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1 Introduction

The Solow-Swan growth model considers output to depend on just two factor
inputs, capital K and labour L, which are assumed to be able to grow indefinitely,
labour through population growth (and in efficiency through technical progress)
and capital through investment funded by savings. In this lecture we consider the
effect of adding two further factors of production to the model: land which is in
fixed supply, and natural resources, the supply of which we will asssume to be
declining as they become exhausted. Perhaps surprisingly, it will turn out that
the conclusions of the model remain largely unchanged, provided that the rate of
technical progress is large enough.

2 Apocalyptic Visions

2.1 Malthus

Thomas Malthus’s Essay on the Principle of Population, first published anony-
mously in 1798 (Malthus (1798)) presented an apocalyptic vision of the future. In
it Malthus theorised that while population increases geometrically (exponential
growth in modern terminology), agricultural production, which depends on a fixed
supply of land, can increase at best only arithmetically (linear growth in modern
terminology). The outcome, Malthus prophesied, would be that output per head
would fall until it reached the subsistence level, beyond which the population
would begin to decline due to starvation. Eventually, when the population had
fallen enough to raise output per head above the subsistence level, then the birth
rate would again begin to outstrip the death rate and the vicious cycle would be-
gin again. Malthus’s prescription to avoid this catastrophe and break the vicious
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circle was to advocate self-imposed moral constraints to curb population growth
(abstinence or delayed marriage).

One interesting aspect of Malthus’s theory is that it suggests that population
growth is endogenous, the death rate depending on output per head. Obviously,
we know that Malthus’s bleak prophesy has failed to come true (so far at any
rate!). There are several reasons for this. The most important is that technological
innovations have continuously increased the efficiency of agricultural production.
In fact the start of this process, the British Agricultural Revolution, was already
underway by the time Malthus was writing (Jethro Tull’s seed drill was invented in
1701 and early iron ploughs began to appear in the 1730s), and this was followed
by the Industrial Revolution of the 19th century and the Green Revolution that
began in the mid-20th century (Figure 1 shows the increase in wheat yields in
developing countries between 1950 and 2004). All these revolutions have meant

Figure 1: Reproduced from Wikipedia

that agricultural production has continued to increase despite the fixed (or falling)
stock of agricultural land. In addition, although improvements in medicine have
led to falling death rates, in the developed world at least, declining fertility and
the increased use of contraception have meant that birth rates have also been
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falling so that population growth has been checked.

2.2 The Limits To Growth

In the 1970s, a new variant of Malthusian theory became popular, this time fo-
cusing not on land like Malthus, but on declining stocks of natural resources such
as oil and rare metals. In 1972, The Club of Rome published an influential book
called The Limits To Growth, (Meadows et al. (1972)). Using a computer model
based on Jay Wright Forrester’s system dynamics methodology, (Forrester (1971)),
they extrapolated current consumption rates of these resources (or consumption
growth rates) and computed how long current reserves would last. Table 1 (re-

Years remaining
Resource Consumption growth Static Exponential 5 × reserves

Chromium 2.6% 420 95 154
Gold 4.1% 11 9 29
Iron 1.8% 240 93 173

Petroleum 3.9% 31 20 50

Table 1: Reproduced from Meadows et al. (1972)

produced from Meadows et al. (1972)), shows the results for four key resources:
chromium, gold, iron and oil (petroleum). Based on reserves known in 1972, their
model predicted that, at current consumption levels, oil would run out in 31 years
and, if consumption were to continue to grow at the current rate, it would run
out in only 20 years (i.e. by 1992!). Even assuming that actual reserves were five
times known reserves, at the current growth of consumption, oil would still run
out in 50 years.

In addition to declining stocks of natural resources, The Limits To Growth also
modelled environmental pollution, a by-product of industrial production which the
model assumed would also grow exponentially, while the ability of the planet to
absorb pollution was assumed to be constant.

On its publication, The Limits To Growth was roundly criticised by economists
(including Robert Solow). One criticism was that the model does not allow for
the effect of the price mechanism. As resources become more scarce, rising prices
should both depress demand (to an extent depending on the demand elasticity)
and increase supply (as more expensive production processes become profitable).
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3 The Solow Model with Land and Natural Re-

sources

Nordhaus (1992) extended the Solow-Swan model to allow for both land and
natural resources as additional factors of production. The production function
becomes

Y (t) = F (K(t), A(t)L(t), T (t), R(t)) (3.1)

where T is the stock of land and R is the flow of natural resources used in pro-
duction. We assume that the stock of land is fixed ao that

Ṫ

T
= 0 (3.2)

while the flow natural resources available to production is declining over time as
the stock becomes exhausted so that

Ṙ

R
= −ρ. (3.3)

where ρ > 0. As before, we assume that technical progress and population grow
at constant rates given by

Ȧ

A
= g. (3.4)

and
L̇

L
= n. (3.5)

Nordhaus assumes a constant returns to scale Cobb-Douglas production func-
tion of the form

Y = KαT βRγ(AL)1−α−β−γ (3.6)

where α > 0, β > 0, γ > 0 and α + β + γ < 1.
Taking logarithms of (3.6) we have

log Y = α logK + β log T + γ logR + (1 − α− β − γ) log (AL) (3.7)

and differentiating with respect to t,

d log Y

dt
= α

d logK

dt
+ β

d log T

dt
+ γ

d logR

dt
+ (1 − α− β − γ)

d log (AL)

dt
(3.8)

or
Ẏ

Y
= α

K̇

K
+ β

Ṫ

T
+ γ

Ṙ

R
+ (1 − α− β − γ)

˙(AL)

AL
(3.9)
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where we make use of the result that

d log x

dt
=
ẋ

x
.

Substituting (3.2), (3.3), (3.4) and (3.5) into (3.9), gives

Ẏ

Y
= α

K̇

K
− γρ+ (1 − α− β − γ)(g + n). (3.10)

For a balanced growth path, we require that capital and output are growing
at the same rate. To see this, recall the equation for the evolution of capital:

K̇ = sY − δK. (3.11)

Dividing by K gives
K̇

K
= s

Y

K
− δ (3.12)

so for the capital growth rate to be constant, the capital output ratio K/Y must
be constant which implies that

Ẏ

Y
=
K̇

K
. (3.13)

Using this result in (3.10), the balanced growth path for output Y is given by

Ẏ

Y
=

(1 − α− β − γ)(g + n) − γρ

1 − α
. (3.14)

For this growth rate to be positive requires that

(1 − α− β − γ)(g + n) > γρ. (3.15)

If the rate of natural resource depletion ρ is too high, positive output growth will
not be possible.

The growth path for output per capita y = Y/L is given by

ẏ

y
=
Ẏ

Y
− L̇

L
=

(1 − α− β − γ)(g + n) − γρ

1 − α
− n (3.16)

=
(1 − α− β − γ)g − (β + γ)n− γρ

1 − α
(3.17)

so that per capita growth will ony be positive if the rate of technical progress g
outweighs the rate of population growth n and the rate of depletion of natural
resources ρ.
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To assess the extent of the drag on growth caused by a fixed stock of land
and diminishing natural resources, Nordhaus compares (3.17) to the per capita
growth rate that would result if T and R were growing at the rate of population
growth n. In this base case, (3.10) would be replaced by

Ẏ

Y
= α

K̇

K
+ βn+ γn+ (1 − α− β − γ)(g + n) (3.18)

or, using (3.13),
Ẏ

Y
=

(1 − α− β − γ)g + (1 − α)n

1 − α
. (3.19)

and
ẏ

y
=

(1 − α− β − γ)

1 − α
g. (3.20)

The drag to growth caused by finite resources is the difference between (3.17) and
(3.20) which is

(β + γ)n+ γρ

1 − α
. (3.21)

Nordhaus’s model assumes a Cobb-Douglas production function wich has a
constant elasticity of substitution of unity between factors. This means that a
given percentage increase in technical progress A has the same effect on output
regardless on how small land per head T/L and natural resources per head R/L
become as they decline. What would happen if the elasticity of factor substitution
were less than unity? In this case, as the declining inputs become more scarce,
the share of income going to them would rise over time and the growth drag would
be increasing over time. In the limit, the share of income going to the slowest
growing factor, natural resources R, which is γ, would approach 1 while α and
β would approach 0. From (3.21), it can be seen that the growth drag would
approach n + ρ and from (3.17), output per capita would end up falling at the
rate n + ρ. However, historically there is no evidence of shares of income going
to land and natural resources increasing over time, in fact the reverse is the case.
This would suggest that the elasticity of factor substitution is actually greater
than one which implies that the economy can always compensate for declining
resources by substituting away from them.

4 Conclusions

Nordhaus shows that per capita growth is still possible in the Solow-Swan model
even with fixed land and declining natural resources, but only if the rate of tech-
nical progress g is large enough to outweigh the drag caused by finite resources.
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Historically, since per capita income has continued to grow around the world over
the centuries and the Domesday scenarios envisaged by Malthus and The Limits
To Growth have failed to materialise, it seems that this condition must always
have held up to now. However, the rate of technical progress is just exogenously
given in this model so there is no explanation for why it is what it is or whether
it can be relied upon to continue at the same rate. In the next lecture, we look at
endogenous growth models which endeavour to account for why technical progress
takes place.
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