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1 Introduction

In this lecture we look at a very popular switching regimes model, due to Hamil-
ton (1989) in which the regime in unobserved but is assumed to follow a simple
stochastic process. We also look at Artificial Neural Network (ANN ) models
which were pioneered in economics by Hal White (1992) and which can be re-
garded as smooth transition models with many regimes, although because the
models are semi-parametric only, the nature of the different regimes is unclear.

1.1 The Markov Switching Regime model

Hamilton (1989) proposed a switching regime model in which the regime or state
is unobserved and is determined by a stochastic process. In the simplest case, the
model is given by

yt =

{
α01 + α11yt−1 + ut, st = 1

α02 + α12yt−1 + ut, st = 2
.

where st represents the state or regime and the disturbance ut is assumed to be
independently, identically distributed ut ∼ iid(0, σ2). The state st is unobserved
and is assumed to follow a first order Markov process so that

Pr(st = i|st−1 = j) = πij, i, j = 1, 2. (1.1)

The value πij is known as the transition probability of moving to state i from state
j and is assumed to be independent of time.

The transition probabilities can be represented in a 2× 2 matrix

Π =

[
π11 π12
π21 π22

]
.
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Note that the transition probabilities must satisfy the condition that
∑

i πij = 1,
∀j. This implies that the columns of Π must all sum to one or

ι′Π = ι′

where ι is a 2× 1 vector of ones, so that the transition matrix Π is singular.
The probability of being in a particular state at a point in time, can be repre-

sented by the 2× 1 vector Pr(st)

Pr(st) = Π Pr(st−1)

= Πk Pr(st−k)

The log-likelihood function of the observations yt , t = 1, · · · , T , is given by

L =
T∑
t=1

log f(yt|yt−1)

where

f(yt|yt−1) =
2∑

i=1

f(yt|st = i, yt−1) Pr(st = i|yt−1) (1.2)

and the conditional distribution of yt given knowledge of the state st has the
standard normal density

f(yt|yt−1, st = i) = (2πσ2)−
1
2 exp{− 1

2σ2
(yt − α0i + α1iyt−1)

2} .

Note that, by definition, the joint distribution of yt and st is

f(yt, st = i|yt−1, st−1) = f(yt|yt−1, st = i) Pr(st = i|st−1)

and the marginal distribution of yt is

f(yt|yt−1, st−1) =
2∑

i=1

f(yt, st = i|yt−1, st−1) .

Therefore the probability that st = i , given information at time t, is simply the
ratio of the two:

Pr(st = i|yt) =
f(yt, st = i|yt−1, st−1)

f(yt|yt−1, st−1)

=
f(yt|st = i, yt−1) Pr(st = i|st−1)∑2
i=1 f(yt|st = i, yt−1) Pr(st = i|st−1)

. (1.3)
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Once the model parameters have been estimated by maximum likelihood, it
is possible to derive an estimate of the probablility of being in regime i in time
period t, based on all the observations in the sample, yt, t = 1, · · · , T. This is the
so-called smoothed estimator

Pr(st = i|y1, y2, · · · , yT ).

The Markov switching model (1.1) can be generalised to deal with cases with more
than two regimes or where the disturbance variance is state specific. However,
the estimation of a Markov switching model proceeds on the assumption that
the number of regimes is known, so that it is not possible to test the number of
regimes within the model.

2 Markov switching models of volatility

Various versions of a Markov-Switching GARCH model have been developed by
Kim (1993) and Hamilton and Susmel (1994) among others. A general version is
defined by

σ2
t =

{
α01 + α11u

2
t−1 + β11σ

2
t−1, st = 1

α02 + α12u
2
t−1 + β12σ

2
t−1, st = 2

. (2.1)

where the state st is unobserved and is assumed to follow the first order Markov
process defined by (1.1).

3 Artificial Neural Network models

Another important class of nonlinear models that are becoming increasingly pop-
ular in the finance literature are Artificial Neural Network (ANN ) models. They
were first developed in neurophysiology as ways of representing the operation of
the human brain but have subsequently been applied to many areas in economics
and finance, in particular by White (1992). The main reason for the popularity of
ANNs is their ability to approximate, arbitrarily closely, any nonlinear function.
In empirical work, they have been used to forecast stock prices, exchange rates
and in option pricing.

The basic ANN we consider is the multilayer perceptron (MLP) model

yt = γ0 +

q∑
j=1

γjφ(x
′

tβj) + ut (3.1)

where φ() is a squashing function called an activation function that varies smoothly
between between 0 and 1. Any appropriate function can be used as φ() but the
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most common choice is the logistic function

φ(z) =
1

1 + exp(−z)
.

The terminology used in ANNs derives from neurology. The k variables xt

are known as the input layer and the single variable yt is the output layer. The
q activation functions φ() represent a hidden layer of q units or nodes between
the input and output layer that transforms the inputs into values lying between
zero and one. The activation functions are analogous to neurons in a brain.
The coefficients γj are known as synaptic weights. In the model (3.1), there
is only one hidden layer and so the model is known as a single hidden layer
feedforward network model, where the qualification feedforward refers to the fact
that information flows only in one direction, from inputs to outputs. Models
allowing feedback are possible but are rarely used in financial applications.

The number of hidden layers can be increased. For example

yt = γ00 +

p∑
i=1

γ0iφ(

q∑
j=1

γijφ(x
′

tβj)) + ut (3.2)

represents a dual hidden layer feedforward network model where there are q nodes
in the first hidden layer and p in the second.

3.1 Estimating ANNs

The ANN model (3.1) can be estimated by minimising the sum of squared resid-
uals

min
θ
s =

T∑
t=1

û2t =
T∑
t=1

{yt − γ0 −
q∑

j=1

γjφ(x
′

tβj)}2 (3.3)

with respect to the (k+1)q+1 unknown parameters θ = {γ0, γ1, · · · , γq, β1, · · · ,
βq}. This is a form of nonlinear least squares (NLS ) estimation. One problem
with estimation of nonlinear models like this is that there may be several local
minima so that the numerical minimisation procedure might converge to one of
these local minima rather than the global minimum. One check is to try starting
the minimisation from different initial values for θ to see whether it converges to
the same point.

Alternatively, the model parameters can be estimated recursively. Making use
of the notational shorthand,

f(xt;θ) = γ0 +

q∑
j=1

γjφ(x
′

tβj),

4



the recursive estimate can be written as

θ̂t = θ̂t−1 + λt
∂f(xt; θ̂t−1)

∂θ̂t−1
(yt − f(xt; θ̂t−1)) (3.4)

where θ̂t denotes an estimate of θ based on the first t observations The recursion
is initialised with a set of starting values θ̂0. This recursive way of estimating the
model parameters is known as learning or back-propagation and λt is the learning
rate, which is chosen either to be constant or to decline with time. White (1989b)
provides a proof that, under certain conditions, this learning algorithm will either
converge to a local minimum of (3.3) or θ̂t will tend to infinity.

One problem with the estimating (or ‘training ’ to use the special terminology)
of ANN models is that of over-fitting. While this is a potential problem in any
econometric model, it is especially acute here since ANNs are so good at approx-
imating the behaviour of any nonlinear function. If an ANN is over-fitted, then
it will be trained to explain some of the noise in the estimating data set as well
as the signal, and this will tend to make it bad at prediction in new data sets on
which it wasn’t trained. It is very difficult to know a priori how complex an ANN
model is needed (in terms of the number of nodes in each layer and the number
of hidden layers) for a particular problem.

3.2 Interpreting ANN models

It is very difficult to give any interpretation to the synaptic weights γ in an ANN
model, or to relate these to the form of nonlinearity captured by the model. This
has led to ANN models being thought of as black boxes : they may be good at
forecasting but are not susceptible to analysis because we can’t look inside to see
how they work.

It is interesting to compare the ANN model to the STAR model, since both
make use of smooth transition logistic functions. For example, consider the equa-
tion

yt = γ0 + γ1φ(βyt−1) + ut,

which is a special case of the ANN model (3.1) where the number of nodes in the
hidden layer, q, is 1 and where the input variable vector, xt, simply consists of
the first lag of yt. This is related to the STAR model of last week’s lecture which
can be rewritten as

yt = ω0 + ω1φ(γyt−1 + γc) + ut

where
ω0 = α01 + α11yt−1
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and
ω1 = α02 − α01 + (α12 − α11)yt−1.

More generally, single hidden layer ANN models can be thought of as smooth
transition models with many regimes. However, the interpretation of the regimes
in an ANN model is unclear whereas it is explicit in a STAR model.

3.3 Testing linearity in an ANN model

White (1989a) proposed a test of linearity in the ANN model (3.1). Adding linear
terms to the equation, it can be rewritten as

yt = x
′

tβ0 +

q∑
j=1

γjφ(x
′

tβj) + ut

and the null hypothesis of linearity corresponds to the q restrictions that γ1 =
γ2 = · · · = γq = 0. The alternative hypothesis is that the model is a single hidden
layer perceptron model.
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