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1 Introduction

The Kalman �lter of Kalman (1960) and Kalman and Bucy (1961) is an
algorithm for generating minimum mean square error forecasts in a state
space model. Since the state space model is a very general formulation for
linear models in which time varying parameters, measurement errors and
missing observations can all be dealt with very easily, the Kalman �lter is
a very useful tool. As a by-product, if Gaussian errors are assumed, the
�lter allows the computation of the log-likelihood function of the state space
model. This allows the model parameters to be easily estimated by maximum
likelihood methods.

2 State Space Models

The general state space model can be written as two equations. The �rst is
a measurement equation

yt = Zt�t +Xtd+ "t (1)

where yt is an n � 1 vector of observable variables, Zt is an n � m matrix
of variables, and Xt is an n � k matrix of exogenous variables. �t is an
m� 1 vector of possibly unobservable state variables, d is a k � 1 vector of
parameters and "t is an observational error with E("t) = 0 and

var("t) = �2Ht

where Ht is a known n� n matrix and �2 is a scaling variance.
The state variables �t are generated by �rst order Markov process de�ned

by the transition equation

�t = Tt�t�1 + ct +Rt�t (2)
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where Tt is an m�m matrix, ct is an m� 1 vector, Rt is an m� g matrix
and �t is a g� 1 vector of serially uncorrelated disturbances with E(�t) = 0
and

var(�t) = �2Qt

where Qt is a known g � g matrix.
The two disturbances "t and �t may be contemporaneously correlated

but are assumed to be uncorrelated in all other periods so that

E(�t"
0
s) = �2Gt ; t = s

= 0 ; t 6= s :

In most cases we have Gt = 0 so that the two disturbances are independent.
The matrices Zt,Ht, Tt,Rt,Qt andGt are known as the system matrices.

Most of the elements of these matrices will be �xed elements, mainly ones
and zeros. However, they will also contain elements corresponding to the true
underlying parameters of the system. These underlying parameters, denoted
by the vector � are known as the system hyperparameters. The vectors ct
and dt may also contain parameters but these do not a¤ect the stochastic
properties of the model but only enter the model in a determininistic way.
The disturbance "t in the measurement equation (1) is an error in mea-

surement. The state space form thus naturally lends itself to modelling sys-
tems with measurement error. In this case the transition equation de�nes the
signal �t which is unobservable and only measured with error (noise). In the
univariate case where n = m = 1, the ratio of the variances q=h represents
the signal to noise ratio.

3 Applications of State Space Models

The state space form is a very �exible speci�cation for linear time series
models. Often there will be more than one way to write down a model in
state space form. This section presents a few examples of models that can
be cast in state space form.

3.1 The AR(p) model

For example the pth order autoregressive process

yt = �1yt�1 + � � �+ �pyt�p + "t
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can be set up in state space form with transition equation given by

�t �

26664
yt
...

yt�p+2
yt�p+1

37775 =
26664
�1 � � � �p�1 �p
1 0 0 0

0
. . . 0 0

0 0 1 0

37775
26664

yt�1
...

yt�p+1
yt�p

37775+
26664
1
0
...
0

37775 �t :
The �rst equation of this system of p�1 equations represents the autoregres-
sive process while the remaining p � 2 equations are identities de�ning lags
of yt. These latter equations have no error so that the matrix R is p� 1� 1
and the error process is a scalar. The measurement equation is given by

yt =
�
1 0 � � � 0

�
�t:

Note that there is no error on this measurement equation because the state
variables �t are observed without error. The hyperparameters are the p
parameters �1, � � � , �p and the error variance �2".

3.2 The ARIMA(p,d,q) model

Harvey and Pierse (1984) derive the state space representation of a general
ARIMA(p,d,q) model

�(L)�dyt =  (L)"t :

De�ning m = max(p; q + 1), the transition equation can be written as the
(m+ d)� 1 system

�t =

24 � 0m�d
10 � � � 0 �1 � � � �d
0d�1�m Id�1 : 0

35�t�1 + �  
0d�1

�
"t :

where

� =

2666664
�1 1 0 � � � 0

�2 0 1
. . .

...
...

... 0
. . . 0

�m�1 0 � � � 0 1
�m 0 � � � 0 0

3777775 ;  =

2666664
1
 1
...

 m�2
 m�1

3777775
and ��j is the coe¢ cient on Lj in the expansion of �d = (1� L)d.
This state space representation has p + q + 1 hyperparameters and a

measurement equation given by

yt =
�
1 01�m�1 �1 � � � �d

�
�t :
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3.3 The Hodrick-Prescott �lter

The Hodrick and Prescott (1980) �lter generates a smoothed trend y�t from
a time series yt by solving the problem

min
y�

(
TX
t=1

(yt � y�t )
2 + �

TX
t=3

(�2y�t )
2

)
for a �xed value of the smoothing parameter �. Koopman et al. (1995) show
that this problem can be set up as the structural time series model de�ned
by the equations

yt = y�t + "t

y�t = y�t�1 + �t�1

and
�t = �t�1 + �t

with the special restriction that "t =
p
��t. This model can be formulated

in state space form with transition equation

�t �
�
�t
y�t

�
=

�
1 0
1 1

� �
�t�1
y�t�1

�
+

�
1
0

�
�t

and measurement equation

yt =
�
0 1

�
�t + "t :

Note that here the disturbance terms in transition and measurement error
are perfectly correlated with the 1 � 1 matrix Gt equal to the scalar �

� 1
2 .

The only hyperparameter in the model is the scaling variance �2:

4 The Kalman Filter

Let at�1 be the minimum mean square linear estimator (MMSLE) of �t�1
based on information available at time t�1. LetPt�1 be them�m covariance
matrix of the estimation error de�ned by

Pt�1 = E(at�1 ��t�1)(at�1 ��t�1)0 :

The Kalman Filter comprises two sets of recursive equations:

4.1 Prediction equations

atjt�1 = Ttat�1 + ct (3)

Ptjt�1 = TtPt�1T
0
t +RtQtR

0
t (4)

4



4.2 Updating equations

When an observation arrives, the estimators at and Pt can be updated by
the one-step ahead prediction error de�ned by

vt = yt � Ztatjt�1 �Xtd : (5)

This prediction error has estimated variance given by

Ft = ZtPtjt�1Z
0
t + ZtRtGt +G

0
tR

0
tZ
0
t +Ht : (6)

The updating equations for at and Pt are then given by

at = atjt�1 + (Ptjt�1Z
0
t +RtGt)F

�1
t vt (7)

and
Pt = Ptjt�1 � (Ptjt�1Z0t +RtGt)F

�1
t (ZtPtjt�1 +G

0
tR

0
t): (8)

4.3 Dealing with missing observations

The Kalman �lter deals very naturally with missing observations. If an
observation is missing, the updating equations are simply skipped for that
observation. Then the prediction equations operate on atjt�1 and Ptjt�1 to
compute theMMSLE at+1jt�1 andPt+1jt�1: This continues until the next non-
missing observation at which stage the prediction can be updated. Harvey
and Pierse (1984) use the Kalman �lter to estimate ARIMA(p,d,q) models
with missing observations.

4.4 The log-likelihood function

Assuming that the disturbances are normally distributed, the log-likelihood
function for the model can be computed from the prediction errors vt and
associated variances Ft and is de�ned by

L = �nT
2
log(2��2)� 1

2

TX
t=1

log jFtj �
1

2�2

TX
t=1

v0tF
�1
t vt : (9)

The scalar parameter �2can be concentrated out of this log-likelihood func-
tion giving

@L

@�2
= � nT

2�2
+

1

2�4

TX
t=1

v0tF
�1
t vt = 0) e�2 = TX

t=1

v0tF
�1
t vt
nT
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and the concentrated log-likelihood function can be written as

L� = �nT
2
log(2�)� nT

2
� 1
2

TX
t=1

log jFtj �
nT

2
log

 
TX
t=1

v0tF
�1
t vt
nT

!
(10)

This log-likelihood can be maximised numerically to �nd maximum likelihood
estimates of the hyperparameter vector �.

4.5 Initialising the Filter

In order to start the Kalman �lter we need initial values a0 and P0. The
initial values to be used will depend on whether or not the system matrices
in the state space form are time invariant.
Firstly, suppose that the system matrices Zt, Xt, Ht, Tt, ct, Rt, Qt and

Gt are all invariant over time. Then initial values for a0 can be given by the
equation

a0 = (I�T)�1c
and initial values for P0 can be derived by solving the system of equations

P0 = TP0T
0 +RQR0

giving the solution

vec(P0) = (I�T
T)�1 vec(RQR0) :

When the system matrices are not time-invariant, then it is conventional to
set

a0 = 0 and P0 = �Im

where � is a large value. This corresponds to having a di¤use prior on �0 or
in other words to saying we have no prior information.

4.6 Smoothing

The Kalman �lter predictors atjt�1and Ptjt�1 give the optimal predictors of
�t and var(�t) based on information available at time t� 1. The smoothed
estimators atjT and PtjT give the optimal predictors of �t and var(�t) based
on all the information in the sample. These smoothed estimators can be
generated from the recursions:

atjT = at +P
�
t (at+1jT �Tt+1at) (11)
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and
PtjT = Pt +P

�
t (Pt+1jT �Pt+1jt)P�0t (12)

where
P�t = PtTt+1P

�1
t+1jt : (13)

These recursions work backwards in time, t = T � 1; � � � ; 1 from the ini-
tial conditions aT jT = aT and PT jT = PT . Note that the matrix Pt+1jt is
not guaranteed to be nonsingular. In case the matrix is singular its inverse
P�1t+1jtcan be replaced by a generalised inverse P

�
t+1jt.

5 The Hamilton Regime Switching Model

Hamilton (1989) presents a model of regime switching. A variable yt is as-
sumed to be a linear function of a vector of variables xt with coe¢ cients that
depend on the state or regime in period t. There are a discrete number of
states, n. Formally

yt = x
0
t�st + "t (14)

where st is the state in period t which can take one of n possible values,
1; � � � ; n . De�ning �t as the n � 1 vector with ith element equal to one
when st = i and all other elements equal to zero, (14) can be rewritten as

yt = x
0
tB�t + "t (15)

where B = [�1 : � � � : �n] and var("t) = �2.
The state is st is unobserved but is assumed to follow a �rst order Markov

process so that

Pr(st = ij�t�1) = Pr(st = ijst�1 = j) = �ij : (16)

where �t�1 is a vector representing all the information available at time t� 1
which includes lagged values of yt and xt. The Markov assumption therefore
states that all the information in �t�1 is encapsulated in the previous state
st�1. The value �ij is known as the transition probability of moving to state
i from state j and is independent of time.
Representing the transition probabilities in a matrix

� =

264 �11 � � � �1n
...

. . .
...

�n1 � � � �nn

375
then (16) implies that

E(�tj�t�1) = ��t�1 (17)
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or
�t = ��t�1 + �t (18)

where �t is a disturbance uncorrelated with �t�1 or �t�1. Note that the
transition probabilities satisfy the condition that

P
i �ij = 1, 8j. This implies

that the columns of � must all sum to one or

�0� = �0

where � is an n � 1 vector of ones, so that the matrix � is singular. The
disturbance vector �t can take one of a possible set of n

2 discrete values and
so is not normally distributed.
Equations (15) and (18) are a measurement and transition equation re-

spectively. However, the problem di¤ers from the Kalman �lter framework
in that the state vector �t is discrete rather than continuous, and there is a
nonlinearity in (15) so that the state space form is nonlinear.
The Hamilton �lter is an iterative algorithm for calculating the distrib-

ution of the discrete state variable �t. Let at be E(�tj�t) with ith element
given by

Pr(st = ij�t)
and atjt�1 be E(�tj�t�1) with ith element given by

Pr(st = ij�t�1) :

Then the Hamilton �lter comprises two recursive equations: one the predic-
tion equation, de�ning atjt�1 = g(�t�1) and the other the updating equation
de�ning �t = h(atjt�1).

5.1 Prediction equation

The Hamilton �lter prediction equation follows from (17) and is simply

atjt�1 = �at�1 : (19)

5.2 Updating equation

The log-likelihood function of the observations yt is given by

L =

TX
t=1

log f(ytjxt; �t�1)

where
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f(ytjxt; �t�1) =
nX
i=1

f(ytjst = i;xt; �t�1) Pr(st = ij�t�1) (20)

and the conditional distribution of yt given knowledge of the state st has the
standard normal density

f(ytjst = i;xt; �t�1) = (2��
2)�

1
2 expf� 1

2�2
(yt � x0t�i)2g :

Note that, by de�nition, we have the joint distribution

f(yt; st = ijxt; �t�1) = f(ytjst = i;xt; �t�1) Pr(st = ij�t�1)

and the marginal distribution

f(ytjxt; �t�1) =
nX
i=1

f(yt; st = ijxt; �t�1) :

But �t � fyt;xt; �t�1g and so the ratio of the two represents the optimal
inference on st based on �t:

Pr(st = ij�t) =
f(yt; st = ijxt; �t�1)

f(ytjxt; �t�1)
: (21)

De�ne vt to be the n�1 vector with ith element given by f(ytjst = i;xt; �t�1).
Then from (20)

f(ytjxt; �t�1) = v0tatjt�1
and f(yt; st = ijxt; �t�1) is the ith element of the n� 1 vector

vt � atjt�1

where � is the element by element multiplication operator.
Thus (21) can be written as the (nonlinear) updating equation for at

at =
vt � atjt�1
v0tatjt�1

: (22)

5.3 Initialising the �lter

If the Markov process is stationary and ergodic, then E(�t) = E(�t�1) and
from the transition equation (18)
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E(�t) = �E(�t) :

Note that the expectations here are unconditional. This can be used to de�ne
an initial value a0 for starting the Hamilton �lter by solving

a0 = �a0 :

This equation system cannot be solved as it stands because of the singularity
of �. However, we know that �0a0 = 1 and the solution for a0 can be derived
from the n+ 1th column of the generalised inverse (A0A)�1A0 of the matrix

A =

�
I��
�0

�
:

5.4 Smoothing

Once the unknown parameters of the model B, �, and �2 have been es-
timated (by maximum likelihood), it is possible to derive estimates of the
state vector based on all the sample information. These are given by atjT =
E(�tj�T ). In the context of the Hamilton model these smoothed estimators
represent the best estimate of the probability that the model was in state si
in period t.
The smoothed predictors are de�ned by the backward recursion

atjT = atjt � f�0(at+1jT � at+1jt)g

where � is the element by element division operator.

5.5 Generalisations

The Hamilton model can be generalised in several ways. Hamilton (1989)
considers the autoregressive model

pX
j=0

�j(yt�j � x0t�j�st�j) = "t (23)

where �j represents the jth order autoregressive coe¢ cient with �0 = 1, and
where xt is simply an intercept. This model can be rede�ned as a �rst order
Markov process with n� = np+1 states, each state s�t = 1; � � � ; n� representing
one permutation of the history of the original states st, st�1, � � � , st�p.
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A simpler speci�cation to (23) is

pX
j=0

�j(yt�j � x0t�j�st) = "t

which has persistence that depends on the current state only. A comparison
of the implications of this model with those of (23) is given in Hamilton
(1993).
Both the error variance �2 in (15) and the autoregressive parameters �j in

(23) can be allowed to be state dependent. Finally, the transition probabili-
ties in (16) can be allowed to be endogenously determined. Hamilton (1996)
presents various diagnostic tests which can be used to detect misspeci�cation
in the estimated model.

6 Further reading

Harvey (1993) is a very clear treatment of state space models and the Kalman
�lter, concentrating on the formulation of ARIMA models. Chapter 50 in
Hamilton (1994b) treats both general state space models, and his own switch-
ing regimes model in a uni�ed way. Hamilton (1994a) has a good chapter on
regime switching models and Hamilton (1993) is also a good survey.. Har-
vey (1989) and Koopman et al. (1995) develop structural time series models
using the state space form. Rigorous technical treatments of the Kalman
�lter can be found in the texts by Anderson and Moore (1979) or Jazwinski
(1970).
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