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1 Introduction

Nonlinear models have become increasingly popular in finance. This is partly
a recognition of the inherent nonlinearity of much financial data and partly a
response to the increasing tractability of nonlinear models with recent explosions
in computing power. The class of nonlinear models is very large but one family of
models has received special attention: switching regime models. In this lecture we
look at two of the simplest models in this family, the SETAR and the STAR model
while in next week’s lecture we look at the Markov switching model of Hamilton as
well as the semi-parametric artifical neural network ANN model which bears some
resemblances to the STAR model. Franses and van Dijk (2000) gives an excellent
overview of nonlinear models in empirical finance while Granger and Teräsvirta
(1993) takes a more general look at the use of nonlinear models in economics.

2 Equilibrium in nonlinear models

Consider the general nonlinear model

yt = ft(yt−1, ut,θ)

where ft() is a nonlinear function of yt−1 and a random disturbance ut with
parameters represented by the vector θ. The deterministic part of the model,
ft(yt−1, 0,θ) is found by setting the disturbances to zero and is called the skeleton
of the model. The model has an equilbrium at the point y∗t if y∗t is a fixed point
of the skeleton so that

y∗t = f(y∗t , 0,θ).

This equibrium is said to be stable if yt converges to y∗t in the absence of shocks
ut. Otherwise it is unstable. A stable equilibrium can either be globally stable if
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yt converges to y∗t from any starting point or locally stable, if yt only converges to
y∗t from certain starting points. A stable equilibrium is also known as an attractor
because yt is attracted to y∗t , and, when that equilibrium is locally stable, then the
region in which the process converges to an attractor is known as the domain of
attraction.

In the linear model
yt = θ0 + θ1yt−1 + ut

there is a unique equilibrium at

y∗t =
θ0

1− θ1

as long as θ1 6= 1. This equilibrium is globally stable if |θ1| < 1 but otherwise it is
unstable. When θ1 = 1 (a positive unit root), the skeleton is

yt = θ0 + yt−1

and an equilibrium exists only if θ0 = 0, otherwise there is no equilibrium. When
θ0 = 0, there is an infinite number of equilbria since any value of yt is an equilib-
rium.

With nonlinear models, there can often be multiple equilibria, some of which
will be stable and some unstable. For example, the simple cubic function

yt = y3t−1 + ut

has three equilibria at y∗t = −1, y∗t = 0, and y∗t = 1, but only the middle one is
stable.

3 Regime Switching Models

One important class of nonlinear models that have proved popular in the finance
literature are the threshold autoregressive (TAR) models of Tong (1978) and Tong
and Lim (1980). In these models there are two or more regimes and a mechanism
whereby the model switches between them according to whether a particular
variable reaches a threshold value. The most important models in this class are the
SETAR model and the STAR model. Another important model is the Markov
Switching Regimes model, in which the regime is unobserved but assumed to
follow a simple statistical process.
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3.1 The SETAR model

The Self-Exciting Threshold Autoregressive or SETAR model is defined by

yt =

{
α01 + α11yt−1 + ut, yt−d ≤ c

α02 + α12yt−1 + ut, yt−d > c
. (3.1)

where the disturbance ut is assumed to be independently, identically distributed
ut ∼ iid(0, σ2). In this model, the process generating yt switches between two
regimes, depending on whether yt−d is greater or less than the threshold value c,
where d represents the delay in response. When |α11| < 1 and |α11| < 1 , then
the model in each regime is a linear autoregressive process with mean given by

µ1 =
α01

1− α11

in regime 1, when yt−d ≤ c , and

µ2 =
α02

1− α12

in regime 2, when yt−d > c. The nonlinearity of the model is caused by the
endogenous switching betwen the two regimes.

The SETAR model (3.1) can be written in the alternative form

yt = (α01 + α11yt−1)(1− I(yt−d > c)) + (α02 + α12yt−1)I(yt−d > c) + ut (3.2)

where I(a) is an indicator function with I(a) = 1 when the condition a is true
and I(a) = 0 when a is false. The skeleton of (3.2) is

yt = (α01 + α11yt−1)(1− I(yt−d > c)) + (α02 + α12yt−1)I(yt−d > c)

which is just the conditional expectation E(yt|yt−1, yt−d).
The way that the SETAR model behaves depends on the values of the pa-

rameters. To give an illustration, suppose that c = 0 and d = 1 so that the
model is in the second regime whenever yt−1 is positive and in the first regime
otherwise. Setting the autoregressive coefficients to α11 = −0.5 and α12 = 0.5,
we consider different values of the intercept terms α01 and α02. Four cases can be
distinguished:

α01 α02 equilibria stability
0 0 y∗t = 0 stable
−0.3 −0.2 y∗t = −0.2 stable
−0.3 0.1 y∗t = −0.2; y∗t = 0.2 both stable
0.3 −0.1 none limit cycle
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In the first case, when both intercepts are zero, the two regimes have the same
mean and there is a single globally stable equilibrium at zero. In the second case,
there is also a single stable equilibrium. This is because the mean in both regimes
is negative and so, whenever the model is in the second regime, it is attracted
back to the first regime. In the third case, there are two locally stable equilibria
at −0.2 and at 0.2. This is because the mean in the first regime is negative while
the mean in the second regime is positive. In the absence of shocks, there is
nothing ever to cause the process to switch regimes so that it will converge to the
mean of whichever regime it starts from. Finally, in the fourth case, there is no
equilibrium. This is because the mean in the first regime is positive while the mean
in the second regime is negative, so that whenever the model is in one regime, it
is attracted to the other regime. The model will cycle indefinitely between the
three values y∗1 = 1

15
, y∗2 = − 1

15
and y∗3 = 1

3
. This set of points is known as a limit

cycle and can be regarded as the attractor of the process. Even in the absence of
exogenous stochastic shocks, this model displays endogenous dynamics.

Some deterministic nonlinear processes can have chaotic dynamics where the
slightest change in the starting values can change the time path of the process.
An example is the well-known tent map, which is the deterministic SETAR model

yt =

{
0 + 2yt−1, yt−1 < 0.5

2− 2yt−1, yt−1 ≥ 0.5
. (3.3)

for y0 ∈ (0, 1). Despite the fact that there is no disturbance in this model, it
generates sequences of observations that appear to be random and are uniformly
distributed on the unit interval and serially uncorrelated.

The SETAR model can be generalised to higher order AR processes but little
is known in general about the conditions under which such models are stationary.
For the first order case of equation (3.1) where d = 1, Chan et al. (1985) prove
that the model is stationary if and only if one of the following five conditions is
satisfied:

1 α11 < 1, α12 < 1, α11α12 < 1
2 α11 = 1, α12 < 1, α01 > 0
3 α11 < 1, α12 = 1, α02 < 0
4 α11 = 1, α12 = 1, α02 < 0 < α01

5 α11α12 = 1, α11 < 0, α02 + α12α01 > 0.

Note that conditions 2-4 correspond to cases when one or both of the regimes
has a unit root and so is non-stationary, but the model is still globally stationary
since the intercept conditions mean that the model is attracted to a stationary
regime.
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3.2 The STAR model

In the SETAR model (3.2), there is an abrupt switch from one regime to the other
at the threshold value yt−d = c. An alternative model to (3.2) is

yt = (α01 + α11yt−1)(1− S(yt−d)) + (α02 + α12yt−1)S(yt−d) + ut (3.4)

where S() is a transition function varying smoothly between between 0 and 1 as
yt−d increases. This is the Smooth Transition Autoregressive or STAR model of
Chan and Tong (1986), Granger and Teräsvirta (1993) and Teräsvirta (1994). A
popular choice for S() is the logistic function

S(yt−d, γ, c) =
1

1 + exp(−γ(yt−d − c))
(3.5)

in which case the model is called a Logistic STAR or LSTAR model. The param-
eter γ in (3.5) determines the smoothness of the transition from one regime to
another.As γ →∞, the logistic function tends to a step function and the LSTAR
model tends to the SETAR model. As γ → 0, the transition function S() tends to
the constant value, 0.5, and the model becomes the linear autoregressive model

yt =
α01 + α02

2
+
α11 + α12

2
yt−1 + ut.

With positive values of γ, γ ∈ (0,∞), the model is a linear combination of the
two regimes

yt = ((1− wt)α01 + wtα02) + ((1− wt)α11 + wtα12)yt−1 + ut

where the weights wt will be time-varying.

4 Regime switching models of volatility

The nonlinear models considered so far allow for nonlinearity in the mean. It
is also possible to consider nonlinear versions of models in the GARCH family.
In particular, regime switching models of conditional variance allow volatility to
have an asymmetric response to positive and negative shocks. Fornari and Mele
(1996, 1997) proposed the Volatility Switching GARCH or VS-GARCH model in
which conditional variance σ2

t follows a SETAR model

σ2
t =

{
α01 + α11u

2
t−1 + β11σ

2
t−1, ut−1 ≤ 0

α02 + α12u
2
t−1 + β12σ

2
t−1, ut−1 > 0

. (4.1)
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or

σ2
t = (α01 + α11u

2
t−1 + β11σ

2
t−1)(1− I(ut−1))

+(α02 + α12u
2
t−1 + β12σ

2
t−1)I(ut−1). (4.2)

The unconditional variance of ut in this model is given by

σ2 =
(α01 + α02)/2

1− (α11 + α12)/2− (β11 + β12)/2
.

The kurtosis in this model is higher than in the standard GARCH(1,1) model.
With parameter restrictions α11 > α12 and α01+β11σ

2
t < α02+β12σ

2
t , small positive

shocks have a larger impact on conditional volatility than small negative shocks
but the reverse holds for large shocks. Thus the model allows more complicated
asymmetric effects than other nonlinear models like the EGARCH model.

Anderson, Nam and Vahid (1999) consider an Asymmetric Nonlinear Smooth
Transition GARCH or ANST-GARCH model

σ2
t = (α01 + α11u

2
t−1 + β11σ

2
t−1)(1− S(ut−1, γ, 0))

+(α02 + α12u
2
t−1 + β12σ

2
t−1)S(ut−1, γ, 0) (4.3)

where S(ut−1, γ, 0) is the logistic function defined by equation (3.5).

5 Testing for nonlinearity

5.1 RESET tests

A test for linearity against a general nonlinear alternative is provided by the
RESET test of Ramsey (1969). This is based on the regression

ût = x′tβ +

q∑
j=2

δj ŷ
j
t + vt (5.1)

where ŷt are the fitted values and ût the residuals from the linear model

yt = x′tβ + ut. (5.2)

The regression (5.1) includes nonlinear powers of ŷt which should have zero coef-
ficients if the relationship between yt and xt is linear. Thus the null hypothesis is
that δj = 0, j = 2, · · · , q which can be tested by the F statistic

F =
(RSS1 −RSS2)/r

RSS2/(T − k − r)
∼ Fr,T−k−q+1 (5.3)
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where RSS1 is the Residual Sum of Squares,
∑

t û
2
t , from (5.2), RSS2 is the Resid-

ual Sum of Squares,
∑

t v̂
2
t , from (5.1) and r = q− 1 is the number of restrictions.

The test is exact if xt does not contain any lags of yt and is asympototically valid
otherwise. An equivalent asymptotic form is given by the chi-squared statistic

(T − r)R2 ∼a χ
2(r)

where R2 is the uncorrected goodness of fit measure from (5.1). This form of the
statistic, for the case r = 1, is the misspecification diagnostic test reported by
MicroFit.

A modified RESET test, due to Thursby and Schmidt (1977) is based on the
alternative auxiliary regression

ût = x′tβ +

q∑
j=2

δ
′

jx
j
t + vt (5.4)

where xj
t is the (k−1)×1 vector of jth powers of each of the elements of xt, except

the intercept. The null hypothesis is that δj = 0, for j = 2, · · · , q. This implies
(k−1)(q−1) coefficient restrictions and leads to the test statistic (5.3) where now
RSS2 is the Residual Sum of Squares,

∑
t v̂

2
t , from (5.4) and r = (k−1)(q−1). This

modified RESET test allows the nonlinear effects to differ for different elements
of xt, and would be expected to be more powerful in some circumstances.
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[9] Teräsvirta, T. (1994), ‘Specification, estimation and evaluation of smooth
transition autoregressive models’, Journal of the American Statistical Asso-
ciation, 89, 208–218.

[10] Thursby, J.G. and P. Schmidt (1977), ‘Some properties of tests for specifica-
tion error in a linear regression model’, Journal of the American Statistical
Association, 72, 635–641.

[11] Tong, H. (1978), ‘On a threshold model’, in C.H. Chen (ed.) Pattern Recog-
nition and Signal Processing, Sijthoff & Noordhoff, Amsterdam, NL.

[12] Tong, H. and K.S. Lim (1980), ‘Threshold autoregression, limit cycles and
cyclical data’, Journal of the Royal Statistical Society, Series B, 42, 245–292.

8


