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1 Introduction

Mutiple regime models have been used by econometricians in several different
fields, a major application being to models of market disequilibrium (see Maddala
and Nelson [12]). One interesting field of application is the controlled economy
where the policymaker switches between control instruments at different points
in time, these switchpoints being generally known (unlike the situation in market
disequlibrium models). A characteristic of such models is that the partitioning
between ”endogenous” and ”exogenous” variables changes between regimes.

Multiple regime models with this characteristic have recently been analysed by
Jean-François Richard in a forthcoming paper [15]. He shows that it is possible to
test for the exogeneity of the control variables in the different regimes and hence
to test whether or not the economy was being controlled.

This study is an attempt to implement the analysis of Richard for the FIML
estimation and testing of multiple regime models and apply it to model the change
in regime in the U.K. monetary sector of the introduction of ‘Competition and
Credit Control’ in October 1971. An existing FIML computer program written
by David Hendry was generalised to maximise the likelihood function of multiple
regime models and to incorporate the tests proposed by Richard. The application
involved the estimation of a money demand equation; in developing this equation
a single equation approach was used and the general to simple methodology of
Hendry and Mizon [11] was adopted. The resulting equation in seasonally unad-
justed data provides direct comparison with the equations in [11].

The rest of this paper is organised as follows:

• In Section 2 some of the key concepts are developed for some simple models

1



• Section 3 derives Richard’s exogeneity test for the case of a complete simul-
taneous model with a single regime

• Section 4 deals with the FIML estimation of multiple regime models and
describes a testing procedure for these models

• Section 5 presents an application to the estimation of a simple two-equation
model of the monetary sector. Results and conclusions are presented.

A note on exogeneity.
We define exogeneity for our purposes as follows: a variable is exogenous if

we can run the analysis conditional on it without loss of information. This is a
weak definition of exogeneity. In particular we do not require that lagged values
of endogenous variables do not enter the determination of exogenous variables.
Let xt be an exogenous variable and yt an endogenous variable. Then in the lag
formulation

a(L)xt = b(L)yt + wt

where L is the lag operator, we do not require that b(L) = 0 (although b0 must
be zero). Thus yt may in fact be ”causing” xt in the Granger sense of causality
(see Granger [7]).

2 Exogeneity in Simple Models

Suppose that we have two variables y1t and y2t which are jointly normally dis-
tributed with density

f(y1t, y2t) = N(µ,Σ) (2.1)

or explicitly

f(y1t, y2t) = (2π)−1 |Σ|−
1
2 exp

(
−1

2

(
y1t − µ1

y2t − µ2

)′
Σ−1

(
y1t − µ1

y2t − µ2

))
(2.2)

where

Σ =

(
σ11 σ12
σ21 σ22

)
and Σ−1 =

(
σ11 σ12

σ21 σ22

)
.

The marginal distributions for y1t and y2t are given by

f(y1t) = N(µ1, σ11) and f(y2t) = N(µ2, σ22).

Defining s1 = σ11σ22−(σ12)2
σ11

and s2 = σ11σ22−(σ12)2
σ22

we have

σ11 =
σ22
σ11

s−11 , σ12 = −σ12
σ11

s−11 , σ22 = s−11
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and the conditional distribution of y2t given y1t is

f(y2t|y1t) = f(y1t, y2t)/f(y1t)

= (2π)−
1
2σ

1
2
11(σ11σ22 − (σ12)

2)−
1
2 exp(− 1

2s1
[
σ22
σ11

(y1t − µ1)
2 (2.3)

−2(y1t − µ1)(y2t − µ2) + (y2t − µ2)
2 − (

σ11σ22 − (σ12)
2

σ2
11

)(y1t − µ1)
2])

= (2πs1)
− 1

2 exp(− 1

2s1
[(y2t−µ2)

2− 2
σ12
σ11

(y1t−µ1)(y2t−µ2) +

(
σ12
σ11

)2

(y1t−µ1)
2])

which is a univariate distribution

f(y2t|y1t) = N(µ2 +
σ12
σ11

(y1t − µ1), s1). (2.4)

Similarly we can derive the conditional density for y1t given y2t which is

f(y1t|y2t) = N(µ1 +
σ12
σ22

(y2t − µ2), s2). (2.5)

From (2.4) we get the regression model

y2t = a+ by1t + ut , ut ∼ NI(0, δ2) (2.6)

with Cov(y1t, ut) = 0, where a = µ2− bµ1, b = σ12
σ11

and δ2 = s1 and from (2.5) the
regression model

y1t = c+ dy2t + vt , vt ∼ NI(0, ψ2) (2.7)

with Cov(y2t, vt) = 0, c = µ1 − dµ2, d = σ12
σ22

and ψ2 = s2.
As long as there are no prior cross-restrictions on the five parameters of the

joint distribution ( µ1, µ2, σ11, σ12, σ22) we lose no information on (a, b, δ2), the
parameters of the conditional distribution of y2t, by treating (µ1, σ11) as nuisance
parameters and running the analysis conditional on y1t. Equally, if we choose to
treat (µ2, σ22) as nuisance parameters no information is lost by running the anal-
ysis conditional on y2t. Thus (2.6) and (2.7) are equally valid parameterisations
of the model (2.1) where we choose to treat (µ1, σ11) or (µ2, σ22) respectively as
nuisance parameters.

Now consider the two-regime model

y1t = a1 + b1y2t + u1t, t ∈ I1 = {1, · · · , T1− 1}
y2t = a2 + b21y1t + u2t, t ∈ I2 = {T1, · · · , T} (2.8)

3



where u1t ∼ NI(0, δ21), u2t ∼ NI(0, δ22), Cov(y2t, u1t) = 0 t ∈ I1 and Cov(y1t, u2t) =
0 t ∈ I2. The switching time T1 is assumed to be known. There appears to be a
switch in the exogeneity of the variables in this model at T1 with y2t exogenous for
t ∈ I1 and y1t exogenous for t ∈ I2. However, it is clear from our previous analysis
that this parameterisation is inadequate to describe such a switch in exogeneity.
Let us assume that the joint distribution of (y1t, y2t) in regime i is

f(y1t, y2t) = N(µi,Σi) , t ∈ I1 , i = 1, 2. (2.9)

Then indeed (2.8) follows together with

(ai, bi, δ
2
i ) = (µii −

σi12
σijj

µij,
σi12
σijj

,
σi11σ

i
22 − (σi12)

2

σijj
) (2.10)

for i = 1, 2, j = 3−i where we treat (µij, σ
i
jj) as the nuisance parameters. Equally,

however, we have the parameterisation

y1t = a3 + b3y2t + ut, t = 1, · · · , T (2.11)

y2t ∼ NI(0, φ2
1) t ∈ I1, y2t ∼ NI(0, φ2

2) t ∈ I2

with ut ∼ NI(0, δ23) where

(a3, b3, δ
2
3) = (µi1 −

σi12
σi22

µi2,
σi12
σi22

,
σi11σ

i
22 − (σi12)

2

σi22
) i = 1, 2 (2.12)

and (µi2, σ
i
22) = (0, φ2

i ) are treated as the nuisance parameters. (Note that we
have the parameter correspondences (a1, b1, δ

2
1) = (a3, b3, δ

2
3) for the first regime

and (a2, b2, δ
2
2) = (−a3b3λ, b3λ, δ23λ) for the second regime where λ = σ2

22/σ
2
11.)

Equations (2.8) and (2.11) are both valid parameterisations of the data gen-
eration process (2.9) yet (2.8) exhibits a switch in exogeneity between regimes
whereas in (2.11) the same variable y2t is treated as exogenous over the whole
period. The choice of exogenous variables in these models is quite arbitrary and
the statement that y2t is exogenous in (2.11) is no more than a statement that
(µ2, σ22) are nuisance parameters. It is not subject to testing since it forces no
restrictions on the joint distribution of the observable variables (2.9).

Suppose that, returning to the single regime model, we now do have a cross-
restriction on the parameters of the joint distribution (2.1). We introduce a
behavioural hypothesis

µ2t = c0 + c1µ1t. (2.13)

This hypothesis says that the expectation of variable y2t at time t depends on the
expectation of y1t at time t. We can interpret it as a behavioural rule followed by
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agents who take the joint distribution (2.1) as given. Looking at the conditional
distribution of y2t given y1t we have from (2.4)

E(y2t|y1t) = µ2 +
σ12
σ11

(y1t − µ1) (2.14)

but from (2.13) this implies

E(y2t|y1t) = c0 +

(
c1 −

σ12
σ11

)
µ1t +

σ12
σ11

y1t. (2.15)

In general this expression will now involve µ1t and we will lose information on the
parameters of the conditional distribution by running the regression model (2.6)
treating y1t as exogenous. Only if

c1 =
σ12
σ11

(2.16)

so that
E(y2t|y1t) = c0 +

σ12
σ11

y1t (2.17)

do we lose no information by treating y1t as exogenous. Condition (2.16) then is
a direct test for the exogeneity of y1t. An alternative intuitive explanation of this
result may be helpful. Let us write

µ1t = E(y1t|`t−1) , µ2t = E(y2t|`t−1)

where `t−1 is the information set available at time t. Then the exogeneity condition
(2.16) is equivalent to the condition that y1t ∈ `t−1 in which case µ1t = y1t and
(2.15) becomes

E(y2t|y1t) = c0 + c1y1t. (2.17′)

Similarly from the conditional distribution of y1t given y2t the hypothesis (2.13)
gives

E(y1t|y2t) =

(
1− σ12

σ22
c1

)
µ1t −

σ12
σ22

c0 + +
σ12
σ22

y2t (2.18)

which leads to the exogeneity condition

c1 =
σ22
σ12

(2.19)

in which case
E(y1t|y2t) = −c0

c1
+
σ12
σ22

y2t (2.20)

which valididates the parameterisation (2.7).
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Treating y1t (y2t) as exogenous is only valid when the appropriate restriction
((2.16) or (2.19)) is satisfied and the two conditions cannot hold jointly (otherwise
Σ would be singular). When y1t is exogenous and if it is controlled then agents
adjust their behaviour by revising their expectations according to the behavioural
rule (2.13).

This framework provides a basis for examining multiple regime models with
possible switches in exogeneity. We have seen that we need to specify the joint
distribution of all the relevant variables in each regime, whether or not they are
being controlled, so that the hypothesis of exogeneity can be tested. We now
go on to develop this approach for the full information estimation of complete
simultaneous equations models.

3 Exogeneity in a Single Regime

In the simple models considered in section 2 there were no predetermined variables.
We now want to extend the analysis to allow for lagged dependent variables; we
may also allow for some variables to be purely exogenous without proposing to
test this. The general form of model for a single regime is

Axt = Byt +Czt = ut , ut ∼ NI(0,Σ) (3.1)

with reduced form
yt = Πzt + vt , vt ∼ NI(0,Ω) (3.2)

where yt is now an (n×1) vector of observations on n endogenous variables and zt
is an (m× 1) vector of observations on predetermined variables. We assume that
(3.1) is a complete model so that B is a square, non-singular (n× n) matrix and
Π = −B−1C. The matrices B, C and Σ are functions of a vector of parameters
θ.

The joint distribution of yt is given by

f(yt|zt,θ) = N(Πzt,Ω). (3.3)

In formulating the data density of Y ′ = (y1 · · ·yT ) we must take into account
that zt includes lagged yt. If y0

t are the lagged endogenous variables in zt and z∗t
are the purely exogenous variables then the data density, conditional with respect
to initial conditions, is

f(y1 · · ·yT |y0
1, z

∗
1 · · · z∗T ,θ) =

T∏
t=1

f(yt|y0
1, z

∗
t ,θ). (3.4)
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From now on, for notational convenience, we will no longer make explicit the
conditionality on y0

1, z
∗
t but write

f(Y |θ) =
T∏
t=1

f(yt|zt,θ). (3.5)

Consider partitioning yt into

y′t = (y′1t : y′2t) , Y = (Y 1 : Y 2) (3.6)

where y1t = (n1 × 1), y2t = (n2 × 1) and n1 + n2 = n. Y 2 is now defined to be
exogenous if and only if there exists a partitioning of θ into θ = (θ1 : θ2) such
that

f(yt|zt,θ) = f(y1t|y2t, zt,θ1)f(y2t|zt,θ2) (3.7)

where θ1 and θ2 are not subject to any cross-restrictions and θ2 may be regarded
as nuisance parameters. Under these conditions the likelihood function LL(θ|Y )
factorises as

LL(θ|Y ) =
T∏
t=1

f(y1t|y2t, zt,θ1)
T∏
t=1

f(y2t|zt,θ2) (3.8)

= LL1(θ1)LL2(θ2)

and no relevant sample information is lost if we drop the factor LL2(θ2). Note
that in general the joint density (3.5) will not factorise since y2t will not be
independent of lagged values of y1t in zt .

Let us partition the model (3.1) into two subsets of equations(
B11 B12

B21 B22

)(
y1t

y2t

)
+

(
C1

C2

)
zt =

(
u1t

u2t

)
. (3.9)

We want to know the conditions under which y2t is exogenous and the likelihood
function factorises. Richard has proved [15, Theorem 3.1] that for the general
case of models which may be incomplete, the conditions (in our notation) are

B21 = 0 (3.10)

and
B11Ω12 +B12Ω22 = 0 (3.11)

where

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
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is the reduced form covariance matrix. For the case of complete models we can
translate the condition (3.11) into a condition on Σ, the covariance matrix of the
structural form since

Σ = BΩB′ =

(
B11 B12

B21 B22

)(
Ω11 Ω12

Ω′12 Ω22

)(
B′11 B′21
B′12 B′22

)
(3.12)

so that

Σ12 = B11Ω11B
′
21 +B12Ω

′
12B

′
21 +B11Ω12B

′
22 +B12Ω22B

′
22

= (B11Ω12 +B12Ω22)B
′
22

by (3.10). Thus (3.11) becomes for complete models

Σ12 = Σ′21 = 0. (3.13)

The conditions (3.10) and (3.13) are equivalent to the condition that the model
(3.9) is block recursive.

The log-likelihood function for the model is

L(A,Σ) = −nT
2

log(2π)− T

2
log |Σ|+ T log ||B|| − 1

2
tr(Σ−1U ′U) (3.14)

where

U ′ = (u1 · · ·uT ) =

(
U ′1
U ′2

)

L(A,Σ) = −nT
2

log(2π)− T

2
log

∣∣∣∣ Σ11 0
0′ Σ22

∣∣∣∣+ T log

∣∣∣∣∣∣∣∣ B11 B12

0 B22

∣∣∣∣∣∣∣∣
−1

2
tr

((
Σ−111 0
0′ Σ−122

)(
U ′1U 1 U ′1U 2

U ′2U 1 U ′2U 2

))
(3.15)

=

{
−n1T

2
log(2π)− T

2
log |Σ11|+ T log ||B11|| −

1

2
tr(Σ−111U

′
1U 1)

}
(3.16)

+

{
−n2T

2
log(2π)− T

2
log |Σ22|+ T log ||B22|| −

1

2
tr(Σ−122U

′
2U 2)

}
= L1(B11,B12,C1,Σ11) + L2(B22,C2,Σ22) (3.17)

which does indeed factorise as in (3.8). It follows that the two factors can be
estimated independently of each other, and if the parameters (B22,C2,Σ22) are
nuisance parameters the factor L2 can be dropped.
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The conditions (3.10) and (3.13) give us a straightforward test for the ex-
ogeneity of the y2 variables. First we estimate the unrestricted model (3.14).
We can concentrate out the Σ matrix in the usual way to give a concentrated
log-likelihood function

L∗(A,Σ) = −nT
2

log(2π)− nT

2
− T

2
log

∣∣∣∣AX ′XA′T

∣∣∣∣+ T log ||B|| (3.18)

together with

Σ =
AX ′XA′

T
(3.19)

and then maximise (3.18). Let the maximum be L+. We then reestimate the
model imposing the restrictions (3.10) amd (3.13). Note that we can concentrate
Σ11 and Σ22 out of (3.16)

∂L

∂Σ−111

=
T

2
Σ11 −

1

2
A1X

′XA′1 = 0

=⇒ Σ11 =
1

T
A1X

′XA′1 (3.20)

∂L

∂Σ−122

=
T

2
Σ22 −

1

2
A2X

′XA′2 = 0

=⇒ Σ22 =
1

T
A2X

′XA′2 (3.21)

giving the concentrated log-likelihood function

L∗∗(A1,A2; Σ11,Σ22) = −nT
2

log(2π)− nT

2
− T

2
log

∣∣∣∣A1X
′XA′1
T

∣∣∣∣
(3.22)

+T log ||B11|| −
T

2
log

∣∣∣∣A2X
′XA′2
T

∣∣∣∣+ T log ||B22||

where [
A1

A2

]
=

[
B11 B12 C1

0 B22 C2

]
.

Let L++ be the maximum of (3.22). Then on the null hypothesis that y2t is
exogenous

λ = 2(L+ − L++) ∼a χ2(q1 + q2) (3.23)

where q1 is the number of unrestricted parameters in B21 in model (3.18) and
q2 is the number of parameter restrictions corresponding to the condition (3.13)
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= n1 · n2. (Not 2 · n1 · n2 since Σ is already restricted to be symmetric). In
fact often we may want to impose B21 = 0 to identify the unrestricted model
even before we test for exogeneity. In this case q1 = 0 and we test only the Σ
restrictions.

We can now go on to consider testing for switches in exogeneity in a multiple
regime model using this test. If there are no constant parameters in different
regimes then each may be estimated and tested separately. However, it is more
reasonable to suppose that a subset of equations remain constant across regimes
in which case we have cross-regime parameter restrictions. Then we must set
up the joint likelihood function for all the regimes and maximise this subject to
these parameter restrictions between regimes. Then we can test the exogeneity
restrictions for each regime separately. This is the topic of the next section.

However, we want first to give an interpretation of the model we have been de-
veloping. We can consider it as an economy which is controlled by a policymaker.
Then the first set of structural equations describes the economy on which control
is forced and the second set the control process itself. The equations for y2t are
in fact reaction functions for the control instruments and by condition (3.10) the
control authorities must make their plans solely on the basis of predetermined
variables. Further, if the instruments are to be exogenous, condition (3.13) must
also be satisfied. Switching between control instruments leads to switches in the
exogeneity/endogeneity of variables.

The simplest illustration is an equilibrium model of a market where the supply
of the commodity is under the control of the authorities. The authorities have
two possible alternatives: they can either control the commodity price letting the
market determine the quantity traded or they can control the supply and let the
market determine the clearing price. We assume that the demand relationship is
not changed by this regime switch. Then, taking a simple linear demand function
we have, for the first regime, the demand equation

qt = a0 + a1pt + vt , E(v2t ) = σ2
v (3.24)

together with the authority reaction function for price

pt = a2 + a3zt + wt. (3.25)

This reaction function depends solely on the single predetermined variable zt.
In the second regime the authorities switch to controlling the commodity sup-

ply and so the demand relationship (3.24) now determines the price and we renor-
malise it as

pt = b0 + b1qt + εt , E(ε2t ) = σ2
ε (3.26)

and suppose for simplicity that the same predetermined variable zt continues to
determine the new reaction function which is then

qt = b2 + b3zt + ηt. (3.27)
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The constancy of the demand relation across regimes means that we have restric-
tions between the parameters in each regime which are

(b0, b1, σ
2
ε) = (−a0

a1
,

1

a1
,

1

(a1)2
σ2
v). (3.28)

Full information maximum likelihood estimation requires maximising the joint
likelihood function of the two regimes subject to all prior restrictions on the
parameters which include these non-linear cross-regime restrictions.

4 FIML Estimation

In this section we consider the FIML estimation of multiple regime models in
which we want to be able to test for switches in exogeneity. We have r regimes
which we assume, without loss of generality, to have been operating sequentially.
For regime i the model is

Ai(θ)xt = ut , t ∈ Ii. (4.1)

The switchpoints between regimes are assumed to be known. the log-likelihood
for regime i is

Li(θ) = −nTi
2

log(2π)− Ti
2

log
∣∣Σi(θ)

∣∣+ Ti log
∣∣∣∣Bi(θ)

∣∣∣∣
−1

2
tr(Σi(θ)−1Ai(θ)X ′iX iA

i(θ)′) (4.2)

where
X ′ = (x1 · · ·xT ) = (X ′1 : · · · : X ′r),

and the joint log-likelihood for all r regimes is

L(θ) =
r∑
i=1

Li(θ). (4.3)

The elements of the coefficient matrix Ai and the covariance matrix Σi of
each regime are functions of a common vector of parameters θ. This is because
we hypothesise that some relationships are common to more than one regime so
that there are cross-restrictions between some elements of Ai and Σi for different
regimes. When there are no cross-restrictions we can partition θ so that

L(θ) =
r∑
i=1

Li(θi) (4.4)
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and the r vectors θi have no elements in common. It follows that each regime can
be estimated separately by standard FIML programs so these models are not of
interest to us.

From (4.3) we have that

∂L

∂θ
=

r∑
i=1

∂Li
∂θ

, and
∂2L

∂θ∂θ′
=

r∑
i=1

∂2Li
∂θ∂θ′

. (4.5)

If the Σi are unrestricted we can concentrate them out of the log-likelihood as
usual to get

L∗(θ∗) =
r∑
i=1

L∗i (θ
∗) (4.6)

where

L∗i (θ
∗) = −nTi

2
log(2π)− nTi

2
− Ti

2
log

∣∣∣∣ 1

Ti
Ai(θ∗)X ′iX iA

i(θ∗)′
∣∣∣∣

+Ti log
∣∣∣∣Bi(θ∗)

∣∣∣∣ (4.7)

and

Σ̃
i

=
1

Ti
AiX ′iX iA

i′. (4.8)

We have specified nothing, so far, about the nature of the mappings from θ to
the elements of Ai and Σi. If these mappings are non-linear then we say that the
model is non-linear in parameters. We now show that by choosing the normalisa-
tion of the model in each regime we can keep the model linear in parameters.

We want to ensure that the parameters of each regime are identified before we
consider imposing cross-regime restrictions. This is because we will later want to
test these extra restrictions. We will consider only exclusion restrictions on Ai

(the only available form of restriction in many standard FIML packages) where
some elements of Ai are set a priori to zero. Let Φk be a diagonal matrix defined
by

φkjj = 1 if aikj = 0

= 0 otherwise. (4.9)

Then a necessary and sufficient condition for the kth equation to be identified is
that

rank(AiΦk) = n− 1 (4.10)

where n is the number of equations in the system. For the complete model to be
identified condition (4.10) must be satisfied for each equation (k = 1, · · · , n) of
each regime (i = 1, · · · , r).

12



Condition (4.10) uniquely identifies the parameters of each equation only up
to multiplication by a scalar (see for example Schmidt [16]). To eliminate the
remaining indeterminacy we need to specify in addition some normalisation rule.
Conventionally we normalise along the diagonal setting

Bi
kk = −1 (k = 1, · · · , n). (4.11)

However, this particular normalisation rule is quite arbitrary and we are free
to normalise each equation on any variable with a non-zero coefficient. FIML
procedures are invariant to the rule chosen.

In fact by choosing a different model normalisation in different regimes we can
make each regime linear in parameters θ. We can illustrate this with the two
equation model developed at the end of the last section. The two regimes with
the conventional normalisation can be written as(

−1 a1
0 −1

)(
qt
pt

)
+

(
a0 0
a2 a3

)(
c
zt

)
=

(
u1

1t

u1
2t

)
(4.12)

(
−1 0
b1 −1

)(
qt
pt

)
+

(
b2 b3
b0 0

)(
c
zt

)
=

(
u2

1t

u2
2t

)
(4.13)

with covariance matrices

Σ1 =

(
σ1
11 σ1

12

σ1
21 σ1

22

)
and Σ2 =

(
σ2
11 σ2

12

σ2
21 σ2

22

)
respectively.

The cross-restrictions between parameters are then

(b0, b1, σ
2
11) = (−a0

a1
,

1

a1
,

1

(a1)2
σ1
11) (4.14)

which are non-linear. However, if we keep the demand relation normalised on qt
in both regimes, instead of (4.13) we have(

−1 b1
−1 0

)(
qt
pt

)
+

(
b0 0
b2 b3

)(
c
zt

)
=

(
u2

1t

u2
2t

)
(4.15)

and the cross-restrictions are simply

(b0, b1, σ
2
11) = (a0, a1, σ

1
11). (4.16)

In general, by preserving the normalisation of equations which remain constant
across regimes, which means changing the normalisation of the system from the
conventional diagonal normalisation, we avoid non-linear restrictions between the
regimes. This proves to be convenient. There is no inherent difficulty in treating
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non-linearity in parameters if we wish to do so (and we might wish to allow for
other non-linear restrictions apart from those arising from the constancy of some
relationships across regimes) but this is not necessary. From now on we will
assume the mapping from θ to Ai and Σi to be linear for each regime.

The numerical problem to be solved, then, is the maximisation of (4.3) with
Li(θ) defined by (4.2) and a linear mapping from θ to Ai and Σi. Clearly the
simplest approach would have been to write a special program for the problem.
However, it seemed more useful to attempt to generalise an existing FIML pro-
gram, to find out how difficult it might prove to implement the necessary modifi-
cations within an existing framework. We have seen that cross-regime restrictions
may involve the Σi matrices and in any case we need to impose block diagonality
of Σi for Richard’s test for exogeneity. For these reasons the program GENRAM,
written by David Hendry [9], was chosen because it already included the option
of some restrictions on the covariance matrix.

When we have cross-restrictions on Σi we cannot in general concentrate the
matrix out of the likelihood function and we have to deal with the problem that
the elements of Σi are already constrained by the restrictions of symmetry and
positive-definiteness. For the numerical optimisation routine the parameters must
be unconstrained so that we cannot work directly with the elements of Σi. We
make use of the fact that we can factorise Σi as

Σi = H iH i′ (4.17)

where H i is a lower triangular matrix with n(n+1
2

) non-zero elements which are
unconstrained. Now if we wish to impose restrictions on Σi these must be trans-
lated into restrictions on H i.

We wish to consider two types of restriction. Firstly we have cross-regime
covariance restrictions arising from the constancy of some relationships across
regime shifts. We assume that the first block of n∗1 equations remain constant
over all regimes. Let us partition Σi and H i for each regime as

Σi =

(
Σi

11 Σi
12

Σi
21 Σi

22

)
, H i =

(
H i

11 0
H i

21 H i
22

)
(4.18)

where we note that H i
11 and H i

22 are square lower triangular matrices. Then the
covariance restriction is that Σi

11 = Σj
11, ∀i, j which implies H i

11 = Hj
11, ∀i, j.

Secondly we want to apply Richard’s test for the exogeneity of the control
process for each regime. We saw in section 3 that this implies block diagonality
of Σi. There for a single regime we were able to analytically concentrate the
likelihood but when we also have to deal with cross-regime restrictions this is no
longer possible and we must deal with the restrictions explicitly. Let (4.18) now
correspond to a partitioning into blocks of n1 and n2 equations ( n∗1 ≤ n1) where
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the last block represents the equations of the control process, Then Richard’s
covariance restriction Σi

12 = Σi
21 = 0, ∀i becomes H i

21 = 0, ∀i.
When there are no restrictions the number of unconstrained Σ parameters

to be estimated is rn(n+1
2

). Cross-regime restrictions subtract (r − 1)n∗1(
n∗
1+1

2
)

parameters and exogeneity restrictions another rn1n2 parameters. However, from
the point of view of the order of the numerical problem to be solved, imposing Σ
restrictions increases the size by

r

2
[n1(n1 + 1) + n2(n2 + 1)]− r − 1

2
[n∗1(n

∗
1 + 1)] (4.19)

extra parameters. This will become prohibitively expensive for all but small values
of n and r.

We can now summarise the extra information needed by the modified program.
Let

ψi = vecAi and φi = Siψi (4.20)

where Si denotes a selection matrix picking out unrestricted elements only. Note
that since there are no restrictions between the parameters of Ai and Σi we can
partition θ into θ′ = (θ′1 : θ′2) and write Ai (θ1) and Σi(θ2). Then the additional
information is:

1. (i) The number of regimes r.

(ii) Their periods of operation Ii, i = 1, · · · , r.
(iii) The size of the block of constant equations n∗1.

(iv) The size of the block of control equations n2.

2. For each regime:

(i) The mapping from ψi to φi (i.e. which elements ofAi are unrestricted)

(ii) The mapping from φi to θ1 (i.e. which element of θ1 corresponds to
each unrestricted element of Ai)

(iii) The model normalisation (i.e. which elements of Ai are preset to −1)

3. Initial values for the parameter vector θ1.

The program generates its own initial values for θ2, the parameters of Σi and
also defines the mapping from Σi to θ2 on the basis of 1(iii) and 1(iv).

Now we want to develop tests for the validity of the restrictions we impose on
the model. The most general model we consider is a multiple regime model with
no cross-regime restrictions and no restrictions on the covariance matrices. We
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can then find a sequential testing procdure of two nested hypotheses. First we
test the hypothesis of the constancy of some chosen sub-block of equations over
the regime shifts. Then if this test does not reject the null hypothesis we can go
on to test the hypothesis of the exogeneity of the control equations in each regime
using Richard’s test developed in section 3. This second test then becomes a test
of whether or not the economy was controlled.

If, however, the first test rejects the hypothesis of a constant sub-block of
equations then each regime is a completely separate model. Of course we can
still test for exogeneity in each regime but even if this test fails to reject the null
in each case we cannot really interpret this as the authorities switching between
instruments in their control of the economy, since the economy being controlled
changes with the regime.

The general unrestricted model can be estimated easily using the concentrated
log-likelihood function defined by (4.6) – (4.8). Let the maximum of this log-
likelihood be L+. Then we reestimate the model imposing all the cross-regime
restrictions. Initial values for the parameters of the covariance matrices can be
derived from the solution of the unrestricted model. Let L++ be the maximum of
this log-likelihood and let p be the number of unrestricted parameters in the first
n∗1 rows of the Ai matrix. The first test is then

2(L+ − L++) ∼a χ2

((r−1)(p+n∗
1(

n∗
1+1

2
)))
. (4.21)

Lastly we reestimate the second model imposing the block diagonality on the Σi

matrices for the exogeneity test. The joint test for exogeneity in each regime is

2(L++ − L+++) ∼a χ2
(rn1n2)

(4.22)

where L+++ is the maximum log-likelihood of the third model. We can also
apply the exogeneity test separately to each regime. Let L++

i and L+++
i be the

corresponding maxima for regime i. Then

2(L++
i − L+++

i ) ∼a χ2
(n1n2)

. (4.23)

5 A Model of the Money Market

As an illustration of the general approach already outlined it was decided to
estimate a simple two-equation model of the money market to try and model the
change in regime of the introduction of Competition and Credit Control (CCC)
in October 1971.

Firstly we must explain the economic background to the change. (For a good
account of British monetary policy before 1971 see the chapter by Goodhart in
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[5]. Goodhart [6] gives a very interesting inside view of the Bank of England
thinking behind the change and early experience of operating the new regime.)
Before 1971 the control of short term interest rates was the main concern of the
monetary authorities. The key to their control was the Bank Rate which was an
institutional rate set directly by the Bank of England. Other short term interest
rates moved closely in line with it; in particular a Clearing banks cartel existed
which linked the interest rates on Advances and time deposits directly to Bank
Rate. Changes in the Bank Rate came to have a strong ”announcement effect”
signalling the direction of monetary policy. On the other hand there was no
attempt to directly control the main monetary aggregates (which only came to
be regarded by the Bank as important indicators towards the end of the 1960s)
although starting in 1964 there was some attempt to reduce bank lending to the
private sector, especially persons, in a series of formal ”Requests” to the Clearing
banks. However, these were quantitative ceilings imposed on the market rather
than operating through it. We can distinguish four main targets of monetary
policy: the balance of payments, the rate of unemployment, the rate of inflation
and, in the longer term, the growth rate. Of these the balance of payments was
perhaps the most important. (For a statement of the aims of monetary policy by
the authorities themselves see the Radcliffe Report [14]).

The effect of the 1971 changes was to switch emphasis to control of the mon-
etary aggregates. In 1972 the Bank Rate was replaced by a Minimum Lending
Rate (MLR) which is determined by the market (The Bank sets it at 0.5 above
the current Treasury bill rate). The Clearing bank cartel was abolished and the
banks encouraged to compete for funds, thus allowing interest rates to move freely
in response to market presures. In this way control over interest rates was relaxed
in favour of control over the monetary aggregates, although the mechanism of
control was viewed as being through portfolio adjustment in response to changes
in asset relative prices. (In the new spirit of free competition the formal ceilings
on lending were abandoned although in 1973 they were reintroduced in a new
guise as the Supplementary Special Deposit scheme or ”corset”.) The targets of
monetary policy since 1971 have been essentially the same as before, with perhaps
less emphasis on the balance of payments, although the managed floating of the
exchange rate in 1972 has not alleviated all external balance problems.

We attempted to model this complicated policy change in a simple two regime
model of two equations: the demand for money equation and a reaction function
for the control variable (interest rate in the first regime and money supply in the
second) although clearly, with such an oversimplified model, our results can only
be very tentative. Previous work on reaction functions for the instruments of
monetary policy for the U.K. has been done by Douglas Fisher [3], [4] and also by
Goodhart (in his appendix to [5]). The reaction function treats a policy control
variable as a function of the target variables which are the objects of control.
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The coefficients then measure the response of the control variable to changes in
the target variables. For our policies, in order to test for the exogeneity of the
control variables, our reaction functions must be purely predetermined and we may
interpret this as reflecting the necessary lags in the reaction of the authorities.

Rather than try to estimate the model from the start by FIML it was decided
to do preliminary single equation estimation to choose the dynamic specification
of the equations. This allowed access to the much fuller diagnostic tests available
in programs such as GIVE (Hendry [10]), especially tests for serial correlation,
which was important since we wanted to avoid dealing with this problem in the full
simultaneous estimation of the two regime model. Also the preliminary estimates
obtained provided us with initial values to use in the FIML program. In deter-
mining the dynamic structure the methodology of Hendry and Mizon [11] was
adopted. Economic theory gives us little help in choosing dynamic specification
and, rather than impose the dynamics a priori, we follow a consistent data-based
approach. Starting from the most general hypothesis we are prepared to accept
(generally a maximum lag length on all variables) we can then test for parameter
restrictions in a series of Wald tests until we reach the most parsimonious descrip-
tion consistent with the data. There is no unique sequence for testing and the
particular restrictions we test may often be governed by what seems intuitively
plausible or appealing. However, this procedure should prevent us from imposing
invalid restrictions.

One objection sometimes raised against this approach is the problem of multi-
collinearity in parameter estimates in the most general equation forms. In practice
this did not greatly hinder the simplification process since, although t-ratios in
these cases were in general quite small using conventional significance levels, the
relative sizes of t-ratios were found to be still quite a good indication of the rela-
tive importance of lags. A more critical practical problem was degrees of freedom
(especially for the reaction functions) which restricted the maximum lag length
which could reasonably be estimated.

Seasonally unadjusted data was used. This avoided the problem of possible
distortion of the true dynamic strucure arising from using series separately sea-
sonally adjusted using different filters (see Wallis [17]). For the money demand
equation it also gave us an interesting comparison with the results of Hendry and
Mizon who used adjusted data.

The two endogenous variables used in the analysis were personal sector M3
and the Local Authority short term interest rate. It is sometimes argued that
the appropriate monetary indicator is narrow money M1 rather than M3 which
includes an interest bearing asset, time deposits. However, the view of the Bank
at the time (see for example Goodhart [6]) was that, because of the ease of shifting
between time deposit and current accounts, M1 could not be controlled, so that
M3 was the appropriate indicator for control. Total M3 was tried but this was
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not very successful (even in an unrestricted specification with up to 8 quarter lags
on all variables there was significant residual autocorrelation) and personal sector
M3 was found to perform much better. This accords with the results of studies
by the Bank of England (see Hacche [8]). Finding a single interest rate with the
dual property of being both monetary control variable and a measure of the true
opportunity cost of holding money proved difficult. Several short rates were tried
but finally the Local Authority rate was chosen as the best proxy.

The general unrestricted money demand equation took the form

lnMt =
J∑
j=0

(αj lnYt−j + βj lnPt−j + γj ln rt−j + δj lnMt−j−1)

+c0 +
3∑
i=1

ciqt−i + et (5.1)

where

Mt = personal sector M3

Yt = personal disposable income at constant 1975 prices

Pt = the deflator for Yt

rt = the Local Authority interest rate as a percentage

and qt−i, i = 1, · · · , 3 are the usual seasonal dummies. Data was available quar-
terly over the period 5501-7802. Estimating (5.1) by OLS over the full data period
with J = 5 gave the results in Table 1. The three χ2 statistics quoted are tests
for residual autocorrelation: χ2

12 is the Box-Pierce random residual correlogram
test (see Pierce [13]), χ2

6 is a Lagrange multiplier test for serial correlation up to
the 6th order, χ2

1 is the squared Durbin h-statistic for a first order AR process
(Durbin [2]). These statistics show no evidence of dynamic misspecification or
serial correlation in the residuals, confirming that choice of J = 5 is adequately
general (as might be expected for quarterly data). Perhaps the most striking
feature of the equation is the strong affirmation of unit price elasticity suggesting
a reparameterisation with ∆ ln(M/P ) as the dependent variable. Comparison of
Table 1 with Table 1 in Hendry and Mizon (estimated with J = 4 over a much
shorter period 6301-7503) shows much similarity in the lag patterns suggesting
that the seasonal bias in using adjusted data may not be very important in this
case. In particular there is the same ∆ ln rt term with perverse sign, although in
general the interest rate terms in our equation are much less significant (Hendry
and Mizon used the consol yield)

To guard against possible simultaneous equation bias in using OLS, equation
(5.1) was reestimated using instrumental variables for rt. Note that in the com-
plete two equation model if Σ is not diagonal then OLS on Mt will be inconsistent

19



Table 1: Equation 5.1 with J = 5. OLS 5603–7802
j\V ble lnMt−j−1 ln rt−j lnYt−j lnPt−j

0 1.07 (.13) .011 (.013) .33 (.11) .85 (.33)
1 −.28 (.18) −.019 (.019) −.15 (.13) −.95 (.45)
2 .06 (.18) .015 (.020) .06 (.13) −.03 (.47)
3 .20 (.19) −.017 (.019) −.13 (.13) −.08 (.45)
4 −.26(.18) .027 (.020) .04 (.13) .59 (.45)
5 .06 (.13) −.012 (.015) −.01 (.12) −.29 (.29)∑
j .85 .005 .14 .09

c0 = −.53 (.25) c1 = −.001 (.011) c2 = −.003 (.010) c3 = .008 (.011)
R2 = .9992 σ̂ = .0159 χ2

12 = 3.84 χ2
6 = 8.18 χ2

1 = 1.28

(standard errors in parentheses)

but if Σ is diagonal (Richard’s condition satisfied) then OLS is maximum like-
lihood. Full 2SLS using as instruments all predetermined variables in the most
general specification of both equations (i.e. including all lags up to J = 5 )
would have exceeded the program dimension limitations but it was possible to
use j = 1, · · · , 4 on all the additional instruments (giving 39 instruments in all).
However, the results were virtually identical to Table 1 with the interest rate
terms coming out even less significant.

Before attempting to simplify the unrestricted equation (5.1) it was decided to
test its stability over the regime change in October 1971. It is well known that the
introduction of CCC was followed by a very large expansion in M3 (most espe-
cially in company holdings but also to a lesser extent in personal sector holdings),
an expansion not matched in the narrow money definition M1, and Hacche [8]
and Goodhart [6] reported a complete breakdown in the Bank of England’s own
forecasting equations. Since one of the effects of CCC was to encourage banks to
compete for finance through the rates paid on deposit accounts, Hacche argued
convincingly that this breakdown could be explained by the omission of own-rate
terms from the Bank’s demand equations, terms which would not have mattered
before 1971 when the differential between deposit rates and the Bank Rate was
constant. However, own-rate terms were not found to be significant either by
Hacche or Artis and Lewis [1] who explained the expansion of M3 as a disequi-
librium excess supply of money. (In an earlier equation for total M3 we tested
the importance of own-rates by including interest differential terms of the form
ln(r∗/r)t−j where r∗ was the time deposit rate. However, these terms came up
with perverse negative signs).

A Chow test was carried out on equation 5.1 reestimated over the period ending

20



Table 2: Solved Coefficients from Equation 5.2. OLS 5603-7802
j\V ble lnMt−j−1 ln rt−j lnYt−j lnPt−j

0 1.10 .011 .27 .65
1 −.14 −.011 −.23 −.75
2 0.0 0.0 0.0 −.41
3 .26 0.0 0.0 .15
4 −.26 .009 0.0 .54
5 0.0 0.0 0.0 −.14∑
j .96 .009 .04 .04

7103. The statistic was F(27,60) = 2.62, the 5 significance level for F(24,60) being
1.70, so that the hypothesis of parameter stability was rejected. This probably
reflects the clearly inadequate proxying of interest effects in the equation.

Simplifying equation (5.1) we obtained

∆ ln(M/P )t = 27∆ lnYt +.14∆ ln(M/P )t−1 −.35∆ lnPt
(.08) (.10) (.20)
−.55∆ lnPt−2 −.40∆2 lnPt−2 +.26∆ ln(M/P )t−4
(.20) (.19) (.10)
+.011∆ ln rt +.009 ln rt−4 −.04 ln(M/PY )t−1
(.011) (.008) (.02)

c0 = −.17 (.07) c1 = −.01 (.01) c2 = −.01 (.01) c3 = −.003 (.005)

R2 = .644 σ̂ = .0151 χ2
12 = 6.86 χ2

6 = 4.51 χ2
1 = .002.

(5.2)

The χ2 tests still reject the hypothesis of serial correlation in the residuals and the
F-ratio test for the restrictions imposed on (5.1) is F(15,60) = .533. (The 5 signifi-
cance level for F(15,60) is 1.84). The solved coefficients from (5.2) are recorded in
Table 2 and these quite closely correspond with the coefficients on the unrestricted
equation. However, like Hendry and Mizon’s equation 21, the specification (5.2)
was primarily chosen so as to include decision variables with sensible economic
interpretations. In the short-run inflation has a negative influence on money
demand through three inflation terms , including a term for the rate of accelera-
tion of inflation ∆2 lnPt−2. However, in long run equilibrium when all variables
are growing along steady-state growth paths the equation exhibits unit elasticity
with respect to both prices and income through the inverse velocity levels term
ln(M/PY )t−1. This term also serves as an error feeedback correction mechanism
in the short run, allowing agents to adjust from previous disequilibrium in the
relationship betwen their real income and money holdings.
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In the long run we would expect some levels interest rate effect. However, the
coefficient on ln rt−4 in (5.2) has the ”wrong” sign and is statistically insignificant,
its value being approximately equal to the sum of the interest rate coefficients on
the unrestricted equation. This again seems to reflect the unsatisfactory nature of
the Local Authority rate (perhaps any single rate) as a proxy for the opportunity
cost to the personal sector of holding money. It is clear that to have gone on to
try and produce a fully satisfactory equation would have required much further
work experimenting with various interest rates (possibly including several different
rates) in an attempt to model the portfolio choice properly. For the purpose of
this exercise it was decided to accept (5.2), however unsatisfactory, as the best
equation we had been able to find.

In approaching the estimation of the reaction functions we had immediately to
face the problem that with only 27 observations for the second regime (7104-7802)
it was quite impossible to estimate an unrestricted function. Instead we chose the
dynamic specification for the first regime on the basis of an unrestricted equation
and then were forced to assume that this specification remained the same after
the regime switch. We note that this assumption is a very strong one since we
might expect the reaction lags of different control instruments to be very different.

The general hypothesis for the first regime was

ln rt =
J∑
j=0

(aj ln(B/P )t−j + bj lnUt−j + dj lnPt−j + ej lnEt−j)

+
K∑
k=1

(fk ln rt−k + gk lnMt−k) + c0 +
3∑
i=1

ciqt−i + εt (5.3)

where

Ut = the percentage rate of unemployment
Bt = the level of reserves
Et = the Eurodollar rate.

The Eurodollar rate was included on the hypothesis that a long run objective
of interest rate control would be to keep U.K. interest rates in line with foreign
rates. Equation (5.3) was estimated over the period 5602-7103 taking J = K = 4
giving the results in Table 3. The χ2 tests show no evidence of residual autocor-
relation. Having little a priori theory to guide us to a sensible reparameterisation
the equation was simplified by choosing the most important lags from Table 3.
The resulting equation was
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Table 3: Equation 5.3 with J = K = 4. OLS 5602–7103
j\V ble ln rt−j−1 lnMt−j−1 lnPt−j lnUt−j ln(B/P )t−j lnEt−j

0 .83 (.18) −.22 (1.19) 6.01 (3.2) −.03 (.24) −.09 (.19) .17 (.18)
1 −.35 (.22) .89 (1.36) −7.51 (4, 4) −.35 (.39) −.42 (.25) −.10 (.29)
2 .19 (.23) .70 (1.39) −.07 (4.2) .49 (.41) .01 (.23) .21 (.31)
3 .27 (.17) −1.20 (1.05) −5.24 (4.0) −.72 (.43) −.07 (.25) −.37 (.29)
4 — — 6.22 (3.3) .48 (.26) .33 (.24) .24 (.19)∑
j .94 .17 −.59 −.13 −.24 .15

c0 = 1.40 (2.47) c1 = −.11 (.13) c2 = −.14 (.12) c3 = −.02 (.14)
R2 = .916 σ̂ = .1006 χ2

12 = 4.79 χ2
6 = 6.14 χ2

1 = .03

Table 4: Solved Coefficients from Equation 5.4. OLS 5602–7103
j\V ble ln rt−j−1 lnMt−j−1 lnPt−j lnUt−j ln(B/P )t−j lnEt−j

0 1.008 −.19 2.17 0.0 0.0 0.0
1 −.47 .19 −1.98 −.53 −.41 −.008
2 .47 0.0 −.19 .53 0.0 0.0
3 0.0 0.0 −3.78 −.37 0.0 0.0
4 0.0 0.0 3.78 .37 .41 0.0∑
j 1.008 0.0 0.0 0.0 0.0 −.008

∆ ln rt = 2.17∆ lnPt −3.78∆ lnPt−3 −.53∆ lnUt−1
(2.10) (2.35) (.16)
−.37∆ lnUt−3 −.47∆ ln rt−2 −.41∆3 ln(B/P )t−1
(.17) (.13) (.10)
−.19∆ ln(M/P )t−1 +.008 ln(r/E−1)t−1
(.81) (.008)

c0 = .07 (.04) c1 = −.05 (.06) c2 = −.05 (.04) c3 = −.07 (.07)

R2 = .526 σ̂ = .0954 χ2
12 = 12.28 χ2

6 = 2.96 χ2
1 = .19.

(5.4)

The F-test on the imposed restrictions gave F(20,30) = .746 (5 significance level
F(20,30) = .1.93). Although this test failed to reject the restrictions imposed in
(5.4) the solved coefficients in Table 4 are rather different from those in Table 3.
This is especially true of the inflation terms which have changed considerably in
magnitude. The last term in (5.4) was a levels effect intended to capture a long
run relationship between U.K. and foreign interest rates. However, it was found
to be insignificant.
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The specification (5.4) was reestimated over the period 7104-7802 with ∆ ln(M/P )
as the dependent variable. This gave the equation

∆ ln(M/P )t = −.95∆ lnPt −.29∆ lnPt−3 −.04∆ lnUt−1
(.18) (.19) (.03)
−.05∆ lnUt−3 −.004∆ ln rt−2 −.01∆3 ln(B/P )t−1
(.03) (.01) (.005)
+.11∆ ln(M/P )t−1 −.02 ln(r/E−1)t−1
(.16) (.008)

c0 = .06 (.01) c1 = −.03 (.008) c2 = .0004 (.007) c3 = −.02 (.009)

R2 = .912 σ̂ = .0098 χ2
12 = 16.72.

(5.5)

Caution must be exercised in the interpretation of this equation because of the
number of degrees of freedom (only 15). This means that the very good fit (high
R2, small σ̂) is probably spurious. Also the χ2

12 statistic is large compared with
our previous equations, although still not significant. (The other χ2 tests were
unfortunately not available for this equation). Comparing with (5.4) we see that,
although most of the coefficients have changed sign (as expected) a few (as with
equation (5.4)) seem to have perverse signs.

These reaction functions are not very satisfactory, in particular because of the
ad hoc way in which the dynamic specification was chosen from the unrestricted
equation (5.3). Nevertheless, our purpose being illustrative only, the specifications
(5.4) and (5.5) were used, together with the demand equation specification (5.2)
for the purpose of a FIML estimation of the complete model to illustrate the
application of Richard’s test for exogeneity.

The complete model was estimated three times to carry out the two likeli-
hood ratio tests described at the end of section 4. Firstly, the log-likelihood was
maximised without any cross-restrictions, allowing the coefficients on the money
demand equation to take different values in the two regimes. (This corresponds
to L+ in section 4). Then the model was reestimated constraining the coefficients
on the demand equation to be the same for both regimes. (This corresponds to
L++). Finally, the second model was reestimated imposing Richard’s exogeneity
restrictions which in this model implies constraining the two covariance matri-
ces Σi to be diagonal. (This corresponds to L+++). The exact log-likelihoods
obtained were

L+ = 292.06 , L++ = 276.69 , L+++ = 267.23 (5.6)

so that the two χ2 tests corresponding to (4.21) and (4.22) were

χ2
(9) = 30.74 and χ2

(2) = 18.92 (5.7)
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respectively.
The first test convincingly rejects the hypothesis of a stable money demand

function, confirming the result of the Chow test done on the single equation.
(This test has only 9 degrees of freedom because the additional cross-restriction
on the covariance terms that σ1

11 = σ2
11 was not imposed). We have argued

above that rejection of the null on this first test means that we cannot regard
Richard’s joint exogeneity test as a test of whether or not the economy was being
controlled. Nevertheless, it is still interesting that Richard’s test strongly rejects
the hypothesis that the instruments of control were exogenous for this model
imposing a stable money demand function. The individual χ2 tests on each regime
(corresponding to (4.23)) were

χ2
(1) = 13.52 and χ2

(1) = 5.40 (5.8)

respectively, showing that the rejection of the null was much stronger for the first
regime.

We also applied Richard’s test for exogeneity to each regime estimately sepa-
rately (allowing a shift in the money demand equation between the two regimes).
This gave the statistics

χ2
(1) = 2.46 and χ2

(1) = .114 (5.9)

showing remarkably different results from the previous tests. Taking these results
at face value the implication is clear: in both regimes separately the control
instruments appear to have been exogenous but the regime change itself was
accompanied by a shift in the money demand function. We should be cautious
about putting too much weight on this conclusion without further evidence (in
particular it would have been interesting to test the exogeneity of the money
supply in the first regime and the interest rate in the second). Before accepting
the hypothesis of a shift in the money demand function we would like to have done
more work with different relative interest rates to model the portfolio decision
more carefully. Nevertheless, the hypothesis of a change in the behaviour of the
personal sector cannot be ruled out, especially since one explicit purpose of CCC
was to bring about a change in the behaviour of the banks.

The FIML estimates for the second model (with the demand equation con-
strained to be the same in both regimes) were as follows:

∆ ln(M/P )t = 31∆ lnYt −.003∆ ln(M/P )t−1 +.17∆ lnPt
(.08) (.02) (.22)
+.015∆ lnPt−2 −.02∆2 lnPt−2 +.28∆ ln(M/P )t−4
(.027) (.03) (.11)
+.11∆ ln rt +.003 ln rt−4 +.03 ln(M/PY )t−1
(.03) (.01) (.03)

(5.10)
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∆ ln rt = .18∆ lnPt +.24∆ lnPt−3 −.50∆ lnUt−1
(.17) (.19) (.13)
+.01∆ lnUt−3 −.24∆ ln rt−2 −.12∆3 ln(B/P )t−1
(.17) (.11) (.08)
+.23∆ ln(M/P )t−1 −.02 ln(r/E−1)t−1
(.12) (.05)

(5.11)

for regime 1 and

∆ ln(M/P )t = 1.83∆ lnPt +.10∆ lnPt−3 −.17∆ lnUt−1
(.14) (.11) (.11)
−.03∆ lnUt−3 +.006∆ ln rt−2 +.007∆3 ln(B/P )t−1
(.08) (.04) (.02)
+.20∆ ln(M/P )t−1 −.06 ln(r/E−1)t−1
(.07) (.03)

(5.12)

for regime 2, with covariance matrices

Σ1 =

(
.0005 −.0014
−.0014 .0103

)
, Σ2 =

(
.0005 .0004
.0004 .0014

)
. (5.13)

Comparison with the single equation estimates ((5.2), (5.4) and (5.5)) shows con-
siderable differences in the significance as well as the magnitude of individual
coefficients.

Experience with the FIML program highlighted the importance of good initial
values in the iteration routine if the speed of convergence was to be increased. Two
algorithms were used: Gill-Murray-Pitfield which was fast from good initial values
but sometimes would fail to converge if started at all far away from a maximum,
and the Powell conjugate directions algorithm which was much more robust but
considerably slower (sometimes taking up to 40 iterations or 15-20 seconds on the
CDC 7600 computer).
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