γ for all assets i. This is a nonlinear restriction and to take this
into account, we need to estimate all the equations jointly.

If the nonlinear parameter restriction in (4.10) is ignored, then estimation of
αi and βi proceeds as before, except that the variables are now real returns rather
than excess returns. In particular, OLS will still be an efficient estimator. When
the nonlinear restriction is taken into account, then the log-likelihood function of
the system is given by

logL(y; γ,β,Σ|x) = −nT
2

log(2π)− T

2
log |Σ| (4.11)

−1

2

T∑
t=1

(yt − γ(ι− β)− βxt)
′Σ−1(yt − γ(ι− β)− βxt)

with first order conditions

∂ logL

∂γ
= (ι− β)′Σ−1

T∑
t=1

(yt − γ(ι− β)− βxt) = 0

∂ logL

∂β
= Σ−1

T∑
t=1

[(yt − γ(ι− β)− βxt)(xt − γ)] = 0

and

∂ logL

∂Σ−1
=
T

2
Σ− 1

2

T∑
t=1

(yt − γ(ι− β)− βxt)(yt − γ(ι− β)− βxt)
′ = 0.

Solving the first order conditions gives the expressions

γ̃ =
(ι− β̃)′Σ̃−1(y − β̃x)

(ι− β̃)′Σ̃−1(ι− β̃)
(4.12)

β̃ =

∑T
t=1(xt − γ̃)(yt − γ̃ι)∑T

t=1(xt − γ̃)2
(4.13)

and

Σ̃ =
1

T

T∑
t=1

(yt − γ̃(ι− β̃)− β̃xt)(yt − γ̃(ι− β̃)− β̃xt)
′. (4.14)

The three equations (4.12), (4.13) and (4.14) must be solved jointly to derive
the maximum likelihood estimators. One solution algorithm would be to iterate
around the equations until convergence. Alternatively, the ML estimators can be
found directly by a nonlinear search for the maximum of (4.11).
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