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1 Introduction

The Solow-Swan growth model with technical progress successfully accounts for
growth in output per head. However, the model does not explain why technical
progress occurs but simply treats it as exogenous. It also cannot explain the
variations in per capita growth rates between different countries.

In this lecture we look at several models that attempt to explain technical
progress in different ways, thereby making growth an endogenous process, de-
pending on the factors of production K and L. In general, we can write

A = A(K,L) (1.1)

so that the conventional neo-classical production function

Y = F (K,AL) (1.2)

becomes
Y = F (K,A(K,L)L) = F̄ (K,L) (1.3)

but where F̄ (K,L) may display increasing returns to scale at the aggregate level.
Paul Romer’s (1994) paper is a good survey of endogenous growth models.

2 Solow Models With Human Capital

Before we turn to explicit models of technical progress, we look at an important
extension to the Solow-Swan model that allows for investment in the quality of
the labour force. In the standard Solow-Swan model, labour is a homogeneous
input and the only form of investment is investment in physical capital. In human
capital models the quality of the labour force can be improved by investment in
education or training.
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2.1 Mankiw Romer and Weill

Mankiw, Romer and Weill (1992) consider a model which includes two separate
forms of capital: physical capital K and human capital H. Assuming a Cobb-
Douglas production function we have

Y = KαHβ(AL)1−α−β (2.1)

where H is the stock of human capital, α > 0, β > 0 and α + β < 1. Note that
in this model human capital H is a separate factor of production from normal
labour L. It can be thought of as skilled as opposed to unskilled labour.

Both physical capital K and human capital H can be increased by investment
but are assumed to depreciate over time at the same rate δ. Investment in human
capital can be thought of as education and training and the depreciation of human
capital as a skill deterioration (a sort of rustiness) that comes about if education
and training are not continually refreshed.

K and H change over time according to the differential equations

K̇ = Ik − δK (2.2)

and
Ḣ = Ih − δH (2.3)

where now Ik is investment in physical capital and Ih is investment in human
capital and

Ik + Ih = I = S. (2.4)

Some fraction of savings goes towards investment in human capital and the
rest goes to investment in physical capital. Specifically,

Ik = skY (2.5)

and
Ih = shY (2.6)

where 0 < sk < 1, 0 < sh < 1 and sk + sh = s < 1.
Substituting (2.5) and (2.6) into (2.2) and (2.3) and dividing by AL gives

K̇

AL
= sk

Y

AL
− δ K

AL
(2.7)

and
Ḣ

AL
= sh

Y

AL
− δ H

AL
. (2.8)
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Defining

ŷ =
Y

AL
, k̂ =

K

AL
and ĥ =

H

AL

and noting that

˙̂
k =

K̇

AL
− k̂

˙(AL)

AL
,

˙̂
h =

Ḣ

AL
− ĥ

˙(AL)

AL
and

˙(AL)

AL
= n+ g,

equations (2.7) and (2.8) can be rewritten as

˙̂
k = skŷ − (n+ g + δ)k̂ (2.9)

and
˙̂
h = shŷ − (n+ g + δ)ĥ. (2.10)

Equations (2.9) and (2.10) jointly define the steady-state growth path in this

model. For balanced growth, both
˙̂
k = 0 and

˙̂
h = 0 so that

ŷ∗ =
n+ g + δ

sk
k̂∗ (2.11)

and

ŷ∗ =
n+ g + δ

sh
ĥ∗. (2.12)

In steady state Y , K and H all grow at the same rate n+ g which is the sum of
the growth rate of the labour force n and the growth rate of technical progress g.

The addition of human capital to the Solow model in Mankiw, Romer and Weill
(1992) was important because it helped solve an empirical puzzle in the standard
Solow model. Estimation of the parameter α in the Cobb-Douglas production
function

Y = Kα(AL)1−α (2.13)

had consistently produced values for α̂ of approximately 1/3 for most countries,
implying that the share of output going to labour is approximately 2/3. However,
this value of α is far too low for observed differences in savings rates to account
for the variations in output per capita that we see in different countries. Recall
Exercise 1 where you derived the result that for the Cobb-Douglas production
function in the standard Solow model (in the absence of technical progress)

y∗ =

(
s

n+ δ

)α/(1−α)
.

With α = 1/3, this means that
y∗ ∝ s0.5
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so that the savings rate would need to quadrupal for output per head to double.
In the model with human capital the steady-state output per unit of effective

labour ŷ is given by

ŷ∗ =

(
sαks

β
h

(n+ g + δ)α+β

) 1
1−α−β

(2.14)

and typical estimates of α and β are α = β = 1/3. These estimates mean that

ŷ∗ ∝ sksh

so that if both sk and sh double, then output per (effective) worker will quadrupal.
This is much more in line with the empirical evidence.

2.2 A Simple Human Capital Model

A simpler human capital model is given by

Y = Kα(AH)1−α (2.15)

where 0 < α < 1 and H is now the total amount of productive services supplied
by workers, which follows the equation

H = eφµL (2.16)

where L is the number of workers, µ is the proportion of time a worker spends
on education and training and φ is a parameter with φ > 0. The standard
assumptions of the Solow model with technical progress:

K̇ = sY − δK ,
L̇

L
= n and

Ȧ

A
= g

are all assumed to hold and the dynamics of this model are exactly the same as
the Solow model so that in balanced growth

˙̂
k = sŷ − (n+ g + δ)k̂ = 0

where now k̂ = K/(AH) and ŷ = Y/(AH). As in the Solow model, with Cobb-
Douglas technology

k̂∗ =

(
s

n+ g + δ

)1/(1−α)

and

ŷ∗ =

(
s

n+ g + δ

)α/(1−α)
.
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In this model capital per worker k = eφµAk̂ and output per worker y = eφµAŷ so

k∗ = eφµA

(
s

n+ g + δ

)1/(1−α)

and

y∗ = eφµA

(
s

n+ g + δ

)α/(1−α)
.

Differences in output per capita across countries can be attributed in this model
to differences in µ, the amount of education and training in the labour force.

3 Knowledge and Technical Progress

Models of endogenous growth make one of two assumptions about the generation
of technical progress. In one branch of the literature, technical progress arises
from research and development in a non-productive ideas sector. In the other
branch, technical progress arises spontaneously through learning by doing.

3.1 Learning by doing

The idea of learning by doing stems from a seminal paper by Kenneth Arrow
(Arrow (1962)). Arrow quotes the example of aircraft production where engineers
had observed that the number of labour-hours needed to produce an airframe
(the aircraft body without engines) is a decreasing function of the total number
of airframes of the same type previously produced. (The precise relationship was
found to be L ∝ N1/3 where L is labour-hours and N the Nth airframe). The
idea is that workers become more efficient through gaining experience doing a job.
This efficiency gain is an externality to the firm since it could be transferred if a
worker moved to another firm. This idea of a learning curve was not new (Hirsch
(1956) for example showed the existence of learning curves in different production
processes) but Arrow was the first to build a model of growth using cumulative
gross investment as an index for experience.

3.2 Knowledge spillovers

Ideas have an important attribute that distinguish them from other factors of
production which is that they are non-rivalous. One firm using an idea does not
prevent other firms from using the same idea. Of course patenting exists as a
way to protect an idea and stop it from spreading freely but patents can often be
circumvented and can only last for a limited time. Because it is difficult to prevent
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a good idea from spreading it can be thought of as having (positive) externalities.
This means that even though each firm’s production function exhibits constant
returns to scale, there can be increasing returns to scale at the economy level due
to the spillover of ideas.

4 Productive Externalities

4.1 The Romer 1986 Model

Romer (1986) follows Arrow (1962) and constructs a model in which learning
by doing is related to the capital stock. This creates an externality leading to
increasing returns to scale at the economy level. The production function is

Y = Kα(AL)1−α (4.1)

but technical progress A is assumed to be proportional to the capital stock K

A = Kφ (4.2)

where φ > 0. The firm treats technical progress as given so that, at the firm level,
there are constant returns to scale and the shares of income paid to capital and
labour are α and 1 − α respectively. However, at the economy level, taking into
account that technical progress is proportional to K, the production function is

Y = Kα(KφL)1−α = Kα+φ(1−α)L1−α (4.3)

which exhibits increasing returns to scale, with the exponents summing to 1 +
φ(1 − α) > 1. Note that if φ < 1, the exponent on K, α + φ(1 − α) < 1 so
there are still diminishing marginal returns to capital but if φ = 1 then there are
constant marginal returns to capital and if φ > 1 then marginal returns to capital
are increasing.

Making the standard assumptions that

K̇ = I − δK (4.4)

and
I = sY (4.5)

we can derive the steady state growth path in this model.
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4.2 The AK Model

A very simple but influential model can be obtained by assuming that technical
progress is proportional, not to capital K itself but to capital per worker K/L.
Replacing (4.2) with

A = a
K

L
, (4.6)

where a > 0 is a constant, in (4.1) gives

Y = Kα(a
K

L
L)1−α = a1−αK = ĀK (4.7)

where Ā = a1−α > 0. This model is known as the AK model. This production
function is linear and has constant returns to scale and non-diminishing returns
to the factor of production K since

∂Y

∂K
= Ā > 0 and

∂2Y

∂K2
= 0. (4.8)

Nevertheless, at the firm level where technical progress A is taken as given, di-
minishing returns to K and L in (4.1) still hold.

The AK production function was probably first used by John von Neumann in
1937 (von Neumann (1945)) but came to prominence in Rebelo (1991). Dividing
(4.7) by L gives

y = f(k) = Āk (4.9)

and substituting into the standard Solow differential equation

k̇ = sf(k)− (n+ δ)k. (4.10)

gives
k̇ = sĀk − (n+ δ)k = (sĀ− n− δ)k (4.11)

or
k̇

k
= sĀ− n− δ. (4.12)

Capital per worker is only constant in this model if sĀ = n + δ which will only
happen by chance. If sĀ > n + δ then capital and output per worker will grow
indefinitely. In particular, per capita growth will still occur even when the popu-
lation is not growing so that n = 0.
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5 Models of R&D

An alternative approach to endogenous growth assumes that technical progress,
rather than being generated spontaneously by learning by doing, is the result of
purposeful research and development. An example of this approach is the model
of Paul Romer (1990). It is assumed that the economy comprises two sectors: the
productive sector which uses physical capital and labour to produce output and an
R&D sector that uses labour to produce ideas that are then used in the productive
sector. The productive sector has a standard Cobb-Douglas production function

Y = Kα(AλL)1−α (5.1)

where 0 < λ < 1 is the proportion of the labour force employed in the productive
sector and A is now the stock of ideas from the R&D sector.

The R&D sector employs (1 − λ)L workers to produce new ideas. It is as-
sumed that the rate of change of ideas Ȧ is proportional to the number of workers
employed in the sector so that

Ȧ = γ̄((1− λ)L)β (5.2)

where γ̄ > 0 is the rate of flow of ideas per researcher and 0 < β ≤ 1. Note that
it is assumed in this simple model that capital is not required in the production
of ideas. If β = 1 then the production function (5.2) exhibits constant returns to
scale while if β < 1 there are decreasing returns to scale. An argument for why
decreasing returns might be expected in the R&D sector is a negative external-
ity at the aggregate level due to ‘stepping on toes’ from researchers in different
companies working on the same new idea. However, Romer (1990) assumes β = 1.

We could assume that γ̄ is constant but it is more plausible to suppose that
it is related to the stock of ideas A. We will assume

γ̄ = γAψ (5.3)

where γ > 0. When ψ = 0 then the rate of flow of ideas per researcher is
constant. When ψ > 0 the rate of ideas increases with the stock. This corresponds
to the familiar ‘standing on the shoulders of giants’ quotation of Isaac Newton
acknowledging that research builds on previous work. Conversely, if ψ < 0 then
the rate of new ideas declines with the stock. This might be the case when A is
very large so that the ‘pond’ of ideas is ‘fished out’.

Substituting (5.3) into (5.2) and dividing by A gives the growth rate of A:

Ȧ

A
= gA = γAψ−1((1− λ)L)β. (5.4)
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This growth rate depends on A. The growth rate of the growth rate of A is defined
by

ġA
gA

= (ψ − 1)
Ȧ

A
+ β

L̇

L
= βn− (1− ψ)

Ȧ

A
(5.5)

and for a constant growth rate of ideas we require this to be zero which implies

Ȧ

A
=

βn

1− ψ
= g∗A. (5.6)

Note that this is independent of λ.
As long as ψ < 1, it follows that 1−ψ > 0 and so this steady state growth rate

will be positive. However, if ψ > 1 the steady state growth rate g∗A is negative.
Note that if the population stops growing so that n = 0, then the growth in ideas
eventually stops also. The reason is that, if the number of researchers (1− λ)L is
constant, the rate of change of new ideas is constant (assume ψ = 0 for simplicity)
which means that the growth rate of ideas is falling. Only if the population growth
is positive is a positive growth rate of ideas sustainable.

Having determined the steady state growth rate of ideas A in this model, we
can calculate the steady state growth path for capital, using the familiar differen-
tial equation for the Solow model with technical progress:

˙̂
k = sf(k̂)− (gA + n+ δ)k̂. (5.7)

Dividing (5.1) by AL, the intensive production function for the productive sector
is

ŷ = f(k̂) = k̂αλ1−α (5.8)

and substituting (5.8) and (5.6) into (5.7) and setting to zero for steady state
gives

sk̂∗αλ1−α = (
βn

1− ψ
+ n+ δ)k̂∗ (5.9)

or

k̂∗ = λ

(
s

gA + n+ δ

)1/(1−α)

(5.10)

and, from (5.8),

ŷ∗ = λ

(
s

gA + n+ δ

)α/(1−α)
. (5.11)

In steady state, both capital per worker k = K/L and output per worker y = Y/L
grow at the steady state rate of growth of ideas g∗A.
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What is the optimal size of the R&D sector? Output per worker is y = Aŷ
and on the steady state path, from (5.4),

A =

(
γ((1− λ)L)β

gA

)1/(1−ψ)

(5.12)

= (1− λ)β/(1−ψ)
(
γLβ

gA

)1/(1−ψ)

(5.13)

so that, from (5.11) and (5.13),

y = λ(1− λ)β/(1−ψ)

[(
γLβ

gA

)1/(1−ψ)(
s

gA + n+ δ

)α/(1−α)]
. (5.14)

We are looking for the value of λ that maximises this expression. Differentiat-
ing with respect to λ and noting that the term in square brackets in (5.14) is
independent of λ and so can be treated as constant gives

∂y

∂λ
=

(
(1− λ)β/(1−ψ) − λβ

1− ψ
(1− λ)β/(1−ψ)−1

)[
·
]

(5.15)

= (1− λ)β/(1−ψ)
(

1− λβ

(1− ψ)(1− λ)

)[
·
]
. (5.16)

For this expression to be equal to zero (for a maximum) requires

1− λβ

(1− ψ)(1− λ)
= 0 (5.17)

and solving for λ gives

λ =
1− ψ

1− ψ + β
(5.18)

and

1− λ =
β

1− ψ + β
. (5.19)

These expressions give the optimal proportions of the labour force in the produc-
tion and ideas sectors that maximise output per head. Note that for β = 1 and
ψ = 0 (the case where there are constant returns to scale in the ideas sector and
the rate of flow of ideas per researcher is constant)

λ = 1− λ = 0.5 (5.20)

so that half the labour force is working in the R&D sector. This is a much larger
proportion than we observe in the real world.
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6 Conclusions

Endogenous growth models and human capital models share some common fea-
tures and they both help account for differences in per capita growth rates in
different countries. Next week we look at optimal growth models which attempt
to provide a microeconomic foundation for why households in economies might
rationally choose to save.
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