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Preface

The earliest of these papers (Chapter 1) is the dissertation I submitted in 1979 in part
fulfillment of the requirement for the MSc in Econometrics and Mathematical Economics
at the London School of Economics. My supervisor was David F. Hendry who had intro-
duced me to an (at the time) unpublished paper by Jean-François Richard on exogeneity
and suggested that I could use it as the basis of a dissertation. Richard’s paper was very
difficult but rewarding.

Later, I got to meet Jean-François and to collaborate with him and Michel Lubrano
on a paper applying Bayesian techniques to exogeneity testing (Chapter 2). By this time
I was doing a Ph.D. at the LSE on exogeneity and had built a model of money demand to
look at the impact of Competition and Credit Control on the UK money market. Jean-
François and Michel needed an application for their Bayesian analysis so we decided to
collaborate on a joint paper. We tried very hard but ultimately unsuccessfully to get this
published in Econometrica but in the end it was fast-tracked into a special econometrics
issue of the Review of Economic Studies. Because of the last-minute rush of its final
publication and the fact that its three authors lived in three different countries, the
published paper has a number of typographical errors that I have aimed to correct in
re-setting the paper for this book.

I had only a two-year grant for my Ph.D at LSE so in 1981–2, in order to stay
on for another year, I took a part-time Research Assistant job working with Andrew
Harvey. The main outcome of this year was my first publication, in 1984 in the Journal
of the American Statistical Association on temporal aggregation and missing observations
(Chapter 3).

In October 1982 I moved to Cambridge to join the Cambridge Growth Project at the
Department of Applied Economics. Here I met Hashem Pesaran though it was a few
years before the start of our collaboration. By 1985, funding for the Growth Project (and
several other macroeconomic modelling groups) had come under threat as the Economic
and Social Research Council (ESRC) began to take notice of the criticisms (mainly coming
from the USA) of macroeconomic models, especially large ones. I began to think about
whether it was possible to prove statistically that disaggregated macroeconomic modelling
was worthwhile. I was thinking along the lines of formal tests for aggregation restrictions
but it became obvious that the conditions for valid aggregation are very stringent and will
almost never be satisfied. I happened to mention what I was working on to Hashem who
then got interested in alternative approaches such as the Grunfeld-Griliches criterion.

The result, after a long and painful struggle, was a publication in Econometrica in
1989 (Chapter 5). Angus Deaton was the journal editor and he and Hashem had long
fights over revisions that Angus demanded and Hashem didn’t want to make. The final
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fight was over an appendix which proved the asymptotic validity of a test for perfect
aggregation for a special case. Angus wanted it cut; Hashem insisted it should remain.
Angus won that one by pointing out that, as he was soon due to step down as editor, if
we didn’t agree to cut it, he would hand the paper over to his successor and we would
be back to square one. Hashem was forced to concede but he had the last word as we
managed to get the appendix accepted as a separate paper in Economics Letters (Chapter
6), published in time for a reference to it to be included in the Econometrica paper.

The presence of the name of a third author on the Econometrica paper, Mohan Kumar,
needs some explanation. When Hashem and I first started working on the paper, we were
planning an illustrative application to UK wage equations. The policy of the Growth
Project (enforced by its Director, Terry Barker) was that research into any macroeconomic
area should always be done in collaboration with the person on the Project who was
allocated to work on that area. Although our paper was mainly a theoretical one and
the application was solely for illustration of the new tests and criteria developed, since
Mohan Kumar was in charge of wage equations in the Growth Project, he was drafted
onto the team. However, Hashem and Mohan did not get on and soon Hashem and I
were working without him and I ended up doing all the applied work on my own. By
the time that the paper appeared, Mohan Kumar had long departed from Cambridge
to the IMF, the Growth Project was defunct (its ESRC funding having been cut), and
the application in the paper was to employment equations rather than wage equations.
Despite all this, we did not think of removing Mohan’s name from the paper until the
last minute, when it was too late. Mohan had no idea that the paper even existed until
I rang him up to tell him he had a forthcoming paper in probably the most prestigious
journal in economics. The fantasy that one day this might happen to me still haunts me.

The final irony concerning the Econometrica paper is that, while it included as a co-
author someone who had no part in the paper, it failed to acknowledge the part played, in
the final stages of preparation of the paper, by another colleague, Kevin Lee. Kevin joined
the Growth Project in 1985 and, by the time that the Econometrica paper was published,
he was already working with Hashem and me on other papers on disaggregation. I believe
that he actually wrote the Data Appendix in the Econometrica paper yet he does not
even merit a mention in the acknowledgements.

Kevin, Hashem and I worked together for several years, producing papers on aggre-
gation bias in the Economic Journal in 1990 (Chapter 7), in the book Disaggregation in
Econometric Modelling (Barker and Pesaran (1990)) also in 1990 (Chapter 8), and in the
Journal of Econometrics in 1993 (Chapter 10) and papers on persistence in disaggregated
models in the Economic Journal in 1992 (Chapter 9) and in the Journal of Business &
Economic Statistics in 1994 (Chapter 11).

After a break of several years, I returned to issues of temporal aggregation in the
context of unit root testing in a paper written with Andy Snell and published in the
Journal of Econometrics in 1995 (Chapter 4). Like many of these papers, this one had a
very long gestation period. We conceived it in the late 1980s when Andy and I were both
working in Cambridge. In 1991, when Andy had moved to the University of Edinburgh
but I was still at Cambridge, we won an ESRC research grant to develop it. We were still
working on revisions in 1994 by which time I was at the London Business School and, by
the time it was published, I had moved to the University of Surrey. Initially, the paper
was planned to be mainly a Monte Carlo exercise. However, this was partly pre-empted
by the appearance of a paper in Economics Letters in 1995, Shiller and Perron (1985),
that did something close to what we had been doing. We were forced to refocus our paper
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Exogeneity and Switching Regimes
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Chapter 1

Multiple Regime Models with
Switches in Exogeneity

1.1 Introduction

Mutiple regime models have been used by econometricians in several different fields, a
major application being to models of market disequilibrium (see Maddala and Nelson
(1974)). One interesting field of application is the controlled economy where the policy-
maker switches between control instruments at different points in time, these switchpoints
being generally known (unlike the situation in market disequlibrium models). A charac-
teristic of such models is that the partitioning between “endogenous” and “exogenous”
variables changes between regimes.

Multiple regime models with this characteristic have recently been analysed by Jean-
François Richard in a forthcoming paper (Richard (1979)). He shows that it is possible
to test for the exogeneity of the control variables in the different regimes and hence to
test whether or not the economy was being controlled.

This study is an attempt to implement the analysis of Richard for the FIML estimation
and testing of multiple regime models and apply it to model the change in regime in the
U.K. monetary sector of the introduction of ‘Competition and Credit Control’ in October
1971. An existing FIML computer program written by David Hendry was generalised
to maximise the likelihood function of multiple regime models and to incorporate the
tests proposed by Richard. The application involved the estimation of a money demand
equation; in developing this equation a single equation approach was used and the general
to simple methodology of Hendry and Mizon (1979) was adopted. The resulting equation
in seasonally unadjusted data provides direct comparison with the equations in Hendry
and Mizon (1979).

The rest of this paper is organised as follows:

� In Section 1.2 some of the key concepts are developed for some simple models

� Section 1.3 derives Richard’s exogeneity test for the case of a complete simultaneous
model with a single regime

0 Dissertation submitted in partial fulfillment of the requirements of the MSc in Econometrics and
Mathematical Economics, London School of Economics, June 1979. The author is grateful to his super-
visor, David Hendry for his help and encouragement.
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� Section 1.4 deals with the FIML estimation of multiple regime models and describes
a testing procedure for these models

� Section 1.5 presents an application to the estimation of a simple two-equation model
of the monetary sector. Results and conclusions are presented.

A note on exogeneity.
We define exogeneity for our purposes as follows: a variable is exogenous if we can

run the analysis conditional on it without loss of information. This is a weak definition
of exogeneity. In particular we do not require that lagged values of endogenous variables
do not enter the determination of exogenous variables. Let xt be an exogenous variable
and yt an endogenous variable. Then in the lag formulation

a(L)xt = b(L)yt + wt

where L is the lag operator, we do not require that b(L) = 0 (although b0 must be
zero). Thus yt may in fact be “causing” xt in the Granger sense of causality (see Granger
(1969)).

1.2 Exogeneity in Simple Models

Suppose that we have two variables y1t and y2t which are jointly normally distributed
with density

f(y1t, y2t) = N(µ,Σ) (1.2.1)

or explicitly

f(y1t, y2t) = (2π)−1 |Σ|−
1
2 exp

(
−1

2

(
y1t − µ1

y2t − µ2

)′
Σ−1

(
y1t − µ1

y2t − µ2

))
(1.2.2)

where

Σ =

(
σ11 σ12

σ21 σ22

)
and Σ−1 =

(
σ11 σ12

σ21 σ22

)
.

The marginal distributions for y1t and y2t are given by

f(y1t) = N(µ1, σ11) and f(y2t) = N(µ2, σ22).

Defining s1 = σ11σ22−(σ12)2

σ11
and s2 = σ11σ22−(σ12)2

σ22
we have

σ11 =
σ22

σ11

s−1
1 , σ12 = −σ12

σ11

s−1
1 , σ22 = s−1

1

and the conditional distribution of y2t given y1t is

f(y2t|y1t) = f(y1t, y2t)/f(y1t)

= (2π)−
1
2σ

1
2
11

(
σ11σ22 − (σ12)2

)− 1
2 exp(− 1

2s1

[
σ22

σ11

(y1t − µ1)2 (1.2.3)

− 2(y1t − µ1)(y2t − µ2) + (y2t − µ2)2 −
(
σ11σ22 − (σ12)2

σ2
11

)
(y1t − µ1)2])
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= (2πs1)−
1
2 exp

(
− 1

2s1

[
(y2t − µ2)2 − 2

σ12

σ11

(y1t − µ1)(y2t − µ2) +

(
σ12

σ11

)2

(y1t − µ1)2

])
which is a univariate distribution

f(y2t|y1t) = N

(
µ2 +

σ12

σ11

(y1t − µ1), s1

)
. (1.2.4)

Similarly we can derive the conditional density for y1t given y2t which is

f(y1t|y2t) = N

(
µ1 +

σ12

σ22

(y2t − µ2), s2

)
. (1.2.5)

From (1.2.4) we get the regression model

y2t = a+ by1t + ut , ut ∼ NI(0, δ2) (1.2.6)

with Cov(y1t, ut) = 0, where a = µ2 − bµ1, b = σ12
σ11

and δ2 = s1 and from (1.2.5) the
regression model

y1t = c+ dy2t + vt , vt ∼ NI(0, ψ2) (1.2.7)

with Cov(y2t, vt) = 0, c = µ1 − dµ2, d = σ12
σ22

and ψ2 = s2.
As long as there are no prior cross-restrictions on the five parameters of the joint

distribution (µ1, µ2, σ11, σ12, σ22) we lose no information on (a, b, δ2), the parameters of
the conditional distribution of y2t, by treating (µ1, σ11) as nuisance parameters and run-
ning the analysis conditional on y1t. Equally, if we choose to treat (µ2, σ22) as nuisance
parameters no information is lost by running the analysis conditional on y2t. Thus (1.2.6)
and (1.2.7) are equally valid parameterisations of the model (1.2.1) where we choose to
treat (µ1, σ11) or (µ2, σ22) respectively as nuisance parameters.

Now consider the two-regime model

y1t = a1 + b1y2t + u1t , t ∈ I1 = {1, · · · , T1− 1}
y2t = a2 + b21y1t + u2t , t ∈ I2 = {T1, · · · , T} (1.2.8)

where u1t ∼ NI(0, δ2
1), u2t ∼ NI(0, δ2

2), Cov(y2t, u1t) = 0 t ∈ I1 and Cov(y1t, u2t) = 0
t ∈ I2. The switching time T1 is assumed to be known. There appears to be a switch
in the exogeneity of the variables in this model at T1 with y2t exogenous for t ∈ I1

and y1t exogenous for t ∈ I2. However, it is clear from our previous analysis that this
parameterisation is inadequate to describe such a switch in exogeneity. Let us assume
that the joint distribution of (y1t, y2t) in regime i is

f(y1t, y2t) = N(µi,Σi) , t ∈ I1 , i = 1, 2. (1.2.9)

Then indeed (1.2.8) follows together with

(ai, bi, δ
2
i ) =

(
µii −

σi12

σijj
µij,

σi12

σijj
,
σi11σ

i
22 − (σi12)2

σijj

)
(1.2.10)

for i = 1, 2, j = 3 − i where we treat (µij, σ
i
jj) as the nuisance parameters. Equally,

however, we have the parameterisation

y1t = a3 + b3y2t + ut, t = 1, · · · , T (1.2.11)

y2t ∼ NI(0, φ2
1) t ∈ I1, y2t ∼ NI(0, φ2

2) t ∈ I2
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with ut ∼ NI(0, δ2
3) where

(a3, b3, δ
2
3) =

(
µi1 −

σi12

σi22

µi2,
σi12

σi22

,
σi11σ

i
22 − (σi12)2

σi22

)
i = 1, 2 (1.2.12)

and (µi2, σ
i
22) = (0, φ2

i ) are treated as the nuisance parameters. (Note that we have the
parameter correspondences (a1, b1, δ

2
1) = (a3, b3, δ

2
3) for the first regime and (a2, b2, δ

2
2) =

(−a3b3λ, b3λ, δ
2
3λ) for the second regime where λ = σ2

22/σ
2
11.)

Equations (1.2.8) and (1.2.11) are both valid parameterisations of the data generation
process (1.2.9) yet (1.2.8) exhibits a switch in exogeneity between regimes whereas in
(1.2.11) the same variable y2t is treated as exogenous over the whole period. The choice
of exogenous variables in these models is quite arbitrary and the statement that y2t is
exogenous in (1.2.11) is no more than a statement that (µ2, σ22) are nuisance parameters.
It is not subject to testing since it forces no restrictions on the joint distribution of the
observable variables (1.2.9).

Suppose that, returning to the single regime model, we now do have a cross-restriction
on the parameters of the joint distribution (1.2.1). We introduce a behavioural hypothesis

µ2t = c0 + c1µ1t. (1.2.13)

This hypothesis says that the expectation of variable y2t at time t depends on the expec-
tation of y1t at time t. We can interpret it as a behavioural rule followed by agents who
take the joint distribution (1.2.1) as given. Looking at the conditional distribution of y2t

given y1t we have from (1.2.4)

E(y2t|y1t) = µ2 +
σ12

σ11

(y1t − µ1) (1.2.14)

but from (1.2.13) this implies

E(y2t|y1t) = c0 +

(
c1 −

σ12

σ11

)
µ1t +

σ12

σ11

y1t. (1.2.15)

In general this expression will now involve µ1t and we will lose information on the pa-
rameters of the conditional distribution by running the regression model (1.2.6) treating
y1t as exogenous. Only if

c1 =
σ12

σ11

(1.2.16)

so that
E(y2t|y1t) = c0 +

σ12

σ11

y1t (1.2.17)

do we lose no information by treating y1t as exogenous. Condition (1.2.16) then is a direct
test for the exogeneity of y1t. An alternative intuitive explanation of this result may be
helpful. Let us write

µ1t = E(y1t|`t−1) , µ2t = E(y2t|`t−1)

where `t−1 is the information set available at time t. Then the exogeneity condition
(1.2.16) is equivalent to the condition that y1t ∈ `t−1 in which case µ1t = y1t and (1.2.15)
becomes

E(y2t|y1t) = c0 + c1y1t. (1.2.17′)
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Similarly from the conditional distribution of y1t given y2t the hypothesis (1.2.13)
gives

E(y1t|y2t) =

(
1− σ12

σ22

c1

)
µ1t −

σ12

σ22

c0 + +
σ12

σ22

y2t (1.2.18)

which leads to the exogeneity condition

c1 =
σ22

σ12

(1.2.19)

in which case

E(y1t|y2t) = −c0

c1

+
σ12

σ22

y2t (1.2.20)

which valididates the parameterisation (1.2.7).
Treating y1t (y2t) as exogenous is only valid when the appropriate restriction ((1.2.16)

or (1.2.19)) is satisfied and the two conditions cannot hold jointly (otherwise Σ would be
singular). When y1t is exogenous and if it is controlled then agents adjust their behaviour
by revising their expectations according to the behavioural rule (1.2.13).

This framework provides a basis for examining multiple regime models with possible
switches in exogeneity. We have seen that we need to specify the joint distribution of all
the relevant variables in each regime, whether or not they are being controlled, so that
the hypothesis of exogeneity can be tested. We now go on to develop this approach for
the full information estimation of complete simultaneous equations models.

1.3 Exogeneity in a Single Regime

In the simple models considered in section 1.2 there were no predetermined variables.
We now want to extend the analysis to allow for lagged dependent variables; we may
also allow for some variables to be purely exogenous without proposing to test this. The
general form of model for a single regime is

Axt = Byt +Czt = ut , ut ∼ NI(0,Σ) (1.3.1)

with reduced form

yt = Πzt + vt , vt ∼ NI(0,Ω) (1.3.2)

where yt is now an (n× 1) vector of observations on n endogenous variables and zt is an
(m × 1) vector of observations on predetermined variables. We assume that (1.3.1) is a
complete model so that B is a square, non-singular (n × n) matrix and Π = −B−1C.
The matrices B, C and Σ are functions of a vector of parameters θ.

The joint distribution of yt is given by

f(yt|zt,θ) = N(Πzt,Ω). (1.3.3)

In formulating the data density of Y ′ = (y1 · · ·yT ) we must take into account that zt
includes lagged yt. If y0

t are the lagged endogenous variables in zt and z∗t are the purely
exogenous variables then the data density, conditional with respect to initial conditions,
is

f(y1 · · ·yT |y0
1, z

∗
1 · · · z∗T ,θ) =

T∏
t=1

f(yt|y0
1, z

∗
t ,θ). (1.3.4)
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From now on, for notational convenience, we will no longer make explicit the condition-
ality on y0

1, z∗t but write

f(Y |θ) =
T∏
t=1

f(yt|zt,θ). (1.3.5)

Consider partitioning yt into

y′t = (y′1t : y′2t) , Y = (Y 1 : Y 2) (1.3.6)

where y1t = (n1× 1), y2t = (n2× 1) and n1 +n2 = n. Y 2 is now defined to be exogenous
if and only if there exists a partitioning of θ into θ = (θ1 : θ2) such that

f(yt|zt,θ) = f(y1t|y2t, zt,θ1)f(y2t|zt,θ2) (1.3.7)

where θ1 and θ2 are not subject to any cross-restrictions and θ2 may be regarded as
nuisance parameters. Under these conditions the likelihood function LL(θ|Y ) factorises
as

LL(θ|Y ) =
T∏
t=1

f(y1t|y2t, zt,θ1)
T∏
t=1

f(y2t|zt,θ2) = LL1(θ1)LL2(θ2) (1.3.8)

and no relevant sample information is lost if we drop the factor LL2(θ2). Note that in
general the joint density (1.3.5) will not factorise since y2t will not be independent of
lagged values of y1t in zt .

Let us partition the model (1.3.1) into two subsets of equations(
B11 B12

B21 B22

)(
y1t

y2t

)
+

(
C1

C2

)
zt =

(
u1t

u2t

)
. (1.3.9)

We want to know the conditions under which y2t is exogenous and the likelihood function
factorises. Richard has proved (Richard, 1979, Theorem 3.1) that for the general case of
models which may be incomplete, the conditions (in our notation) are

B21 = 0 (1.3.10)

and
B11Ω12 +B12Ω22 = 0 (1.3.11)

where

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
is the reduced form covariance matrix. For the case of complete models we can translate
the condition (1.3.11) into a condition on Σ, the covariance matrix of the structural form
since

Σ = BΩB′ =

(
B11 B12

B21 B22

)(
Ω11 Ω12

Ω′12 Ω22

)(
B′11 B′21

B′12 B′22

)
(1.3.12)

so that

Σ12 = B11Ω11B
′
21 +B12Ω

′
12B

′
21 +B11Ω12B

′
22 +B12Ω22B

′
22

= (B11Ω12 +B12Ω22)B′22

by (1.3.10). Thus (1.3.11) becomes for complete models

Σ12 = Σ′21 = 0. (1.3.13)
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The conditions (1.3.10) and (1.3.13) are equivalent to the condition that the model (1.3.9)
is block recursive.

The log-likelihood function for the model is

L(A,Σ) = −nT
2

log(2π)− T

2
log |Σ|+ T log ||B|| − 1

2
tr(Σ−1U ′U) (1.3.14)

where

U ′ = (u1 · · ·uT ) =

(
U ′1
U ′2

)

L(A,Σ) =− nT

2
log(2π)− T

2
log

∣∣∣∣ Σ11 0
0′ Σ22

∣∣∣∣+ T log

∣∣∣∣∣∣∣∣ B11 B12

0 B22

∣∣∣∣∣∣∣∣
− 1

2
tr

((
Σ−1

11 0
0′ Σ−1

22

)(
U ′1U 1 U ′1U 2

U ′2U 1 U ′2U 2

))
(1.3.15)

=

{
−n1T

2
log(2π)− T

2
log |Σ11|+ T log ||B11|| −

1

2
tr(Σ−1

11U
′
1U 1)

}
(1.3.16)

+

{
−n2T

2
log(2π)− T

2
log |Σ22|+ T log ||B22|| −

1

2
tr(Σ−1

22U
′
2U 2)

}
= L1(B11,B12,C1,Σ11) + L2(B22,C2,Σ22) (1.3.17)

which does indeed factorise as in (1.3.8). It follows that the two factors can be estimated
independently of each other, and if the parameters (B22,C2,Σ22) are nuisance parameters
the factor L2 can be dropped.

The conditions (1.3.10) and (1.3.13) give us a straightforward test for the exogeneity
of the y2 variables. First we estimate the unrestricted model (1.3.14). We can concentrate
out the Σ matrix in the usual way to give a concentrated log-likelihood function

L∗(A,Σ) = −nT
2

log(2π)− nT

2
− T

2
log

∣∣∣∣AX ′XA′T

∣∣∣∣+ T log ||B|| (1.3.18)

together with

Σ =
AX ′XA′

T
(1.3.19)

and then maximise (1.3.18). Let the maximum be L+. We then reestimate the model
imposing the restrictions (1.3.10) amd (1.3.13). Note that we can concentrate Σ11 and
Σ22 out of (1.3.16)

∂L

∂Σ−1
11

=
T

2
Σ11 −

1

2
A1X

′XA′1 = 0

=⇒ Σ11 =
1

T
A1X

′XA′1 (1.3.20)

∂L

∂Σ−1
22

=
T

2
Σ22 −

1

2
A2X

′XA′2 = 0

=⇒ Σ22 =
1

T
A2X

′XA′2 (1.3.21)
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giving the concentrated log-likelihood function

L∗∗(A1,A2; Σ11,Σ22) = −nT
2

log(2π)− nT

2
− T

2
log

∣∣∣∣A1X
′XA′1
T

∣∣∣∣ (1.3.22)

+ T log ||B11|| −
T

2
log

∣∣∣∣A2X
′XA′2
T

∣∣∣∣+ T log ||B22||

where [
A1

A2

]
=

[
B11 B12 C1

0 B22 C2

]
.

Let L++ be the maximum of (1.3.22). Then on the null hypothesis that y2t is exogenous

λ = 2(L+ − L++) ∼a χ2(q1 + q2) (1.3.23)

where q1 is the number of unrestricted parameters in B21 in model (1.3.18) and q2 is the
number of parameter restrictions corresponding to the condition (1.3.13) = n1 ·n2. (Not
2 · n1 · n2 since Σ is already restricted to be symmetric). In fact often we may want to
impose B21 = 0 to identify the unrestricted model even before we test for exogeneity. In
this case q1 = 0 and we test only the Σ restrictions.

We can now go on to consider testing for switches in exogeneity in a multiple regime
model using this test. If there are no constant parameters in different regimes then
each may be estimated and tested separately. However, it is more reasonable to suppose
that a subset of equations remain constant across regimes in which case we have cross-
regime parameter restrictions. Then we must set up the joint likelihood function for all
the regimes and maximise this subject to these parameter restrictions between regimes.
Then we can test the exogeneity restrictions for each regime separately. This is the topic
of the next section.

However, we want first to give an interpretation of the model we have been developing.
We can consider it as an economy which is controlled by a policymaker. Then the first
set of structural equations describes the economy on which control is forced and the
second set the control process itself. The equations for y2t are in fact reaction functions
for the control instruments and by condition (1.3.10) the control authorities must make
their plans solely on the basis of predetermined variables. Further, if the instruments
are to be exogenous, condition (1.3.13) must also be satisfied. Switching between control
instruments leads to switches in the exogeneity/endogeneity of variables.

The simplest illustration is an equilibrium model of a market where the supply of
the commodity is under the control of the authorities. The authorities have two possible
alternatives: they can either control the commodity price letting the market determine
the quantity traded or they can control the supply and let the market determine the
clearing price. We assume that the demand relationship is not changed by this regime
switch. Then, taking a simple linear demand function we have, for the first regime, the
demand equation

qt = a0 + a1pt + vt , E(v2
t ) = σ2

v (1.3.24)

together with the authority reaction function for price

pt = a2 + a3zt + wt. (1.3.25)

This reaction function depends solely on the single predetermined variable zt.
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In the second regime the authorities switch to controlling the commodity supply and
so the demand relationship (1.3.24) now determines the price and we renormalise it as

pt = b0 + b1qt + εt , E(ε2
t ) = σ2

ε (1.3.26)

and suppose for simplicity that the same predetermined variable zt continues to determine
the new reaction function which is then

qt = b2 + b3zt + ηt. (1.3.27)

The constancy of the demand relation across regimes means that we have restrictions
between the parameters in each regime which are

(b0, b1, σ
2
ε) =

(
−a0

a1

,
1

a1

,
1

(a1)2
σ2
v

)
. (1.3.28)

Full information maximum likelihood estimation requires maximising the joint likelihood
function of the two regimes subject to all prior restrictions on the parameters which
include these non-linear cross-regime restrictions.

1.4 FIML Estimation

In this section we consider the FIML estimation of multiple regime models in which we
want to be able to test for switches in exogeneity. We have r regimes which we assume,
without loss of generality, to have been operating sequentially. For regime i the model is

Ai(θ)xt = ut , t ∈ Ii. (1.4.1)

The switchpoints between regimes are assumed to be known. the log-likelihood for regime
i is

Li(θ) = −nTi
2

log(2π)− Ti
2

log
∣∣Σi(θ)

∣∣+ Ti log
∣∣∣∣Bi(θ)

∣∣∣∣
− 1

2
tr(Σi(θ)−1Ai(θ)X ′iX iA

i(θ)′) (1.4.2)

where
X ′ = (x1 · · ·xT ) = (X ′1 : · · · : X ′r),

and the joint log-likelihood for all r regimes is

L(θ) =
r∑
i=1

Li(θ). (1.4.3)

The elements of the coefficient matrix Ai and the covariance matrix Σi of each regime
are functions of a common vector of parameters θ. This is because we hypothesise
that some relationships are common to more than one regime so that there are cross-
restrictions between some elements of Ai and Σi for different regimes. When there are
no cross-restrictions we can partition θ so that

L(θ) =
r∑
i=1

Li(θi) (1.4.4)
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and the r vectors θi have no elements in common. It follows that each regime can be
estimated separately by standard FIML programs so these models are not of interest to
us.

From (1.4.3) we have that

∂L

∂θ
=

r∑
i=1

∂Li
∂θ

, and
∂2L

∂θ∂θ′
=

r∑
i=1

∂2Li
∂θ∂θ′

. (1.4.5)

If the Σi are unrestricted we can concentrate them out of the log-likelihood as usual to
get

L∗(θ∗) =
r∑
i=1

L∗i (θ
∗) (1.4.6)

where

L∗i (θ
∗) = −nTi

2
log(2π)− nTi

2
− Ti

2
log

∣∣∣∣ 1

Ti
Ai(θ∗)X ′iX iA

i(θ∗)′
∣∣∣∣

+ Ti log
∣∣∣∣Bi(θ∗)

∣∣∣∣ (1.4.7)

and

Σ̃
i

=
1

Ti
AiX ′iX iA

i′. (1.4.8)

We have specified nothing, so far, about the nature of the mappings from θ to the
elements of Ai and Σi. If these mappings are non-linear then we say that the model is
non-linear in parameters. We now show that by choosing the normalisation of the model
in each regime we can keep the model linear in parameters.

We want to ensure that the parameters of each regime are identified before we consider
imposing cross-regime restrictions. This is because we will later want to test these extra
restrictions. We will consider only exclusion restrictions on Ai (the only available form of
restriction in many standard FIML packages) where some elements of Ai are set a priori
to zero. Let Φk be a diagonal matrix defined by

φkjj = 1 if aikj = 0

= 0 otherwise. (1.4.9)

Then a necessary and sufficient condition for the kth equation to be identified is that

rank(AiΦk) = n− 1 (1.4.10)

where n is the number of equations in the system. For the complete model to be identified
condition (1.4.10) must be satisfied for each equation (k = 1, · · · , n) of each regime
(i = 1, · · · , r).

Condition (1.4.10) uniquely identifies the parameters of each equation only up to
multiplication by a scalar (see for example Schmidt (1976)). To eliminate the remaining
indeterminacy we need to specify in addition some normalisation rule. Conventionally
we normalise along the diagonal setting

Bi
kk = −1 (k = 1, · · · , n). (1.4.11)

However, this particular normalisation rule is quite arbitrary and we are free to normalise
each equation on any variable with a non-zero coefficient. FIML procedures are invariant
to the rule chosen.
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In fact by choosing a different model normalisation in different regimes we can make
each regime linear in parameters θ. We can illustrate this with the two equation model
developed at the end of the last section. The two regimes with the conventional normal-
isation can be written as(

−1 a1

0 −1

)(
qt
pt

)
+

(
a0 0
a2 a3

)(
c
zt

)
=

(
u1

1t

u1
2t

)
(1.4.12)

(
−1 0
b1 −1

)(
qt
pt

)
+

(
b2 b3

b0 0

)(
c
zt

)
=

(
u2

1t

u2
2t

)
(1.4.13)

with covariance matrices

Σ1 =

(
σ1

11 σ1
12

σ1
21 σ1

22

)
and Σ2 =

(
σ2

11 σ2
12

σ2
21 σ2

22

)
respectively.

The cross-restrictions between parameters are then

(b0, b1, σ
2
11) =

(
−a0

a1

,
1

a1

,
1

(a1)2
σ1

11

)
(1.4.14)

which are non-linear. However, if we keep the demand relation normalised on qt in both
regimes, instead of (1.4.13) we have(

−1 b1

−1 0

)(
qt
pt

)
+

(
b0 0
b2 b3

)(
c
zt

)
=

(
u2

1t

u2
2t

)
(1.4.15)

and the cross-restrictions are simply

(b0, b1, σ
2
11) = (a0, a1, σ

1
11). (1.4.16)

In general, by preserving the normalisation of equations which remain constant across
regimes, which means changing the normalisation of the system from the conventional
diagonal normalisation, we avoid non-linear restrictions between the regimes. This proves
to be convenient. There is no inherent difficulty in treating non-linearity in parameters
if we wish to do so (and we might wish to allow for other non-linear restrictions apart
from those arising from the constancy of some relationships across regimes) but this is
not necessary. From now on we will assume the mapping from θ to Ai and Σi to be
linear for each regime.

The numerical problem to be solved, then, is the maximisation of (1.4.3) with Li(θ)
defined by (1.4.2) and a linear mapping from θ to Ai and Σi. Clearly the simplest
approach would have been to write a special program for the problem. However, it
seemed more useful to attempt to generalise an existing FIML program, to find out
how difficult it might prove to implement the necessary modifications within an existing
framework. We have seen that cross-regime restrictions may involve the Σi matrices and
in any case we need to impose block diagonality of Σi for Richard’s test for exogeneity.
For these reasons the program GENRAM, written by David Hendry (Hendry (1978a)),
was chosen because it already included the option of some restrictions on the covariance
matrix.

When we have cross-restrictions on Σi we cannot in general concentrate the matrix
out of the likelihood function and we have to deal with the problem that the elements
of Σi are already constrained by the restrictions of symmetry and positive-definiteness.
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For the numerical optimisation routine the parameters must be unconstrained so that
we cannot work directly with the elements of Σi. We make use of the fact that we can
factorise Σi as

Σi = H iH i′ (1.4.17)

where H i is a lower triangular matrix with n(n+1
2

) non-zero elements which are uncon-
strained. Now if we wish to impose restrictions on Σi these must be translated into
restrictions on H i.

We wish to consider two types of restriction. Firstly we have cross-regime covariance
restrictions arising from the constancy of some relationships across regime shifts. We
assume that the first block of n∗1 equations remain constant over all regimes. Let us
partition Σi and H i for each regime as

Σi =

(
Σi

11 Σi
12

Σi
21 Σi

22

)
, H i =

(
H i

11 0
H i

21 H i
22

)
(1.4.18)

where we note that H i
11 and H i

22 are square lower triangular matrices. Then the covari-
ance restriction is that Σi

11 = Σj
11, ∀i, j which implies H i

11 = Hj
11, ∀i, j.

Secondly we want to apply Richard’s test for the exogeneity of the control process
for each regime. We saw in section 1.3 that this implies block diagonality of Σi. There
for a single regime we were able to analytically concentrate the likelihood but when we
also have to deal with cross-regime restrictions this is no longer possible and we must
deal with the restrictions explicitly. Let (1.4.18) now correspond to a partitioning into
blocks of n1 and n2 equations ( n∗1 ≤ n1) where the last block represents the equations
of the control process, Then Richard’s covariance restriction Σi

12 = Σi
21 = 0, ∀i becomes

H i
21 = 0, ∀i.
When there are no restrictions the number of unconstrained Σ parameters to be

estimated is rn(n+1
2

). Cross-regime restrictions subtract (r − 1)n∗1(
n∗1+1

2
) parameters and

exogeneity restrictions another rn1n2 parameters. However, from the point of view of the
order of the numerical problem to be solved, imposing Σ restrictions increases the size
by

r

2
[n1(n1 + 1) + n2(n2 + 1)]− r − 1

2
[n∗1(n∗1 + 1)] (1.4.19)

extra parameters. This will become prohibitively expensive for all but small values of n
and r.

We can now summarise the extra information needed by the modified program. Let

ψi = vecAi and φi = Siψi (1.4.20)

where Si denotes a selection matrix picking out unrestricted elements only. Note that
since there are no restrictions between the parameters of Ai and Σi we can partition θ
into θ′ = (θ′1 : θ′2) and write Ai (θ1) and Σi(θ2). Then the additional information is:

1. (i) The number of regimes r.

(ii) Their periods of operation Ii, i = 1, · · · , r.
(iii) The size of the block of constant equations n∗1.

(iv) The size of the block of control equations n2.

2. For each regime:
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(i) The mapping from ψi to φi (i.e. which elements of Ai are unrestricted)

(ii) The mapping from φi to θ1 (i.e. which element of θ1 corresponds to each
unrestricted element of Ai)

(iii) The model normalisation (i.e. which elements of Ai are preset to −1)

3. Initial values for the parameter vector θ1.

The program generates its own initial values for θ2, the parameters of Σi and also
defines the mapping from Σi to θ2 on the basis of 1(iii) and 1(iv).

Now we want to develop tests for the validity of the restrictions we impose on the
model. The most general model we consider is a multiple regime model with no cross-
regime restrictions and no restrictions on the covariance matrices. We can then find a
sequential testing procdure of two nested hypotheses. First we test the hypothesis of the
constancy of some chosen sub-block of equations over the regime shifts. Then if this test
does not reject the null hypothesis we can go on to test the hypothesis of the exogeneity
of the control equations in each regime using Richard’s test developed in section 1.3. This
second test then becomes a test of whether or not the economy was controlled.

If, however, the first test rejects the hypothesis of a constant sub-block of equations
then each regime is a completely separate model. Of course we can still test for exogeneity
in each regime but even if this test fails to reject the null in each case we cannot really
interpret this as the authorities switching between instruments in their control of the
economy, since the economy being controlled changes with the regime.

The general unrestricted model can be estimated easily using the concentrated log-
likelihood function defined by (1.4.6) – (1.4.8). Let the maximum of this log-likelihood
be L+. Then we reestimate the model imposing all the cross-regime restrictions. Initial
values for the parameters of the covariance matrices can be derived from the solution of
the unrestricted model. Let L++ be the maximum of this log-likelihood and let p be the
number of unrestricted parameters in the first n∗1 rows of the Ai matrix. The first test is
then

2(L+ − L++) ∼a χ2

((r−1)(p+n∗1(
n∗1+1

2
)))
. (1.4.21)

Lastly we reestimate the second model imposing the block diagonality on the Σi matrices
for the exogeneity test. The joint test for exogeneity in each regime is

2(L++ − L+++) ∼a χ2
(rn1n2) (1.4.22)

where L+++ is the maximum log-likelihood of the third model. We can also apply the
exogeneity test separately to each regime. Let L++

i and L+++
i be the corresponding

maxima for regime i. Then

2(L++
i − L+++

i ) ∼a χ2
(n1n2). (1.4.23)

1.5 A Model of the Money Market

As an illustration of the general approach already outlined it was decided to estimate a
simple two-equation model of the money market to try and model the change in regime
of the introduction of Competition and Credit Control (CCC) in October 1971.
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Firstly we must explain the economic background to the change. (For a good account
of British monetary policy before 1971 see the chapter by Goodhart in Goodhart (1980a).
Goodhart (1980b) gives a very interesting inside view of the Bank of England thinking
behind the change and early experience of operating the new regime.) Before 1971 the
control of short term interest rates was the main concern of the monetary authorities.
The key to their control was the Bank Rate which was an institutional rate set directly
by the Bank of England. Other short term interest rates moved closely in line with it;
in particular a Clearing banks cartel existed which linked the interest rates on Advances
and time deposits directly to Bank Rate. Changes in the Bank Rate came to have a
strong “announcement effect” signalling the direction of monetary policy. On the other
hand there was no attempt to directly control the main monetary aggregates (which
only came to be regarded by the Bank as important indicators towards the end of the
1960s) although starting in 1964 there was some attempt to reduce bank lending to the
private sector, especially persons, in a series of formal “Requests” to the Clearing banks.
However, these were quantitative ceilings imposed on the market rather than operating
through it. We can distinguish four main targets of monetary policy: the balance of
payments, the rate of unemployment, the rate of inflation and, in the longer term, the
growth rate. Of these the balance of payments was perhaps the most important. (For a
statement of the aims of monetary policy by the authorities themselves see the Radcliffe
Report Report (1959)).

The effect of the 1971 changes was to switch emphasis to control of the monetary
aggregates. In 1972 the Bank Rate was replaced by a Minimum Lending Rate (MLR)
which is determined by the market (The Bank sets it at 0.5 above the current Treasury
bill rate). The Clearing bank cartel was abolished and the banks encouraged to compete
for funds, thus allowing interest rates to move freely in response to market presures. In
this way control over interest rates was relaxed in favour of control over the monetary
aggregates, although the mechanism of control was viewed as being through portfolio
adjustment in response to changes in asset relative prices. (In the new spirit of free
competition the formal ceilings on lending were abandoned although in 1973 they were
reintroduced in a new guise as the Supplementary Special Deposit scheme or “corset”.)
The targets of monetary policy since 1971 have been essentially the same as before, with
perhaps less emphasis on the balance of payments, although the managed floating of the
exchange rate in 1972 has not alleviated all external balance problems.

We attempted to model this complicated policy change in a simple two regime model
of two equations: the demand for money equation and a reaction function for the control
variable (interest rate in the first regime and money supply in the second) although clearly,
with such an oversimplified model, our results can only be very tentative. Previous work
on reaction functions for the instruments of monetary policy for the U.K. has been done
by Douglas Fisher in Fisher (1968, 1970) and also by Goodhart (in his appendix to
Goodhart (1980a)). The reaction function treats a policy control variable as a function
of the target variables which are the objects of control. The coefficients then measure
the response of the control variable to changes in the target variables. For our policies,
in order to test for the exogeneity of the control variables, our reaction functions must
be purely predetermined and we may interpret this as reflecting the necessary lags in the
reaction of the authorities.

Rather than try to estimate the model from the start by FIML it was decided to do
preliminary single equation estimation to choose the dynamic specification of the equa-
tions. This allowed access to the much fuller diagnostic tests available in programs such
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as GIVE (Hendry (1978b)), especially tests for serial correlation, which was important
since we wanted to avoid dealing with this problem in the full simultaneous estimation of
the two regime model. Also the preliminary estimates obtained provided us with initial
values to use in the FIML program. In determining the dynamic structure the method-
ology of Hendry and Mizon (1979) was adopted. Economic theory gives us little help in
choosing dynamic specification and, rather than impose the dynamics a priori, we fol-
low a consistent data-based approach. Starting from the most general hypothesis we are
prepared to accept (generally a maximum lag length on all variables) we can then test
for parameter restrictions in a series of Wald tests until we reach the most parsimonious
description consistent with the data. There is no unique sequence for testing and the par-
ticular restrictions we test may often be governed by what seems intuitively plausible or
appealing. However, this procedure should prevent us from imposing invalid restrictions.

One objection sometimes raised against this approach is the problem of multicollinear-
ity in parameter estimates in the most general equation forms. In practice this did not
greatly hinder the simplification process since, although t-ratios in these cases were in
general quite small using conventional significance levels, the relative sizes of t-ratios
were found to be still quite a good indication of the relative importance of lags. A more
critical practical problem was degrees of freedom (especially for the reaction functions)
which restricted the maximum lag length which could reasonably be estimated.

Seasonally unadjusted data was used. This avoided the problem of possible distortion
of the true dynamic structure arising from using series separately seasonally adjusted
using different filters (see Wallis (1974)). For the money demand equation it also gave us
an interesting comparison with the results of Hendry and Mizon who used adjusted data.

The two endogenous variables used in the analysis were personal sector M3 and the
Local Authority short term interest rate. It is sometimes argued that the appropriate
monetary indicator is narrow money M1 rather than M3 which includes an interest bear-
ing asset, time deposits. However, the view of the Bank at the time (see for example
Goodhart (1980b)) was that, because of the ease of shifting between time deposit and
current accounts, M1 could not be controlled, so that M3 was the appropriate indicator
for control. Total M3 was tried but this was not very successful (even in an unrestricted
specification with up to 8 quarter lags on all variables there was significant residual au-
tocorrelation) and personal sector M3 was found to perform much better. This accords
with the results of studies by the Bank of England (see Hacche (1974)). Finding a single
interest rate with the dual property of being both monetary control variable and a mea-
sure of the true opportunity cost of holding money proved difficult. Several short rates
were tried but finally the Local Authority rate was chosen as the best proxy.

The general unrestricted money demand equation took the form

lnMt =
J∑
j=0

(αj lnYt−j + βj lnPt−j + γj ln rt−j + δj lnMt−j−1)

+ c0 +
3∑
i=1

ciqt−i + et (1.5.1)
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Table 1.1: Equation 1.5.1 with J = 5. OLS 5603–7802

j\V ble lnMt−j−1 ln rt−j lnYt−j lnPt−j

0 1.07 (.13) .011 (.013) .33 (.11) .85 (.33)
1 −.28 (.18) −.019 (.019) −.15 (.13) −.95 (.45)
2 .06 (.18) .015 (.020) .06 (.13) −.03 (.47)
3 .20 (.19) −.017 (.019) −.13 (.13) −.08 (.45)
4 −.26(.18) .027 (.020) .04 (.13) .59 (.45)
5 .06 (.13) −.012 (.015) −.01 (.12) −.29 (.29)∑
j .85 .005 .14 .09

c0 = −.53 (.25) c1 = −.001 (.011) c2 = −.003 (.010) c3 = .008 (.011)
R2 = .9992 σ̂ = .0159 χ2

12 = 3.84 χ2
6 = 8.18 χ2

1 = 1.28

(standard errors in parentheses)

where

Mt = personal sector M3

Yt = personal disposable income at constant 1975 prices

Pt = the deflator for Yt

rt = the Local Authority interest rate as a percentage

and qt−i, i = 1, · · · , 3 are the usual seasonal dummies. Data was available quarterly over
the period 5501-7802. Estimating (1.5.1) by OLS over the full data period with J = 5
gave the results in Table 1.1. The three χ2 statistics quoted are tests for residual autocor-
relation: χ2

12 is the Box-Pierce random residual correlogram test (see Pierce (1971)), χ2
6

is a Lagrange multiplier test for serial correlation up to the 6th order, χ2
1 is the squared

Durbin h-statistic for a first order AR process (Durbin (1970)). These statistics show no
evidence of dynamic misspecification or serial correlation in the residuals, confirming that
choice of J = 5 is adequately general (as might be expected for quarterly data). Perhaps
the most striking feature of the equation is the strong affirmation of unit price elasticity
suggesting a reparameterisation with ∆ ln(M/P ) as the dependent variable. Comparison
of Table 1.1 with Table 1 in Hendry and Mizon (estimated with J = 4 over a much shorter
period 6301-7503) shows much similarity in the lag patterns suggesting that the seasonal
bias in using adjusted data may not be very important in this case. In particular there
is the same ∆ ln rt term with perverse sign, although in general the interest rate terms in
our equation are much less significant (Hendry and Mizon used the consol yield)

To guard against possible simultaneous equation bias in using OLS, equation (1.5.1)
was reestimated using instrumental variables for rt. Note that in the complete two equa-
tion model if Σ is not diagonal then OLS on Mt will be inconsistent but if Σ is diagonal
(Richard’s condition satisfied) then OLS is maximum likelihood. Full 2SLS using as in-
struments all predetermined variables in the most general specification of both equations
(i.e. including all lags up to J = 5 ) would have exceeded the program dimension limi-
tations but it was possible to use j = 1, · · · , 4 on all the additional instruments (giving
39 instruments in all). However, the results were virtually identical to Table 1.1 with the
interest rate terms coming out even less significant.

Before attempting to simplify the unrestricted equation (1.5.1) it was decided to test
its stability over the regime change in October 1971. It is well known that the introduction
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Table 1.2: Solved Coefficients from Equation 1.5.2. OLS 5603-7802

j\V ble lnMt−j−1 ln rt−j lnYt−j lnPt−j

0 1.10 .011 .27 .65
1 −.14 −.011 −.23 −.75
2 0.0 0.0 0.0 −.41
3 .26 0.0 0.0 .15
4 −.26 .009 0.0 .54
5 0.0 0.0 0.0 −.14∑
j .96 .009 .04 .04

of CCC was followed by a very large expansion in M3 (most especially in company holdings
but also to a lesser extent in personal sector holdings), an expansion not matched in
the narrow money definition M1, and Hacche (1974) and Goodhart (1980b) reported a
complete breakdown in the Bank of England’s own forecasting equations. Since one of
the effects of CCC was to encourage banks to compete for finance through the rates paid
on deposit accounts, Hacche argued convincingly that this breakdown could be explained
by the omission of own-rate terms from the Bank’s demand equations, terms which would
not have mattered before 1971 when the differential between deposit rates and the Bank
Rate was constant. However, own-rate terms were not found to be significant either by
Hacche or Artis and Lewis (1974) who explained the expansion of M3 as a disequilibrium
excess supply of money. (In an earlier equation for total M3 we tested the importance
of own-rates by including interest differential terms of the form ln(r∗/r)t−j where r∗ was
the time deposit rate. However, these terms came up with perverse negative signs).

A Chow test was carried out on equation 1.5.1 reestimated over the period ending
7103. The statistic was F(27,60) = 2.62, the 5 significance level for F(24,60) being 1.70, so
that the hypothesis of parameter stability was rejected. This probably reflects the clearly
inadequate proxying of interest effects in the equation.

Simplifying equation (1.5.1) we obtained

∆ ln(M/P )t = 27∆ lnYt +.14∆ ln(M/P )t−1 −.35∆ lnPt
(.08) (.10) (.20)
−.55∆ lnPt−2 −.40∆2 lnPt−2 +.26∆ ln(M/P )t−4

(.20) (.19) (.10)
+.011∆ ln rt +.009 ln rt−4 −.04 ln(M/PY )t−1

(.011) (.008) (.02)

c0 = −.17 (.07) c1 = −.01 (.01) c2 = −.01 (.01) c3 = −.003 (.005)

R2 = .644 σ̂ = .0151 χ2
12 = 6.86 χ2

6 = 4.51 χ2
1 = .002. (1.5.2)

The χ2 tests still reject the hypothesis of serial correlation in the residuals and the F-ratio
test for the restrictions imposed on (1.5.1) is F(15,60) = .533. (The 5 significance level for
F(15,60) is 1.84). The solved coefficients from (1.5.2) are recorded in Table 1.2 and these
quite closely correspond with the coefficients on the unrestricted equation. However, like
Hendry and Mizon’s equation 21, the specification (1.5.2) was primarily chosen so as to
include decision variables with sensible economic interpretations. In the short-run infla-
tion has a negative influence on money demand through three inflation terms , including
a term for the rate of acceleration of inflation ∆2 lnPt−2. However, in long run equilib-
rium when all variables are growing along steady-state growth paths the equation exhibits
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unit elasticity with respect to both prices and income through the inverse velocity levels
term ln(M/PY )t−1. This term also serves as an error feeedback correction mechanism in
the short run, allowing agents to adjust from previous disequilibrium in the relationship
betwen their real income and money holdings.

In the long run we would expect some levels interest rate effect. However, the coeffi-
cient on ln rt−4 in (1.5.2) has the “wrong” sign and is statistically insignificant, its value
being approximately equal to the sum of the interest rate coefficients on the unrestricted
equation. This again seems to reflect the unsatisfactory nature of the Local Authority
rate (perhaps any single rate) as a proxy for the opportunity cost to the personal sector
of holding money. It is clear that to have gone on to try and produce a fully satisfactory
equation would have required much further work experimenting with various interest
rates (possibly including several different rates) in an attempt to model the portfolio
choice properly. For the purpose of this exercise it was decided to accept (1.5.2), however
unsatisfactory, as the best equation we had been able to find.

In approaching the estimation of the reaction functions we had immediately to face
the problem that with only 27 observations for the second regime (7104-7802) it was
quite impossible to estimate an unrestricted function. Instead we chose the dynamic
specification for the first regime on the basis of an unrestricted equation and then were
forced to assume that this specification remained the same after the regime switch. We
note that this assumption is a very strong one since we might expect the reaction lags of
different control instruments to be very different.

The general hypothesis for the first regime was

ln rt =
J∑
j=0

(aj ln(B/P )t−j + bj lnUt−j + dj lnPt−j + ej lnEt−j)

+
K∑
k=1

(fk ln rt−k + gk lnMt−k) + c0 +
3∑
i=1

ciqt−i + εt (1.5.3)

where

Ut = the percentage rate of unemployment
Bt = the level of reserves
Et = the Eurodollar rate.

The Eurodollar rate was included on the hypothesis that a long run objective of interest
rate control would be to keep U.K. interest rates in line with foreign rates. Equation
(1.5.3) was estimated over the period 5602-7103 taking J = K = 4 giving the results
in Table 1.3. The χ2 tests show no evidence of residual autocorrelation. Having little a
priori theory to guide us to a sensible reparameterisation the equation was simplified by
choosing the most important lags from Table 1.3. The resulting equation was

∆ ln rt = 2.17∆ lnPt −3.78∆ lnPt−3 −.53∆ lnUt−1

(2.10) (2.35) (.16)
−.37∆ lnUt−3 −.47∆ ln rt−2 −.41∆3 ln(B/P )t−1

(.17) (.13) (.10)
−.19∆ ln(M/P )t−1 +.008 ln(r/E−1)t−1

(.81) (.008)

c0 = .07 (.04) c1 = −.05 (.06) c2 = −.05 (.04) c3 = −.07 (.07)

R2 = .526 σ̂ = .0954 χ2
12 = 12.28 χ2

6 = 2.96 χ2
1 = .19. (1.5.4)
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Table 1.3: Equation 1.5.3 with J = K = 4. OLS 5602–7103

j\V ble ln rt−j−1 lnMt−j−1 lnPt−j lnUt−j ln(B/P )t−j lnEt−j

0 .83 (.18) −.22 (1.19) 6.01 (3.2) −.03 (.24) −.09 (.19) .17 (.18)
1 −.35 (.22) .89 (1.36) −7.51 (4, 4) −.35 (.39) −.42 (.25) −.10 (.29)
2 .19 (.23) .70 (1.39) −.07 (4.2) .49 (.41) .01 (.23) .21 (.31)
3 .27 (.17) −1.20 (1.05) −5.24 (4.0) −.72 (.43) −.07 (.25) −.37 (.29)
4 — — 6.22 (3.3) .48 (.26) .33 (.24) .24 (.19)∑
j .94 .17 −.59 −.13 −.24 .15

c0 = 1.40 (2.47) c1 = −.11 (.13) c2 = −.14 (.12) c3 = −.02 (.14)
R2 = .916 σ̂ = .1006 χ2

12 = 4.79 χ2
6 = 6.14 χ2

1 = .03

Table 1.4: Solved Coefficients from Equation 1.5.4. OLS 5602–7103

j\V ble ln rt−j−1 lnMt−j−1 lnPt−j lnUt−j ln(B/P )t−j lnEt−j

0 1.008 −.19 2.17 0.0 0.0 0.0
1 −.47 .19 −1.98 −.53 −.41 −.008
2 .47 0.0 −.19 .53 0.0 0.0
3 0.0 0.0 −3.78 −.37 0.0 0.0
4 0.0 0.0 3.78 .37 .41 0.0∑
j 1.008 0.0 0.0 0.0 0.0 −.008

The F-test on the imposed restrictions gave F(20,30) = .746 (5 significance level F(20,30) =
.1.93). Although this test failed to reject the restrictions imposed in (1.5.4) the solved
coefficients in Table 1.4 are rather different from those in Table 1.3. This is especially
true of the inflation terms which have changed considerably in magnitude. The last term
in (1.5.4) was a levels effect intended to capture a long run relationship between U.K.
and foreign interest rates. However, it was found to be insignificant.

The specification (1.5.4) was reestimated over the period 7104-7802 with ∆ ln(M/P )
as the dependent variable. This gave the equation

∆ ln(M/P )t = −.95∆ lnPt −.29∆ lnPt−3 −.04∆ lnUt−1

(.18) (.19) (.03)
−.05∆ lnUt−3 −.004∆ ln rt−2 −.01∆3 ln(B/P )t−1

(.03) (.01) (.005)
+.11∆ ln(M/P )t−1 −.02 ln(r/E−1)t−1

(.16) (.008)

c0 = .06 (.01) c1 = −.03 (.008) c2 = .0004 (.007) c3 = −.02 (.009)

R2 = .912 σ̂ = .0098 χ2
12 = 16.72. (1.5.5)

Caution must be exercised in the interpretation of this equation because of the number
of degrees of freedom (only 15). This means that the very good fit (high R2, small σ̂) is
probably spurious. Also the χ2

12 statistic is large compared with our previous equations,
although still not significant. (The other χ2 tests were unfortunately not available for
this equation). Comparing with (1.5.4) we see that, although most of the coefficients
have changed sign (as expected) a few (as with equation (1.5.4)) seem to have perverse
signs.
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These reaction functions are not very satisfactory, in particular because of the ad
hoc way in which the dynamic specification was chosen from the unrestricted equation
(1.5.3). Nevertheless, our purpose being illustrative only, the specifications (1.5.4) and
(1.5.5) were used, together with the demand equation specification (1.5.2) for the purpose
of a FIML estimation of the complete model to illustrate the application of Richard’s test
for exogeneity.

The complete model was estimated three times to carry out the two likelihood ra-
tio tests described at the end of section 1.4. Firstly, the log-likelihood was maximised
without any cross-restrictions, allowing the coefficients on the money demand equation
to take different values in the two regimes. (This corresponds to L+ in section 1.4).
Then the model was reestimated constraining the coefficients on the demand equation
to be the same for both regimes. (This corresponds to L++). Finally, the second model
was reestimated imposing Richard’s exogeneity restrictions which in this model implies
constraining the two covariance matrices Σi to be diagonal. (This corresponds to L+++).
The exact log-likelihoods obtained were

L+ = 292.06 , L++ = 276.69 , L+++ = 267.23 (1.5.6)

so that the two χ2 tests corresponding to (1.4.21) and (1.4.22) were

χ2
(9) = 30.74 and χ2

(2) = 18.92 (1.5.7)

respectively.
The first test convincingly rejects the hypothesis of a stable money demand function,

confirming the result of the Chow test done on the single equation. (This test has only 9
degrees of freedom because the additional cross-restriction on the covariance terms that
σ1

11 = σ2
11 was not imposed). We have argued above that rejection of the null on this first

test means that we cannot regard Richard’s joint exogeneity test as a test of whether or
not the economy was being controlled. Nevertheless, it is still interesting that Richard’s
test strongly rejects the hypothesis that the instruments of control were exogenous for
this model imposing a stable money demand function. The individual χ2 tests on each
regime (corresponding to (1.4.23)) were

χ2
(1) = 13.52 and χ2

(1) = 5.40 (1.5.8)

respectively, showing that the rejection of the null was much stronger for the first regime.
We also applied Richard’s test for exogeneity to each regime estimately separately

(allowing a shift in the money demand equation between the two regimes). This gave the
statistics

χ2
(1) = 2.46 and χ2

(1) = .114 (1.5.9)

showing remarkably different results from the previous tests. Taking these results at face
value the implication is clear: in both regimes separately the control instruments appear
to have been exogenous but the regime change itself was accompanied by a shift in the
money demand function. We should be cautious about putting too much weight on this
conclusion without further evidence (in particular it would have been interesting to test
the exogeneity of the money supply in the first regime and the interest rate in the second).
Before accepting the hypothesis of a shift in the money demand function we would like to
have done more work with different relative interest rates to model the portfolio decision
more carefully. Nevertheless, the hypothesis of a change in the behaviour of the personal
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sector cannot be ruled out, especially since one explicit purpose of CCC was to bring
about a change in the behaviour of the banks.

The FIML estimates for the second model (with the demand equation constrained to
be the same in both regimes) were as follows:

∆ ln(M/P )t = 31∆ lnYt −.003∆ ln(M/P )t−1 +.17∆ lnPt
(.08) (.02) (.22)
+.015∆ lnPt−2 −.02∆2 lnPt−2 +.28∆ ln(M/P )t−4

(.027) (.03) (.11)
+.11∆ ln rt +.003 ln rt−4 +.03 ln(M/PY )t−1

(.03) (.01) (.03)

(1.5.10)

∆ ln rt = .18∆ lnPt +.24∆ lnPt−3 −.50∆ lnUt−1

(.17) (.19) (.13)
+.01∆ lnUt−3 −.24∆ ln rt−2 −.12∆3 ln(B/P )t−1

(.17) (.11) (.08)
+.23∆ ln(M/P )t−1 −.02 ln(r/E−1)t−1

(.12) (.05)

(1.5.11)

for regime 1 and

∆ ln(M/P )t = 1.83∆ lnPt +.10∆ lnPt−3 −.17∆ lnUt−1

(.14) (.11) (.11)
−.03∆ lnUt−3 +.006∆ ln rt−2 +.007∆3 ln(B/P )t−1

(.08) (.04) (.02)
+.20∆ ln(M/P )t−1 −.06 ln(r/E−1)t−1

(.07) (.03)

(1.5.12)

for regime 2, with covariance matrices

Σ1 =

(
.0005 −.0014
−.0014 .0103

)
, Σ2 =

(
.0005 .0004
.0004 .0014

)
. (1.5.13)

Comparison with the single equation estimates ((1.5.2), (1.5.4) and (1.5.5)) shows con-
siderable differences in the significance as well as the magnitude of individual coefficients.

Experience with the FIML program highlighted the importance of good initial values
in the iteration routine if the speed of convergence was to be increased. Two algorithms
were used: Gill-Murray-Pitfield which was fast from good initial values but sometimes
would fail to converge if started at all far away from a maximum, and the Powell conjugate
directions algorithm which was much more robust but considerably slower (sometimes
taking up to 40 iterations or 15-20 seconds on the CDC 7600 computer).
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Chapter 2

Stability of a U. K. Money Demand
Equation: a Bayesian Approach to

Testing Exogeneity

The paper analyses an M3 demand for money equation for the United Kingdom. At-
tention is paid to the policy change that occurred in 1971 with the introduction of the
measure known as Competition and Credit Control. Classical and Bayesian single equa-
tion instrumental variables procedures are developed to investigate the exogeneity of the
short-term interest rate and the constancy of the parameters of the underlying relation-
ships. The parameters of the short-term equation have changed as well as the exogeneity
status of the interest rate variable but the parameters of the long-run equation appear
to be less affected by the policy change.

2.1 Introduction

A large number of demand for money equations in the United Kingdom exhibit parameter
instability across the major policy change that occurred in 1971 with the introduction
of the measures known as Competition and Credit Control (CCC).1 Their instability has
been attributed to a structural break on the (implicit) justification that the CCC changes
were specifically directed to changing the competitive structure of the banking system.
We note, however, that these equations are often estimated by Ordinary Least Squares

0 Published in Review of Economic Studies (1986), Vol. 53, pp. 603–634. Co-authors M. Lubrano
and J.-F. Richard. This paper has benefitted from numerous discussions with L. Bauwens, J. H. Drèze,
J. P. Florens, V. Ginsburgh, G. E. Mizon and M. Mouchart. Three referees have made a number
of insightful and constructive comments. Special thanks are due to D. F. Hendry for his constant
willingness to comment on our findings and to suggest new routes of investigation. (some of which
are yet to be tested!) and also to B. Govaerts for her invaluable assistance in the development of the
Bayesian numerical algorithms we have been using. Obviously we claim full responsibility for errors and
shortcomings. The support of “Les Services de la Programmation de la Politique Scientifique” of the
Belgian Government through the “Projet d’Action Concertée No. 80.85-12” is gratefully acknowledged.
Part of the work was done when M. Lubrano and R. Pierse visited CORE whose support is gratefully
acknowledged.

1 A noticeable exception is the M1 demand for money equation estimated by Hendry (1980) and
updated in Hendry and Richard (1983), whose coefficients are stable over the period 1963(i)–1980(ii).
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(OLS) though it has occasionally been argued that the interest rate should be treated
as an endogenous variable— see e.g. Artis and Lewis (1976). Furthermore, as we shall
see below, the interest rate setting process was indeed fundamentally modified with the
introduction of CCC. Following Engle et al. (1983) these are precisely the circumstances
under which an invalid exogeneity assumption entails instability of OLS estimators. This
issue, which is central to our paper, is developed further in Section 2.3.1 below.

The main object of our paper is, therefore, to develop operational classical and
Bayesian Instrumental Variables (IV) procedures for analysing the exogeneity of a vari-
able in a single structural equation. These procedures atre then used to investigate
whether the instability of a demand for money equation has been induced by the invalid
assumption that the interest rate is exogenous or whether it corresponds to a genuine
structural break. These alternativesd whose policy implications are quite different are
formalised in Section 2.3.1 below.

The paper is organised as follows. In Section 2.2 we discuss the specification of an
M3 demand for money equation that is first estimated by OLS under the working as-
sumption that the interest rate is exogenous; multiplicative dummies are then introduced
and the equation is reestimated by Weighted Least Squares (WLS) in order to obtain
a parsimonious description of parameter insdtability; in Section 2.3 we develop calssical
and Bayesian IV procedures for investigating the exogeneity of a variable within a bivari-
ate linear model; these procedures are described in general terms in Section 2.3.1 while
Sections 2.3.2 to 2.3.5 regroup the more technical material; in Section 2.4 our money de-
mand equation is imbedded with an interest rate equation in a two-equation model and
the exogeneity of the interest variable is then formally analysed; conclusions are drawn
in Section 2.5 and the technical details are presented in an appendix.

Sections 2.2 and 2.3 are largely autonomous with respect to each other and the reader
may consider skipping Sections 2.3.2 to 2.3.5 that contain the more technical material.
Those whose interest lies in the algebra of an exogeneity analysis may wish to read first
Section 2.3 that provides the theoretical background for the empirical analysis.

2.2 Single Equation Analysis of the Demand for Money

2.2.1 The institution background: competition and credit con-
trol

The introduction of the measures known as Competition and Control (CCC) in October
1971 was an attempt by the monetary authorities to move from a regime where the
primary objective was to restrain movements in short term interest rates, to a regime in
which control over the monetary aggregates could be achieved through the free operation
of market forces. To this end, restrictive practices in the banking sector were swept away,
the clearing bank cartel (which had previously linked the rates on Advances and time
deposits to the administered “Bank Rate”) was abolished and the banks were encouraged
to compete for funds by offering competitive rates. In 1972 the Bank Rate was replaced by
a “Minimum Lending Rate” that was market determined, being related to the Treasury
bill rate.

Part of the rationale for the policy change was evidence from published studies of the
demand for monet in the U.K. (Fisher (1968), Laidler and Parkin (1970), Goodhart and
Crockett (1970)) of a stable behavioural relationship that could be exploited to achieve the
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objectives of monetary control. However, the immediate result of the switch to the new
regime weas an upsurge in holdings of interest earning deposits that was unpredicted by
these demand functions and Hacche (1974) reported a complete breakdown of the Bank
of England’s own forecasting equations for M3 after 1971. The operation of the CCC
regime proved difficult as Goodhart (1980b) describes and some of the direct control
mechanisms abolished in 1971 were later reintroduced before the regime finally came to
an end on 20th August 1981.

The breakdown of M3 equations with CCC have several alternative explanations. One
possibility is that the equations were misspecified because of omitted variables and the
obvious candidate here is the own-rate of interest on money. We discuss this further
below. However, money demand equations estimated by OLS implicitly assume that it is
legitimate to treat the rate of interest as an exogenous variable. Since the introduction
of CCC has moved the economy from a regime of administered interest rates to a regime
where interest rates are market determined, we have to consider the possibility that the
exogeneity status of the interest rate has changed. Finally, we must also consider the
possibility that a demand for money function may not be invariant to a change in the
process generating interest rates even if, within each regime, the interest rate is a valid
exogenous variable. The Lucas (1976) critique would suggest that agents might modify
their behaviour in response to an attempt by the authorities to control it in this way.

2.2.2 Specification search

Our discussion of the institutional background suggests that we should, ideally, conduct
a joint search for the money demand and for the interest rate equations. Such a search
would, however, prove computationally ery demanding and, anyway, hard to conduct
given the difficulties encountered in the specification of the interest rate equation. There-
fore, on grounds of tractability, we have adopted the following sequential procedure: in
this section, we conduct a single equation specification search for the money demand
equatioon equation by means of OLS and WLS estimation under the working assump-
tion that interest rates, as well as the other current dated regressors are weakly exogenous
in the terminology of Engle et al. (1983); the specification that emerges from this analysis
is then used as such in Section 2.4, where it is embedded within a bivariate model for the
purpose of investigating the exogeneity of the interest rate.

As discussed further in Section 2.5, the empirical evidence relative to the present
application seems to suggest that our final conclusions about the exogeneity of the interest
rate are unlikely to be severely biased by the adoption of this operational stepwise seach
procedure.

2.2.3 The data

The data consists of 79 seasonally adjusted quarterly observations (1961(iv)–1981(ii)),
for which the first five are used for the initialisation of the lagged variables and the last
four for predictive tests. The remaining 70 observations are eventually divided into the
subperiods A{1963(i)–1971(iii)} and B {1971(iv)–1980(ii)}. The variables relevant to our
analysis are:

M : the M3 personal sector monetary aggregate;
Y : real personal disposable income;
P : the deflator of Y
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Figure 2.1: Actual and fitted (Table 2.3 Col 4) values of ∆ ln(M/P ), 1963(i)–1981(ii)

Figure 2.2: Actual and fitted (Table 2.3 Col 4) values of ∆ ln(1 +Rt), 1963(i)–1981(ii)

R: the local authorities short-term interest rate

The sources are described in Appendix .1. Graphs of ∆ ln(M/P ), ∆ ln(1 + Rt) and
ln(M/(PY )) are reproduced in Figures 2.1–2.3. Our choice of variables calls for a number
of comments.

The choice of personal sector M3 as the approproiate money aggregate follows from
our discussion of the institutional background. Some initial work was done using total
M3 but proved unsatisfactory in many respects probably reflecting different behaviour
by individuals and companies. That led us to look at the sectoral disaggregation of
M3 following, thereby, the Bank of England practice. A complete study of M3 would
then require the specification of separate personal and company sectors demand equa-
tions typically depending on different interest rates. An exogeneity analysis within this
joint context would prove computationally very demanding, espaecially within a Bayesian
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Figure 2.3: Actual and fitted (Table 2.3 Col 4) values of ln(M/(PY ), 1963(i)–1981(ii)

framework and goes beyond the objectives of the present paper. Therefore, we restricted
ourselves to looking at the personal sector only.

The choice of the interest rate variables raises a number of issues. On theoretical
grounds our equation should include the opportunity cost of holding M3, a substantial
part of which is non-interest bearing. It should, therefore, include the differential between
an outside interest arte and the own-rate on the interedst bearing component of M3 as
well as that outside rate itself. Before 1971, since all short-term interest rates were
closely liked to the Bank Rate, the own-rate differential is essentially constant so that its
impact is only estimible in the second subperiod. The Local Authority rtae was chosen
as a representative outside rate. WE included both rates in initial empirical work over
the whole period but found the own rate wholly insignificant.2 This seems to indicate
that the motivation for holding bank time-deposit accounts instead of such substitutes
as Building Socity accounts, etc., lies elsewhere than in the interest rate differential. We
therefore kept only the Local Authority rate, while wishing to stress that the issue of the
substitution effect of interest rates is not thereby closed.

2.2.4 Notation

The following mnemonics are used throughout the paper: MP for Mt/Pt, MPY for
Mt/(PtYt), D for the difference operator (∆ when conventional notation is used), i for the
i-th lag operator, Di for the i-th difference operator (∆i), DD for the squared difference
operator (∆2). L for natural logarithms (ln) and R for 1 + Rt. For example , DDLP2
reads as ∆2 lnPt−2, D4LY as ∆4 lnYt, LR5 as ln(1 +Rt−5), and so on. Also C stands for
the constant term and Ci for the i-th quarter seasonal dummy (i = 1, 2, 3).

Other notations are: SSR for the sum of squared residuals (these sums are instru-
mental in the computation of several F -test statistics), SDR for the unbiased standard
deviation of the regression error, R2 for the unadjusted squared multiple correlation co-

2An F -test of the specification corresponding to column 1 in Table 2.1 against a specification that
included in addition lags of the own interest rate up to 5th gave an F value of 0.24 with degrees of
freedom 6 and 37.
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efficient and DW for the conventional Durbin-Watson statistic. Following Kiviet (1985)
no formal significance is attached to the DW statistic. However, values well within the
du critical interval are at least not worrying.

The following statistics are reported when available:
η1(4) is a forecast test (see Hendry (1979)) asymptotically distributed as χ2

4 on the null
of no predictive failure;
η2(4, k) is the Chow (1960) test for parameter constancy for four periods approximately
distributed as F4,k on the null of parameter constancy;
η3(1) is the squared h-test for first-order autocorrelation, asymptotically distributed as
χ2

1 on the null of serial independence;
η4(8) is the Box and Pierce (1970) test statistic for 8th-order residual autocorrelation,
asymptotically distributed as χ2

8 on the null of serial independence;
η5(4) is a Lagrange multiplier test for 4th-order autocorrelation and
η5(4, j) is an F -version thereof (see Godfrey (1978)), approximately distributed as χ2

4 and
F4,j on the null of serial independence;
η7(1) is the test for first-order ARCH (see Engle (1982a)) asymptotically distributed as
χ2

1 on the null of no ARCH effect.

2.2.5 Results

The specification search has been conducted along the principles described in Hendry and
Richard (1982, 1983) and consists of three main steps.

Step 1. Independent specification searches over the pre- and post-1971 periods, each
of which consists of 35 observations only, cannot be envisaged because of lack of degrees
of freedom. Therefore, the starting point of our analysis is an unrestricted OLS regression
over the 70 observations of DLMP—i.e. ∆ ln(Mt/Pt)—on 27 regressors consisting of a
constant term, three seasonal dummies, current and lagged values up to the fifth-order of
LP , LY , LR and lagged values of LM . THis equation serves essentially to calibrate the
error standard deviation, which equals here 0.0095 and to ensure that the error process
is a mean innovation process (MIP) relative to our data base. The individual coefficient
values are of little interest and are not reported here.

Successsive simplifications lead to equation (2.2.1)

∆ ln(M/P )t = β0 + β1∆ ln(M/P )t−1 + β2∆ lnPt + β3∆2 lnPt−2 + β4 ln(M/(PY ))t−5

(2.2.1)

+ β5∆4 lnYt + β6∆ ln(1 +Rt) + β7∆2 ln(1 +Rt−3) + β8 lnRt−5 + ut

or, in our notation,

DLMP = C + β1DLMP1 + β2DLP + β3DDLP2 + β4LMPY 5

+ β5D4LY + β6DLR + β7DDLR3 + β8LR5

whose coefficients are reported in column 1 of Table 2.1. In short, equation (2.2.1) takes
the form of an error correction mechanism (ECM) for real money balance. Its steady-state
equilibrium solution is characterised by a constant velocity of circulation of money. The
disequilibrium feedback coefficient (LMPY 5) exhibits an unusually long lag of 15 months
though the time-lag is in fact poorly identified and equation (2.2.1) is only marginally
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better than those in which LMPY 5 is replaced by any one of the other LMPY ivariables.3

The coefficient of the interest rate DLR has the “wrong” sign according to conventional
wisdom, an issue to which we shall pay further attention below.

Step 2. Equation (2.2.1) is then reestimated over the subperiods A and B separately.
The results are found in columns 2A and 2B of Table 2.1. Four salient features emerge
from the comparison between those two regressions:

(i) The sample variance is substantially larger in period B than it is in period A with a
variance ratio of about 3. While this could be a symptom of model misspecification
arising from changes in omitted variables orthogonal to those included, we know
of no such variables and have treated the problem as one of changes in the market
structure;

(ii) the coefficient of DLR changes sign with the introduction of CCC and the expla-
nation for the overall positive coefficient of DLR in equation (2.2.1) lies in the
post-1971 period. Though at this stage of our analysis the difference is not yet
statistically significant, it will prove critical for our purpose and has obvious policy
implications, some of which are discussed in Section 2.5;

(iii) The coefficient of LR5, which determines the direction of the long-run impact of
interest rate on the velocity of circulation of money, has the “right” sign and is
remarkably constant across the change of regimes;

(iv) None of the differences between the other coefficients appear to be statistically
significant suggesting that we can impose common coefficient restrictions across the
two regimes, gaining thereby precision on the point estimates.

Step 3. Equation (2.2.1) is finally reestimated by WLS over the entire sample period
with multiplicative dummies accounting for the major coefficient changes. The results
are reported in columns 3 and 4 of Table 2.1. In both columns common coefficients for
the variables DLMP1, DLP , DDLP2, LMPY 5, D4LY and LR5 have been imposed
while in column 4 we have also imposed common seasonal coefficients and have deleted
DDLR3 in the second subperiod.

The specification in Column 4 is the one that will be used for the exogeneity analysis.
It contains 13 unrestricted coefficients (namely the 9 reported in Table 2.1 Column 4,
togther with constant term C = −0.15(0.05) and seasonals C1 = −0.03(0.004), C2 =
m − 0.001(0.004) and C3 = −0.01(0.003)) leaving 57 degrees of freedom. Our analysis
does not seem to provide significant statistical evidence against this equation. Despite
data, period and adjustment differences, the actual values for M3 are in accordance with
those in Hendry and Mizon (1979), except for the tiny ECM coefficient and for the long
term unit elasticity of income (Hendry and Mizon (1979) found 1.6 while in the course of
our specification search we have set it equal to 1). A discussion of some of the intriguing
features of our equation is postponed until Section 2.5 since we first have to investigate
whether our results suffer from simultaneous biases.

3 In connection with this issue of time lag, note also the significance of the coefficient LR5.Throughout
the simplification search we have run auxiliary regressions to test for the inclusion of additional lags but
none has turned out significant.
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2.3 Bivariate Instrumental Variables Analysis and

Exogeneity

2.3.1 Introduction

Let us first indicate how the framework developed in Engle et al. (1983) applies within
the present context. For the sake of simplicity, we can restrict our attention to a stylised
version4 of the bivariate model we shall construct below for the variables ṁt = ∆(M/P )t
and ṙt = ∆ ln(1 +Rt). It consists of the money demand equation

ṁt = βṙt + ut (2.3.1)

paired with the interest rate reaction function

ṙt = ρzt + vt (2.3.2)

where zt is an exogenous (instrumental) variable. It is assumed further that (ut, vt) are
jointly identically and independently normally distributed with mean zero and covariance
matrix (

ut
vt

)
∼ IN(0,Σ) with Σ =

(
σ2
u σuw

σvu σ2
v

)
. (2.3.3)

Let β̂ denote the OLS estimator of β in (2.3.1).
The joint distribution of (ṁt, ṙt|zt) factorises5 into the product of the marginal distri-

bution of (ṙt|zt), as characterised by (2.3.1), and the conditional distribution of (ṁt|ṙt, zt),
which is normal with conditional expectation

E(ṁt|ṙt, zt) = (β + µ)ṙt − µρzt (2.3.4)

with µ = σuv σ
2
v and conditional variance τ 2 = σ2

u − µ2σ2
v . Therefore, if σuv = 0 and

if, furthermore, β and (ρ, σ2
v) are not subject to cross-restrictions, then the conditional

distribution of (ṁt|ṙt, zt) is fully characterised by the structural equation (2.3.1) on its

own and the OLS estimator β̂ is BLUE. Equally, importantly, as long as β is invariant
with respect to intervention affecting (ρ, σ2

v) or, more generally, the distribution of zt, the

OLS estimator β̂ is not affected by these interventions.
The situation changes dramatically if σuv differs from zero since the sampling distri-

bution of β̂ depends heavily on the distribution of ṙt and zt. To take the simplest case, let
us assume that zt is identically and independently normally distributed with zero mean
and variance σ2

z . In such a case, the distribution of ṁt|ṙt (which is marginalised with

respect to zt since we are discussing the properties β̂, the OLS estimator of ṁt on ṙt only)
is normal with conditional expectation

E(ṁt|ṙt) = (β + µ∗)ṙt (2.3.5)

4 All the regressors that are inessential to the argument are deleted for notational convenience.
Therefore we are left with the simple model described by equations (2.3.1) and (2.3.2), which is, however,
meant to be interpreted as a stylised version of a short run dynamic model (not to be confused with
the static long run solution of the model we shall discuss in Section 2.5 below). Our discussion of weak
exogeneity specifically refers to a property of (short term) dynamic model.

5 Our more general model being dynamic it is essential to view this factorisation as a sequential one
(t : 1 → T ) in the sense that, at time t, it is conditional on the past of all the variables in the model.
Therefore, the concept under consideration here is that of weak exogeneity. Strong exogeneity requires
in addition that ṁt does not Granger-cause ṙt (e.g. through zt).
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with µ∗ = σuv(σ
2
v + ρ2σ2

z)
−1 and conditional variance τ 2

∗ = σ2
u − µ2

∗(σ
2
v + ρ2σ2

z). In such
a case, interventions affecting the “nuisance” parameters (ρ, σ2

v , σ
2
z) will induce changes

in the sampling properties of β̂, even when the underlying “structural” coefficient is
invariant with respect to these interventions.

In our application we are confronted with the empirical finding that β̂ has changed
with the introduction of CCC in 1971. Our analysis suggests immediately three possiible
explanations for the lack of invariance:

(i) β itself has changed, a possibility that cannot be ruled out since a declared objective
of the policy change was precisely to modify the market structure and since, more
generally, the Lucas (1976) critique obviously requires our attention in the present
context;

(ii) σuv 6= 0 and the interest rate setting process has changed;

(iii) the interest rate setting process has not changed but σuv has (the institutional
background suggests, in particular, that σuv might be zero before the introduction
of CCC and non-zero after that).

Obviously, these three possibilities are not mutually exclusive.
The analysis of our empirical findings relies heavily upon a correct interpretation of

the “behavioural” content of the weak exogeneity assumption σuv = 0. Let, therefore,
equation (2.3.1) be reformulated in terms of expectations, as in Florens et al. (1974,
1979):

E(ṁt|zt) = β E(ṙt|zt). (2.3.6)

It appears that the condition σuv = 0 is necessary and sufficient for the equivalence of
equation (2.3.4) as

E(ṁt|ṙt, zt) = βρzt + (β + µ)(ṙt − ρzt) (2.3.7)

where ρzt and ṙ− ρzt are the “anticipated” and “unanticipated” components of ṙt. This
indicates that when σuv = 0 (µ = 0) economic agents treat in exactly the same way the
anticipated and unanticipated components of ṙt. We shall describe such a situation as
one of “effective” control to be contrasted with situations where economic agents might
find ways of countering the (restrictive) measures that are enforced upon them.

Having set the basic framework, let us now outline the algebra of the exogeneity
analysis for the simple model (2.3.1)–(2.3.3). Doing so enables us to motivate the intro-
duction of the auxiliary parameters on which our analysis focuses and leaves the reader
with the possibility of skipping the more technical details in the sections that follow.
Unless we restrict our attention to deriving Lagrange Multiplier (LM) test-statistics for
weak exogeneity, e.g. as in Engle (1982b), we need an operational factorisation of the
llikelihood function that works even when σuv 6= 0 and that, as much as possible, enables
us to deal analytically with the nuisance parameters (ρ, σ2

v) in equation (2.3.2) and to
draw inference on σuv or on appropriate functions thereof.

As is often the case with likelihood functions, it proves convenient to set the factori-
sation in terms of the distribution of the unobservable disturbance terms (ut, vt). This
can be done by using either of the following two auxiliary regression functions:

(i) the regression of vt on ut:

vt = λut + ε1t, ε1t ∼ IN(0, ω2) (2.3.8)

with λ = σuv σ
−2
u and ω2 = σ2

v − λ2σ2
u; or
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(ii) the regression of ut on vt:

ut = µvt + ε2t, ε2t ∼ IN(0, τ 2) (2.3.9)

where µ and τ 2 are defined as in (2.3.4).

The correspondence between Σ and the two sets of parameters (σ2
u, λ, ω

2) and (σ2
v , µ, τ

2)
is one-to-one and is characterised by the identitites

Σ =

(
σ2
u λσ2

u

λσ2
u ω2 + λ2σ2

u

)
=

(
τ + µ2σ2

v µσ2
v

µσ2
v σ2

v

)
. (2.3.10)

Starting with Wu (1973) most exogeneity tests are based on the auxiliary regression
(2.3.9), whether implicitly or explicitly when, in a Lagrange Multiplier (LM) framework
as described e.g. in Engle (1982b), they amount to including an estimated residual v̂t as
an additional regessor in (2.3.1) and testing for its significance. In fact, as indicated by
(2.3.4), the associated factorisation coincides with the sequential factorisation of the joint
distribution of (ṁt, ṙt|zt) into the conditional distribution of (ṁt|ṙt, zt) and the marginal
distribution of (ṙt|zt). However, when σuv 6= 0 this factorisation does not meet our
requirements since, in particular, the nuisance parameters (ρ, σ2

u) appear on both sides.
This is not the case in the factorisation associated with the auxiliary regression (2.3.8).
This explains why our subsequent analysis is based on the following factorisation of the
likelihood function

L(Y;θ) = L1(Y;θ1) · L2(Y;θ2), (2.3.11)

with

L1(Y;θ1) =
T∏
t=1

f 1
N(ut|0, σ2) (2.3.12)

L2(Y;θ2) =
T∏
t=1

f 1
N(vt|λut, ω2) (2.3.13)

where Y denotes the T × 2 matrix of observations on (ṁt, ṙt), ut and vt are given in
(2.3.1) and (2.3.2) respectively, θ1

′ = (β, σ2) and θ2
′ = (β, ρ, λ, ω2). Also f 1

N(x|µ, ν2)
denotes a univariate normal density function with mean µ and variance ν2, Its expression
is given in Appendix .2.

Conditionally on β, the submodel (2.3.13) takes the form of a standard regression
model to which we can apply the usual classical and Bayesian techniques in order to derive
analytical expressions for the conditional point estimates and posterior distributions of
(ρ, λ, ω2). They are to be marginalised with respect to β at the final stage of the analysis.
Technical details are provided in Sections 2.4.2 and 2.4.3. Note that λ = 0 if and only if
σuv = 0 so that inference on the exogeneity of rt is a direct byproduct of our analysis.

The covariance matrix of (ṁt, ṙt|zt), say V, is related to β and Σ through the following
identity:

V = Q′ΣQ with Q =

(
1 0
β 1

)
= (b : s) say (2.3.14)

so that λ, as defined via (2.3.8), may be written as

λ = b′Vs(b′Vb)−1. (2.3.15)
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The question then arises of deciding whether prior information on λ should be thought in
terms of Σ or in terms of β and V. Technically, it makes little difference, in the present
case at least, since, conditionally on β, the correspondence between Σ and V is one-to-
one and bilinear and since such prior densities as the inverted-Wishart are functionally
invariant with respect to such transformations, Simply Σ and V cannot be both a priori
independent of β. We have a definite preference for reasoning in terms of V since, from
a statistical point of view, disturbances are merely “derived” unobservable quantities
which de facto regroup all factors that have been omitted from the equations under
consideration.6 It seems, therefore, difficult to assume for example, prior independence
between β and Σ, while we have no conceptual problems in doing so between β and V.

Three important issues remain to be clarified before we can concentrate on the more
technical issues.

1. The interest rate equation (2.3.2), as well as the more general equation we shall in-
troduce below, takes the form of an Instrumental Variables (IV) equation whereby
the current value of money ṁt is excluded from the list of regressors. The point is
that we lack economic theories to support a complete specification search towards a
genuine “structural” equation for the interest rate and that we are faced with limited
sample sizes (35 observations in each regime). Considerations of robustness against
the specification of the interest rate equation are, therefore, critical since the latter is
only instrumental in the construction of the exogeneity tests.

2. Conventional Limited Information Maximum Likelihood (LIML) procedures, or ap-
proximations thereof such as Two-Stage Least Squares (2SLS), require that all the
predetermined variables in the money demand equation should be included in zt,
viewing thereby equation (2.3.2) as an “unrestricted reduced form” equation. This
requirement will not be imposed here since it renders a parsimonious selection of in-
struments impossible taking into account the facts that zt already includes 12 variables
and that sample size is limited. Also hypotheses of interest such as the non-causality
of money on interest rate cannot be dealt within an LI framework since, as we have
seen, the money demand equation includes lagged values of money. In the present
application instruments will, therefore, be selected on their own merits.

3. As discussed e.g. in Leamer (1978) there are a number of ways in which a Bayesian
can approach the problem of “testing” a (point) hypothesis. A central issue is that
of whether or not he should use continuous density functions whereby zero prior and
posterior probabilities are attached to zero measure subsets of the parameter space.
One route consists of attaching non-zero prior (discrete) probabilities to the hypoth-
esis of interest and in analysing how the corresponding “prior odds” are revised into
“posterior odds” in the light of sample evidence. In the specific context of exogeneity
tests, this route has been adopted e.g. by Reynolds (1982) within an LI framework. It
is our view that this approach can occasionally lead to questionable empirical results
for example when it produces posterior odds which are much more extreme than one
should be willing to accept on the basis of limited sample evidence. In fact, as argued

6 Furthermore, as discussed e.g. in Florens et al. (1979) or Richard (1984), the distribution of
the disturbances no longer uniquely characterises the distribution of the observables as soon as the
number of relationships under consideration is strictly less than the number of endogenous variables as is
naturally the case with general linear models such as errors-in-variables models or so-called “incomplete”
simultaneous equations models.
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e.g. by Kiefer and Richard (1979), it can easily lead to paradoxes when the (informa-
tive) prior odds are paired with prior densities which are otherwise “non-informative”
within each hypothesis. We shall adopt here a “smoother” procedure whereby we
rely upon continuous prior densities. Prior beliefs that a variable might be exogenous
are then expressed in the form of an informative prior density for λ which is centred
around zero. Sample evidence will then either tighten the corresponding posterior den-
sity around zero (confirmation) or shift it away from zero (refutation). The complete
posterior distribution of λ is obviously far more informative than the scalar posterior
odds and, for example, one can always examine whether or not an appropriate 95%
posterior probability interval for λ contains the origin.

Evidently conducting inference about a quantity such as λ requires the choice of a
metric whereby one can attach meaning to a non-zero value of λ. We see two ways
of approaching this problem within the present context. Note first that, following its
definition in (2.3.8), λ is subject to the inequality constraint |λ (σu/σv)| < 1. Though λ
and σu/σv are not independent this inequality can serve to have a rough appreciation of
how far λ is from zero. (The ratio of the OLS point estimates of σu and σv is of the order
of 1.1 to 1.2 in both regimes.) We shall follow an alternative route, which seems more
relevant to the object of our paper, whereby we shall compute the prior and posterior
correlations bewteen β and λ since these enable us to translate approximately shifts in λ
into shifts in β within a metric of standard deviations.

2.3.2 Sampling theory analysis

The money demand equation we have obtained in Section 2.2.4 is rewritten as

b′yt + c′xt + ut (2.3.16)

where b′ = (1 : β), yt
′ = (ṁt : ṙt) and xt ∈ Rm regroups all the other variables entering

the equation including lagged y’s. The interest rate IV equation is written as

ṙt + p′zt + vt (2.3.17)

where zt ∈ Rk represents the set of instruments. In order to single out the variables that
are common to xt and zt let the corresponding data matrices be partitioned as

X = (X1 : X2), Z = (X2 : X3) (2.3.18)

where X1 is T ×m1 with m1 + m2 = m and m2 + m3 = k. Under a bivariate normality
assumption the model consisting of equations (2.3.16) and (2.3.17) is rewritten as

yt|xt, zt ∼ N(ξt,V) (2.3.19)

b′ξt + c′xt = 0 (2.3.20)

s′ξt + p′zt = 0, t = 1→ T (2.3.21)

where s′ = (0 : 1) has been introduced for notational convenience. The model (2.3.19)–
(2.3.21) belongs to a class of linear models discussed in Florens et al. (1974, 1979),
Lubrano and Richard (1981) and Richard (1984) whose derivations serve as the basis
of our analysis. The likelihood function associated with the model (2.3.19)–(2.3.21) fac-
torises as in (2.3.11)–(2.3.13) except that ut and vt are now given by (2.3.16) and (2.3.17)
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respectively. Also θ1 and θ2 now include the additional parameter vector c. Let c′ be
partitioned into (c1

′ : c2
′) conformably with X in (2.3.18). Additional notation is:

M2 = IT −X2(X2
′X2)−1X2

′, MZ = IT − Z(Z ′Z)−1Z ′ (2.3.22)

u1 = Yb + X1c1. (2.3.23)

The superscripts ˜ and ̂ denote IV and OLS estimators respectively.
The concentrated log-likelihood function of (β, c1) and the corresponding stepwise

IVML estimator of λ are derived in Appendix .3:

L∗IV (Y; β, c1) = −T
2

log

[
u1
′M2u1

u1
′Mzu1

∣∣∣∣(u1 : Ys)′Mz(u1 : Ys)

∣∣∣∣] (2.3.24)

λ̃(β, c1) = (u1
′Mzu1)−1u1

′MzYs (2.3.25)

where use has been made of the following identities:

Mzu = Mzu1 and min
ε2

u′u = u1
′M2u1. (2.3.26)

Numerical optimisation of (2.3.24) yields the IVML estimators of (β, c1) and, by subsi-
tution in (2.3.25), that of λ. Under the null hypothesis of λ = 0, the equations (2.3.16)
and (2.3.17) are estimated by OLS independently of each other and the corresponding
log-likelihood function is given by

L∗OLS = −T
2

log
(
b̂′Y′MxYb̂ · s′Y′MzYs

)
(2.3.27)

with b̂′ = (1 : β̂). The log-likelihood ratio (LR) test statistic for the null hypothesis
λ = 0 is

η8(1) = 2
[
L∗IV (Y; β̃, c̃1)− L∗OLS

]
L−−→
λ=0

χ2
1. (2.3.28)

2.3.3 Bayesian analysis

As usual we have to find a compromise between flexibility and tractability in the choice
of a prior density. We wish to specify a prior density which is information on (V, β) and,
thereby on λ. We might also think of useful prior information as regards c although, as
discussed below, taking it into account would substantially increase the computational
burden. It is anyway convenient to think of V and (β, c) as being a priori independent.7

We have little grounds for assessing an informative prior density in the form

D(β, c, p,V) = D(β, c) ·D(p|V) ·D(V) (2.3.29)

where D(β, c) is left unspecified at the moment, D(V) is an inverted-Wishart density

D(V) = f 2
iw(V|V0, ν0) (2.3.30)

7 We could accomodate prior dependence between V and (β, c) by letting V0 in (2.3.30) be a function
of β and c since the analytical derivations in our analysis are mostly conditional on them. In particular,
an independent prior density on Σ leads to replacing Q′V0Q in (2.3.32) by, say, Σ0. The final numerical
analysis of the posterior density of (β, c, λ) as well as the elicitation procedure described in Section 2.3.4
would have to be adapted in consequence.
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whose functional expression is given in Appendix .2 and D(p|V) is a limiting non-
informative natural conjugate prior density

D(p|V) ∝ ω−k (2.3.31)

with ω2 being the variance associated with the partial likelihood function (2.3.13). A
number of alternative forms of the prior densities (2.3.30) and (2.3.31) are discussed in
Lubrano and Richard (1981).

Conditionally on β, the prior density of Σ is also inverted-Wishart

D(Σ|β) = f 2
iw(Σ|Q′V0Q, ν0) (2.3.32)

where Q is defined in (2.3.14). The conditional distribution of λ given β is, therefore, a
univariate t-density

D(λ|β) = f 1
t

(
λ|λ0,

h0

ω2
0

, ν0

)
(2.3.33)

whose functional expression in given in Appendix .2. The hyperparameters λ0, h0 and
ω2

0 are functions of β and are defined by the identity

Q′V0Q =

(
h0 h0λ0

h0λ0 ω2
0 + h0λ0λ

2
0

)
. (2.3.34)

The posterior densities of (β, c) and (λ|β, c1) are derived in Appendix .4

D(β, c|Y) ∝
(
h∗
ω2
∗

)(1/2)(ν−1)

|Ω|−(1/2)ν∗ ·D(β, c) (2.3.35)

D(λ|β, c1,Y) = f 1
t

(
λ

∣∣∣∣λ∗, h∗ω2
∗
, ν∗

)
(2.3.36)

where ν∗ = ν0 + T and
σ2
∗ = b′V0b + u′u (2.3.37)

Ω∗ =

(
h∗ h∗λ∗
h∗λ∗ ω2

∗ + h∗λ
2
∗

)
= Q′V0Q + (u1 : Ys)

′MZ(u1 : Ys). (2.3.38)

If D(β, c) is a mutivariate Student, then the posterior density (2.3.35) belongs to
a class of so-called 3-1 poly-t densities for which, as discussed in Richard and Tompa
(1980), there exist efficient numerical methods of analysis. The evaluation of the marginal
posterior denity (2.3.36) jointly with respect to β and c1 proves tedious to implement.
An operational alternative consists first in multiplying together the posterior densities
(2.3.35) and (2.3.36), obtaining thereby the joint posterior density of β, c and λ and
taking advantage of a number of cancellations in the product. The evaluation of the
posterior density of (β, λ) at any given point then requires numerical integration with
respect to c but, dince D(c|β, λ) is also poly-t, can be organised in such a way that
the cost of computation does not critically depend on the dimension of c. Finally, the
marginal posterior densities of β and λ are obtained by means of coneventional bivariate
numerical integration procedures paying attention to the fact that these densities can be
extremely skewed. The details of this implementation are given in Appendix .5 where it
is also shown that the use of a non-informative prior density on c

D(c|β) ∝ 1 (2.3.39)

results in a major reduction of the cost of computation. In contrast we can be fully
flexible in the choice of D(β).
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2.3.4 Elicitation of the prior density

The prior density of V and β has to be assessed in such a way that it reflects ones prior
beliefs on the exogeneity of ṙt. the first and second order moments of (λ|β) are central
to this discussion. Following (2.3.33) they can be written as

E(λ|β) = λ0 = φ0f1(βφ0, ρ0), ν0 > 1 (2.3.40)

V(λ|β) =
1

ν0 − 2

ω2
0

h0

=
1

ν0 − 2
[φ0 · f2(βφ0, ρ0)]2, ν0 > 2 (2.3.41)

together with

f1(x, ρ) = (ρ− x) · (1− 2ρx+ x2)−1 (2.3.42)

f2(x, ρ) = (1− ρ2)1/2 · (1− 2ρx+ x2)−1 (2.3.43)

φ0 = (ν0
22/ν

0
11)1/2, ρ0 = ν0

12(ν0
11 · ν0

22)−1/2. (2.3.44)

Figure 2.4: Function f1(x, ρ) in (2.3.42) for different ρ.

Figure 2.4 and 2.5 reproduce charts of the functions f1 and f2 for different values of ρ
and x > 0. Their values for x < 0 are obtained by symmetry since f1(−x, ρ) = −f1(x, ρ)
and f2(−x, ρ) = −f2(x, ρ). We note that f1 and f2 are bounded functions of x for any
given ρ such that |ρ| < 1.

|f1(x, ρ)| < 1

2
(1− ρ2)−1/2 and 0 < f2(x, ρ) < (1− ρ2)−1/2. (2.3.45)

It follows that the marginal prior and posterior moments of λ are finite (up to the
order ν0 and ν∗ respectively) on the sole condition that the prior distribution of β is
integrable even if the prior and posterior moments of β themselves do not exist, as with
the Cauchy prior used below. In contrast the existence of prior and posterior moments
of µ, as defined in (2.3.9), require sharper prior information on β (as discussed e.g. in
Dréze and Richard (1983), the sample information itself typically does not contribute to
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Figure 2.5: Function f2(x, ρ) in (2.3.43) for different ρ.

the existence of moments for β). This is, in our view, a major argument for conducting
inference on the exogeneity of ṙt in terms of λ instead of µ.

The above discussion suggests the following procedure for specifying a prior density
on V and β which approximately reflects our prior beliefs on the exogeneity of ṙt:

1. We first specify a proper prior density D(β), e.g. in the form of a Cauchy density or
of a more “informative” t-density;

2. The prior expectations of v11 and v22, the diagonal elements of V, are then elicitated
on such heuristic considerations as the expected “goodness of fit” of our model. The
choice of ν0 determines the prior squared variation coefficient E2(vii)/Var(σii) for
i = 1, 2;

3. ρ0 is then selected in such a way that E(λ) takes the desired value, possibly at the
cost of trying different values and computing the corresponding E(λ). If, in particular,
ρ0 = φ0M(β), where M(β) denotes the prior median of β, we expect E(λ) to be near
zero given the symmetry of D(β) and the shape of f1, as depicted in Figure 2.4.

2.3.5 Shifts of regime

The above analysis can be applied as such to the pre- and post-1971 periods separately.
However, hypotheses about the constancy of the coefficients of the demand for money
equation over the complete sample period are of major interest to us. Joint tests for the
exogeneity of subsets of variables can be conducted within a sampling theory framework
along the lines discussed in Richard (1980) by means of the computer program PERSEUS
developed by Pierse (1982). The sampling theory results which are reported in Section
2.4 have been computed with PERSEUS.

However, PERSEUS has no Bayesian counterpart since it is obvious from the discus-
sion in Section 2.3.3 that the analysis of posterior densities combining together sample
information from the two subperiods would prove analytically tedious and numerically
very costly. This explains why the Bayesian results which are reported in Section 2.4
have been computed for each period separately.
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2.4 Bivariate Analysis of the Demand for Money

2.4.1 Specification of the reaction functions

We have already mentioned in Section 2.3.1 the difficulties we encountered in the spec-
ification of the interest rate reaction function. For each subperiod, the selection of in-
struments has been conducted by OLS estimation. The choice is restricted to lagged
values of money (LM) and interest rate (LR) together with current and lagged values
of prices (LP ), reserves (LB) and unemployment (LU) since these are likely targets of
monetary policies. The results which are reported in Table 2.2 are less than fully satis-
factory though the signs are generally in accordance with common sense. Neither of the
two equations has a constant growth long-run solution and, in line with our description
of the institutional background, money does not enter significantly into the first period
reaction function.

2.4.2 IVML estimation and exogeneity tests

The IVML estimators of the coefficients of the demand for money equation have been
obtained with PERSEUS. Some of our empirical findings in section 2.3 have been reex-
amined within this framework including evaluating the constancy of several coefficients,
particularly those of LMPY 5 and LR5. the main results are reported in Table 2.3 except
for the seasonal coefficients and are numbered conformably with their OLS equivalents
in Table 2.1.

These results clearly indicate that the shift in the OLS estimate of β is not caused
by simultaneity biases since the IVML estimate of β exhibits an even larger shift with
the introduction of CCC! Also the weak exogenity of the interest rate suffers a borderline
rejection at the 5% level in the first period while it is accepted in the second period. We
shall elaborate upon these results in our conclusions. In the meantime we should take
due account of the fact that the small sample properties of the LR test statistic (2.3.26)
for weak exogeneity are largely unknown. We might of course use degree of freedom
adjustments as in Kiviet (1985) but the application of the Bayesian procedures we have
developed in Section 2.3.3 and 2.3.4 should provide us with more useful information as
regards the exact (finite sample) information content of our data set.

2.4.3 Elicitation of the prior densities

The elicitation procedure described in Section 2.3.4 is now applied separately to the pre-
and post-1971 period. In both cases, several specifications, including “non-informative”
ones, are considered in order to conduct a sensitivity analysis. All the informative prior
densities are constructed in such a way that E(λ) = 0.

The period 1963(i)–1971(iii)

Our prior beliefs are that β, the short-term elasticity of ṁt with respect to ṙt, probably
lies between −1.0 and 0. Since inferences on λ are likely to be sensitive to the choice of
D(β)—see Figures 2.4 and 2.5—two different specifications are considered:

(i) The Cauchy density:

D(β) ∝ [1.0 + 4.0(β + 0.5)2]−1 (2.4.1)
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is invariant with respect to the normalisation of the money demand equation and
is relatively “non-informative” with Pr(−1 ≤ β ≤ 0) = 0.5;

(ii) The Student density:

D(β) ∝ [1.0 + 0.75(β + 0.5)2]−1/2 (2.4.2)

is more informative with standard deviation σβ ' 0.41 and Pr(−1 ≤ β ≤ 0) =
0.8. The prior means of v11 and v22, the conditional variances of (ṁt, ṙt|xt, zt), can
usefully be thought of as fractions of the corresponding unconditional variances.
For the first period, E(v11) is set equal at 20% of the sampling variance of ṁt and
E(v22) at 40% of the sampling variance of ṙt. The corresponding numerical values
are:

E(v11) = 0.243× 10−4, E(v22) = 0.233× 10−4. (2.4.3)

We have little grounds on which to select ν0, which can be interpreted as the size of the
“hypothetical sample” on which prior beliefs are based. Three different values will be
considered: ν0 = 0 (non-informative on V), ν0 = 15 and ν0 = 30. Note that φ0 and ρ0,
as defined in (2.3.45) are invariant with respect to the choice of ν0 > 0 and so is E(λ|β)
in (2.3.40).

The discussion in Section 2.3.4 suggests taking ρ0 = −0.5φ0 so that, following (2.3.42),
v0

12 = −0.5 v0
22. This completes the first period elicitation of V0 which is set at zero if

ν0 = 0 and is otherwise given by

V0 = (ν0 − 2)

(
0.243 −0.117
−0.117 0.233

)
× 10−4, ν0 = 15, 30 (2.4.4)

Numerical integration of the bivariate prior density D(λ, β)—with ν0 > 0—reveals
that in all cases |E(λ)| < 0.01σ(λ) as intended (see Table 2.4).

The period 1971(iv)–1980(ii)

The fact that we already know that β has changed sign after the introduction of CCC
creates an obvious problem in our assessment of the “prior” density of β. In order to
cope with this problem two different sets of prior densities are introduced.

(i) It is unlikely that in 1971 many economists would have predicted the change in the
sign of β. The prior densities (2.4.1) and (2.4.2) are taken as representative of such
“pre-1971” prior beliefs:

(ii) As an alternative we can put ourselves in the in the position of an economist who
would have correctly inferred the positive sign of β after 1971, e.g. on the grounds
that the initial impact of an unexpected rise in interest rates will be to increase
money holdings if money is a buffer financial asset and if agents take time to adjust
towards long-run equilibrium. Changing the sign of the median of β in the prior
densities (2.4.1) and (2.4.2) yields densities which are representative of such “post-
1971” prior beliefs.

For the rest the elicitation procedure is conducted as in Section 2.4.3, except that
E(v11) is now set equal at 10% of the sampling variance of ṁt. V0b is then given by

V0 = (ν0 − 2)

(
0.647 0.716S

0.716S 1.432

)
10−4, ν0 = 15, 30 (2.4.5)
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Figure 2.6: First period prior and posterior densities of β

with S = sign(M(β)). In the rest of the paper we use a two-character notation to
identify the prior sign on β and V: the first character refers to the prior density on β (C
for a Cauchy-density and S for a t-density) and the second one indicates the value of ν0.

2.4.4 Posterior densities

The period 1963(i)-1971(iii)

Two sets of posterior densities have been computed. In the first set, DLM2 is included
in the reaction function and it is, therefore the weak exogeneity of ṙt which is under
investigation. In the second set DLM2 is excluded on the basis of the results given by
the OLS specification search, in which case the weak exogeneity of ṙt implies its strong
exogeneity. The posterior means of β and λ are reported in Table 2.4 together with
prior moments. Graphs of the prior and posterior densities of β and λ are reproduced in
Figures 2.6 and 2.7. The results obtained under a non-informative prior density for V
(ν0 = 0) confirm the rejection of the exogeneity of ṙt. The C-O graph of the posterior
densities of β reveals that the (marginal) likelihood function is highly skewed towards
large negative values of β. Note, furthermore that β and λ are negatively correlated. the
introduction of prior information on β in the form of the t-density (2.4.2) reduces the
skewness and its impact increases with ν0.

The period 1971(iv)-1980(ii)

The posterior means and variances of β and λ under the two sets of prior densities we
have introduced in Section 2.4.3 are reported in Tables 2.5(a) and 2.5(b) together with
prior moments. Graphs of the posterior densities of β and λ are found in Figures 2.8 to
2.11.

The results in Table 2.5(a) are essentially unambiguous and lead to the acceptance
of the weak exogeneity of ṙt under minimal prior information. We note simply that the
second period sample is comparatively more informative on β and less informative on
λ than the first period sample. Also the negative correlation between β and λ is more
pronounced.

The results in Table 2.5(b) have been derived under a prior density which is in conflict
with the sample evidence. The introduction of a prior density for β centred around −0.5
shifts the posterior density of β towards negative values and the posterior density of λ
towards positive values (in accordance with the negative correlation between β and λ).
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Figure 2.7: First period prior and posterior densities of λ

Figure 2.8: Second period prior and posterior densities of β (β0 = 0.5)

It is, therefore, a mere coincidence that the posterior expectation of λ is close to zero
when ν0 = 0. The cases where ν0 = 15 or 30 clearly indicate that a conflict between the
prior and sample information can totally distort the evidence relative to exogeneity.
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Figure 2.9: Second period prior and posterior densities of λ (β0 = 0.5)

Figure 2.10: Second period prior and posterior densities of β (β0 = −0.5)

2.5 Conclusions

A first set of conclusions concerns the applicability of the Bayesian methods to the class
of problems we have discussed and, more specifically, to inference on exogeneity. The
limited information maximum likelihood framework whereby all the explanatory variables
in the structural equation of interest have to be included in the list of “instrumental



46

Figure 2.11: Second period prior and posterior densities of λ (β0 = −0.5)

variables” has proved inpractical for the sample sizes we were confronted with. This has
led us to develop instead an “instrumental variables” approach whereby the instrumental
variables are selected solely on their own contribution to the reaction function. We have
demonstrated that this more general approach remains fully tractable. Prior information
on the exogeneity of a variable is easily taken into account.

The second set of conclusions concerns our money demand equation itself.

1. The evidence on the weak exogeneity of the interest rate is, at first sight, counterintu-
itive since it leads to rejection in the first period and acceptance in the second period
while we might have expected just the opposite in the light of our description of the
institutional background. However, as discussed in Section 2.3.1, weak exogeneity
measures the effectiveness of a control policy. Situations in which agents find ways of
bypassing the restrictions which are enforced upon them naturally lead to a rejection
of the weak exogeneity assumption either by linking together the coefficients in the
relevant equations or by inducing a significant correlation between the corresponding
disturbances. Such may well have been the case in the pre-CCC period where changes
in the Bank Rate were rare and carried important signalling effects (hence the pres-
ence of a term such as DDLR3 in our money demand equation) and where banks
could probably find ways of countering the restrictive “requests” they were confronted
with. In contrast the more erratic behaviour of interest rates after the introduction of
CCC might have made it more difficult for the economic agents to react differently to
anticipated and non-anticipated variations in the interest rates. These are, however,
mere conjectures that would have to be supported by a more detailed analysis of the
economic background.

2. In Section 2.3.1 we proposed three alternative explanations for the shift in the OLS
estimate of β, the impact coefficient of the interest rate on money. Sample evidence
unambiguously suggests that the introduction of CCC has jointly induced a large shift
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in the structural coefficient β, a shift from a significantly positive σuv to a moderately
negative one and a substantial change in the interest equation itself. The last two
effects combine together in such a way that the OLS estimate underestimates the shift
in β! It is, however, comforting to discover that simultaneity biases do not seem to
have much effect on the other coefficients in the money demand equation, including
those of LMPY 5 and LR5 which determines the long-term impact of interest rate on
the velocity of circulation of money. This empirical finding also seems to suggest that
the preliminary specification search based on OLS estimation in Section 2.2 is unlikely
to have severely biased our choice of a functional form for the money demand equation
and, therefore, to have distorted the evidence on the exogeneity of the interest rate
variable.

3. Our money demand equation presents a number of intriguing features which might
deserve further investigation. Two which are specific to the second subperiod are the
positive sign of the impact coefficient of interest rate, for which we have ventured a
possible explanation in the course of Section 2.4.3, and the lack of significance of the
own rate for which we have no explanation. A number of problems probably hinge
around the existence of a long-term solution characterised by a constant velocity of
circulation of money: the long lag associated with the disequilibrium feedback variable
LMPY (though the precise lag is essentially unidentified), the tiny ECM coefficient
of LMPY 5 itself and possibly also the unit income elasticity8

In fact we suspect that the two subperiods are probably more distinct than our anal-
ysis seems to suggest. The functional form we have selected originates from an overall
specification search which may have been heavily influenced by the second subperiod,
hence the overall positive sign of β. It did prove convenient for our purposes to have a
common functional form across the two regimes for the ease of comparison and, more
importantly, in order to gain degrees of freedom that were critically needed. With larger
sample sizes we might have conducted independent specification searches over the two
regimes but CCC has been abolished since 1981 and we might well be faced since with new
coefficient changes (though the 1982 data and our reading of recent economic indicators
seem to confirm the positive impact coefficient of interest rate on M3).

We would guess that the problem lies mostly with the CCC regime and that we need an
ECM formulation which is coherent both in level, as the present one is, and in differences,
the latter requirement being critical with such money aggregates as M3, a substantial part
of which is now bearing interest.9 Also the concept of cointegrability recently developed by
Granger and Engle (1985) provides us with another route of investigation worth exploring
for the second regime.10

The comforting message in our analysis is that such additional investigation can prob-
ably be conducted by means of OLS estimation if one’s attention is restricted to the CCC

8 We did compute t-test statistics for the addition of LY 5 to the first equations in Table 2.1. The

results are
Column 1 2A 2B 3 4
t-value: 2.18 0.22 0.53 1.72 1.89

This variable LY 5 is clearly not significant for runs on separate periods but the imposition of coefficient
restrictions across the two periods increases its significance. This might contribute towards explaining
the non-unit elasticity found by Hendry and Mizon (1979) and suggests (ex post) that we might usefully
consider deleting the common coefficient restrictions for D4LY . Such a modificatoion would, however,
not affect our findings as regards the exogeneity of interest rates (compare cases 2 and 4 in Table 2.3).

9We are grateful to D. F. Hendry for this suggestion.
10Though as illustrated in figure 2.3 a “long-run” OLS regression of LMPY on LR and a constant

does not seem to support an hypothesis of cointegrability of M and R.
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regime as it should be at this level of investigation. Also the procedures we have devel-
oped in our paper are now fully operational and could easily be applied in these and other
contexts.

.1 The Data Sources

All data are quarterly and seasonally unadjusted. The following abbreviations are used:

ETAS Economic Trends Annual Supplement (1982 edition)
BESA1 Bank of England Statistical Abstract No. 1 (1970)
BESA2 Bank of England Statistical Abstract No. 2 (1975)
FS Financial Statistics (various issues)

M Personal Sector M3. Cumulated from changes from the Flow of Funds accounts.
Source: BESA2 (1963–1973), FS (1974–1981)

R Local Authority 3 month deposit rate (last working day).
Source: BESA1 (1963–1973), BESA2 (1970–1974), FS (1975–1981)

Y Real Personal Disposable Income (£million. 1975 prices. Source: ETAS
P Implied deflator for Personal Disposable Income. Souce: ETAS
U Unemployment rate (Total unemployed / Working population). Source: ETAS
B Real value of UK Official Reserves (£million. 1975 prices). Source: ETAS

.2 Notation for Density Functions

The properties of the distribution which are presented here are found e.g. in Zellner
(1971) or in Dréze and Richard (1983).

1. Multivariate Normal Distribution

fnN(x|µ,Σ) = (2π)−(1/2)n|Σ|−1/2 exp
1

2
(x− µ)′Σ−1(x− µ).

2. Multivariate t-Distribution

fnt (x|µ,H, ν) = π−(1/2)nΓ

(
ν + n

2

)
/Γ
(ν

2

)
|H|1/2[1 + (x− µ)′H(x− µ)]−(1/2)(ν+p).

3. Inverted Gamma Distribution

fiγ(σ
2|s2, ν) =

[
Γ
(ν

2

)]−1
(
s2

2

)ν/2 (
σ2
)−(1/2)(ν+2)

exp−1

2

s2

σ2
.

4. Inverted Wishart Distribution

fniW (Σ|S, ν) =

[
2(1/2)νπ(1/4)n(n−1)

n∏
i=1

Γ

(
ν + 1− i

2

)]−1

· |S|(1/2)ν |Σ|−(1/2)(ν+q+1) exp−1

2
tr Σ−1S.
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.3 Derivation of Formulae (2.3.24) and (2.3.25)

The likelihood fiunction of our model is given in (2.3.11)–(2.3.13) with respect to (c2, σ
2)

and (ρ, λ, ω2) respectively yields the following expressions:

c̃2 (β, c1) = −X2
′X2)−1X2

′u1 (.3.1)

σ̃2(β, c1) =
1

T
u1
′M2u1 (.3.2)

ρ̃ (β, c1) = −(Z′Z)−1Z′[Ys − λ̃(β, c1) ·M2u1] (.3.3)

λ̃ (β, c1) = (u1
′MZu1)−1u1

′MZYs (.3.4)

ω̃2 (β, c1) =
1

T

[
s′Y′MZYs − u1

′MZu1 · λ̃2(β, c1)
]

(.3.5)

=
[
θ̂ (β, c1)

]−1

·
∣∣∣Ω̃ (β, c1)

∣∣∣
together with

h̃ (β, c1) =
1

T
u1
′MZu1 (.3.6)

Ω̃ (β, c1) =
1

T
(u1 : Ys)

′MZ(u : Ys). (.3.7)

The concentrated log-likelihood function is then given by

L∗IV (Y; β, c1) ∝ −T
2

log
[
σ̃2(β, c1) · ω̃2(β, c1)

]
(.3.8)

∝ −T
2

log

[
u1
′M2u1

u1
′MZu1

− |(u1 : Ys)
′MZ(u1 : Ys)|

]
. (.3.9)

More detail and generalisations to systems of equations are found in Richard (1984).

.4 Derivation of Formulae (2.3.25) and (2.3.26)

By application of the properties of inverted-Wishart densities as described e.g. in (Dréze
and Richard, 1983, Appendix) the prior densities of (σ2|β) and (λ, δ2|β) as derived from
(2.3.32) are given by

D(σ2|β) = fiγ(σ
2|σ2

0, ν0 − 1) (.4.1)

D(λ, ω2|β) = f 1
N(λ|λ0, ω

2h−1
0 ) · fiγ(ω2|ω2

0, ν0) (.4.2)

where (h0, λ0, ω
2
0) are defined in (2.3.34) and σ2

0 = h0 (a distinct notation is used for σ2
0 and

h0 because their posterior counterparts σ2
∗ and h∗, as defined below, differ and because

it proves notationally convenient to have common functional forms for the prior and
posterior moments of (σ2, λ, ω2|β)). Let li(Y; β, c) for i = 1, 2 denote the “marginalised”
likelihood function as derived from Li(Y;θi) under the relevant prior density.

Combining together the partial likelihood function (2.3.12) and the prior density (.4.1)
yields the following expressions

D(σ2|Y, β, c) = fiγ(σ
2|σ2
∗, ν∗ − 1) (.4.3)
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l1(Y; β, c) ∝ (σ2
∗)
−1/2(ν∗−1), (.4.4)

with
σ2
∗ = σ2

0 + u′u + b′V0b + u′u and ν∗ = ν0 + T. (.4.5)

The product of the partial likelihood function (2.3.13) and the prior densities (2.3.21)
and (.4.2) is handled in a smilar way, except that it proves convenient to derive sequen-
tially the posterior densities of (p|λ, ω2, ·) and of (λ, ω2|·) which are respectively

D(p|Y, λ, ω2, β, c) = fkN(p|p∗, ω2(Z′Z)−1) (.4.6)

D(λ, ω2|Y, β, c) = f 1
N(λ|λ∗, ω2h−1

∗ ) · fiγ(ω2|ω2
∗, ν∗) (.4.7)

where
p∗ = −(Z′Z)−1Z′(Ys− λu) (.4.8)

and, in parallel with (2.3.34),

Ω∗ =

(
h∗ h∗λ∗
h∗λ∗ ω2

∗ + h∗λ
2
∗

)
= Ω0 + (u1 : Ys)′MZ(u1 : Ys). (.4.9)

Also l2(Y; β, c) is given by

l2(Y; β, c) = l2(Y; β, c1) ∝ (ω2
∗)
−(1/2)ν∗h−1/2

∗ . (.4.10)

The posterior density of (β, c) is given by the product ofD(β, c) and of the two marginalised
likelihood functions (.4.4) and (.4.10) and may be rewritten as (2.3.35).

More detail and generalisations to systems of equations are found in Richard (1984).

.5 Implementation of the Bayesian Analysis in Sec-

tion 2.3.3

Combining together formulae (2.3.35), (2.3.36) and (.4.2), and taking advantage of the
identity |Ω∗| = h∗ · ω2

∗ we can write the joint posterior density of β, c and λ as

D(β, c, λ|Y) ∝ D(β, c) · (σ2
∗)
−(1/2)(ν∗−1)

[
ω2
∗ + h∗(λ− λ∗)2

]−1/2(ν∗+1)
. (.5.1)

Throughout the rest of the discussion it is assumed that D(β, c) is a t-density. In
all generality D(c | β, λ,Y) is then a product of three kernels of t-densities, i.e. a so-
called 3-0 poly-t density whose evaluation requires a bivariate numerical integration on
an auxiliary random variable—see Richard and Tompa (1980) for details. All together the
analysis of the posterior density (.5.1) requires, therefore a four-dimensional numerical
integration. For the integration of β and λ we use a bivariate iterative Simpson procedure,
as described in Tompa (1973), which has proved far more reliable than the other methods
we have tested (such as Gaussian rules) given that the posterior density of β and λ can be
extremely skewed. It implies, however, that the algorithm has to be run twice to obtain
the marginal densities of β and λ since the use of a bivariate iterative Simpson rule is
essentially incompatible with a complete analysis of the marginal density associated with
the inner integration loop. In compensation this repetition provides a very useful check
of numerical accuracy since the integrating constants and the moments are evaluated
twice on different grid points. For a relative precision of the order of 1% a complete
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run of computation may require up to 200 minutes of CPU time on a DGMV/8000 mini
computer equipped with a floating point accelerator.

The cost of computation can be divided by a factor of 20 if we use the non-informative
prior density (2.3.39) on c. In such a case σ2

∗ is the sole factor in (.5.1) which still depends
on c2. It can be rewritten as

σ2
∗ = b′V0b + u1

′M2u1 + (c2 − c∗2)′Z2
′Z2(c2 − c∗2) (.5.2)

with
c∗2 = (Z2

′Z2)−1Z2
′u1. (.5.3)

Therefore, the conditional posterior density of (c2|β, c1) is Student whence

D(β, c1, λ) ∝ D(β)(σ2
0 + u1

′M2u1)−1/2(ν∗−m2−1[ω2
∗ + h∗(λ− λ∗)2]−1/2(ν∗+1). (.5.4)

The numerical analysis of D(λ, β, c1|Y) is then based on the following identities

σ2
0 + u1

′M2u1 = (c1 − c∗1a)
′X1

′M2X1(c1 − c∗1a)

+ b′[V0 + Y′M2Y −Y′M2X1(X1
′M2X1)−1X1

′M2Y]b (.5.5)

ω2
∗ + h∗(λ− λ∗)2 = λ2(c1 − c∗1b)

′X1
′MZX1(c1 − c∗1b)

+ φ′[V0 + Y′MZY −Y′MZX1(X1
′MZX1)−1X1

′MZY]φ (.5.6)

together with
c∗1a = −(X1

′M2X1)−1X1
′M2Yb (.5.7)

c∗1b = −1

λ
(X1

′MZX1)−1X1
′MZYφ (.5.8)

φ = λb− s. (.5.9)

It follows that the conditional posterior density of (c1|β, λ) is a product of two kernels
of Student densities, i.e. a so-called 2-0 poly-t density whose evaluation requires only a
one-dimensional numerical integration on an auxiliary random variable. The analysis of
the posterior density (.5.4) then require altogether a tridimensional numerical integration.
The numerical procedure we have just described has proved reliable and numerically
efficient. It is now part of a Bayesian Regression Computer Program (BRP) developed
at CORE.

We mention finally that, as discussed in Lubrano and Richard (1981), equally efficient
numerical procedures apply to the case where the independent prior density D(β, c) in
(2.3.29) is replaced by a conditional prior density D(β, c|σ2) where σ2 is the variance
of ut, in the form of a conventional natural conjugate prior density for the parameters
of the sole equation (2.3.16). The posterior density of (β, c, λ), as given in (.5.1), then
takes a simpler expression in that D(β, c) is incorporated within σ2

∗ in the form of an
additional quadratic term in (2.3.37) and a non-informative prior density on c is no longer
required to obtain an expression similar to (.5.4). We decided, however, against using
such a conditional prior density which suffers the major drawback of imposing a spurious
dependence between (β, c) and σ2.
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Table 2.1: OLS and WLS estimators for the UK money demand equation
Dependent variable: DLMP

Case 1 2A 2B 3 4
estimator OLS OLS OLS WLS WLS
periods A+B A B A+B A+B

DLMP1 0.28(0.10) 0.11(0.16) 0.36(0.15) 0.27(0.10) 0.29(0.10)
DLP −0.36(0.13) −0.48(0.24) −0.44(0.22) −0.45(0.15) −0.38(0.13)
DDLP2 −0.16(0.12) −0.36(0.20) −0.16(0.18) −0.21(0.13) −0.23(0.12)
LMPY 5 −0.04(0.01) −0.09(0.06) −0.03(0.02) −0.03(0.02) −0.04(0.01)
D4LY 0.08(0.05) 0.11(0.06) 0.01(0.08) 0.07(0.05) 0.08(0.05)

DLR 0.12(0.10) −0.08(0.18) 0.17(0.15)

{
-0.17 (0.18)
0.16 (0.13)

{
-0.13 (0.17)
0.16 (0.12)

DDLR3 −0.06(0.07) −0.28(0.15) −0.04(0.10)

{
-0.30 (0.15)
-0.01 (0.09)

{
-0.34 (0.14)

—

LR5 −0.17(0.08) −0.13(0.11) −0.12(0.13) −0.14(0.07) −0.16(0.07)

SSR 0.0586 0.00115 0.00368 0.00405 0.00419
SDR 0.0100 0.0071 0.0126 0.0088 0.0086
R2 0.78 0.73 0.83 0.77 0.77
DW 1.92 2.45 2.00 2.11 2.06
Fp,q 1.50 — — 0.89 0.65
p, q 15, 43 — — 6, 46 11, 46
η1(4) 5.69 2.77 4.03 2.96 3.48
η2(4, k) 0.98 0.54 0.54 0.53 0.64
k 58 23 23 52 57
η3(1) 0.15 8.06 0.10 0.12 0.01
η4(8) 5.63 28.78 4.81 11.43 10.67
η5(4) 2.48 18.98 1.07 5.38 3.71
η6(4, j) 0.50 5.63 0.15 1.00 0.74
j 54 19 19 48 53
η7(1) 0.007 3.292 0.593 0.907 0.245

Notes

1 The numbers in parentheses are standard errors (corrected for degrees of
freedom)

2 Joint F -test of linear restrictions against the following alternatives: OLS:
unrestricted initial equation. WLS: no common coefficient across the two
subperiods (conditional on a variance ratio equal to 2.8).
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Table 2.2: OLS estimators of the interest rate equations
Dependent variable DLR

Period A
DLR2 : −0.28 (0.16) D2LU : −0.013 (0.007)
DLR4 : −0.21 (0.18) DDLU3 : −0.035 (0.013)
DDLP2 : 0.27 (0.18) D4LB : −0.017 (0.007)
DLM2 : 0.10 (0.16) DDLB1 : −0.021 (0.011)

SSR = 0.00083 SDR = 0.0060 R2 = 0.59 DW = 1.67
η1(4) = 32.13 η2(4, 23) = 3.33 η3(1) = 1.65 η4(8) = 9.09

η5(4) = 3.44 η6(4, 19) = 0.52 η7(1) = 3.66

Period B
D4LR1 : −0.13 (0.10) DLPU : 0.74 (0.26)
LR2 : −0.19 (0.10) DLM1 : 0.60 (0.21)
DLR3 : 0.28 (0.15) DLB : −0.028 (0.008)
DDLP : −0.38 (0.15) DLB4 : −0.012 (0.007)
DLP2 : −0.31 (0.21) D2LU1 : −0.051 (0.019)

SSR = 0.00257 SDR = 0.111 R2 = 0.80 DW = 2.22
η1(4) = 16.60 η2(4, 23) = 1.66 η3(1) = 2.24 η4(8) = 7.47

η5(4) = 6.78 η6(4, 19) = 1.02 η7(1) = 2.80
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Table 2.3: FIML (PERSEUS) estimation

Case 2A 2B 3 4

Period A B A B A B

Demand for money equation

DLMP1 0.04 (0.088) 0.29 (0.085) 0.19 (0.061) 0.17 (0.061)
DLP −0.49 (0.131) −0.41 (0.124) −0.44 (0.093) −0.39 (0.082)
DDLP2 −0.29 (0.131) −0.11 (0.105) −0.15 (0.084) −0.18 (0.076)
LMPY 5 −0.06 (0.034) −0.04 (0.010) −0.04 (0.010) −0.04 (0.008)
D4LY 0.17 (0.036) 0.01 (0.048) 0.11 (0.029) 0.11 (0.028)
DLR −0.51 (0.125) 0.30 (0.099) −0.55 (0.125) 0.24 (0.092) −0.41 (0.120) 0.23 (0.088)
DDLR3 −0.25 (0.088) −0.25 (0.076) −0.28 (0.089) −0.03 (0.058) −0.32 (0.086) —
LR5 −0.13 (0.062) −0.12 (0.044) −0.15 (0.045) −0.17 (0.044)

Reaction functions

DLR2 −0.25 (0.081) −0.23 (0.082) −0.25 (0.085)
DLR4 −0.18 (0.094) −0.18 (0.094) −0.18 (0.097)
DDLP2 0.26 (0.101) 0.31 (0.093) 0.32 (0.095)
D2LU −0.02 (0.004) −0.02 (0.004) −0.02 (0.004)
DDLU3 −0.03 (0.007) −0.03 (0.007) −0.04 (0.007)
D4LB −0.01 (0.004) −0.02 (0.004) −0.02 (0.004)
DDLB1 −0.01 (0.006) −0.01 (0.006) −0.01 (0.006)
DLM2 0.03 (0.075) 0.05 (0.077) 0.06 (0.081)

D4LR1 −0.14 (0.055) −0.13 (0.054) −0.13 (0.054)
LR2 −0.19 (0.055) −0.19 (0.054) −0.20 (0.054)
DLR3 0.28 (0.083) 0.29 (0.083) 0.29 (0.080)
DDLP −0.43 (0.078) −0.42 (0.077) −0.42 (0.077)
DLP2 −0.26 (0.112) −0.24 (0.110) −0.23 (0.110)
DLP4 0.71 (0.138) 0.70 (0.137) 0.70 (0.136)
DLM1 0.62 (0.111) 0.62 (0.109) 0.62 (0.109)
DLB −0.03 (0.004) −0.03 (0.004) −0.03 (0.004)
DLB4 −0.01 (0.004) −0.01 (0.004) −0.01 (0.004)
D2LU1 −0.06 (0.010) −0.06 (0.010) −0.06 (0.010)

Log-likelihood −48.29 −51.78 −53.39
Joint ex. tests 5.3 6.0 5.1
Indiv. ex. tests 3.5 1.8 5.0 1.0 3.9 1.2
|Σ| 7.1E − 10 7.3E − 9 8.0E − 10 8.1E − 9 8.3E − 10 8.8E − 9
σu 0.0066 0.0105 0.0067 0.0110 0.0064 0.0114
σv 0.0050 0.0087 0.0050 0.0087 0.0050 0.0087
σuv 1.9E − 5 −3.2E − 5 1.8E − 5 −3.4E − 5 1.4E − 5 −3.5E − 5

Note: The numbers in parentheses are asymptotic standard errors (uncorrected for
degrees of freedom)
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Table 2.4: First period prior and posterior moments of β and λ

D(β) ν0 β λ ρβλ

Prior

S 15 −0.50 0.00 −0.74
(0.41) (0.44)

S 30 −0.50 0.00 −0.84
(0.41) (0.39)

Posterior (DLM2 included)

C 0 — 0.37 —
(0.11)

S 0 −0.80 0.41 −0.25
(0.35) (0.11)

S 15 −0.67 0.35 −0.60
(0.33) (0.15)

S 30 −0.56 0.27 −0.77
(0.31) (0.19)

Posterior (DLM2 excluded)

S 0 −0.67 0.41 −0.31
(0.25) (0.11)

S 15 −0.61 0.36 −0.60
(0.24) (0.14)

S 30 −0.54 0.28 −0.75
(0.23) (0.17)

Table 2.5: Second period prior and posterior moments of β and λ

(a): β0 = 0.5 (b): β0 = −0.5

D(β) ν0 β λ ρβλ D(β) ν0 β λ ρβλ

Prior Prior

S 15 0.50 0.00 −0.76 S 15 −0.50 0.00 −0.76
(0.41) (0.97) (0.41) (0.97)

S 30 0.50 0.00 −0.81 S 30 −0.50 0.00 −0.81
(0.41) (0.91) (0.41) (0.91)

Posterior Posterior

C 0 — −0.29
(0.18)

S 0 0.45 −0.30 −0.54 S 0 0.16 −0.12 −0.73
(0.21) (0.17) (0.26) (0.26)

S 15 0.34 −0.12 −0.78 S 15 0.33 −0.45 −0.49
(0.20) (0.26) (0.20) (0.14)

S 30 0.25 0.13 −0.84 S 30 0.38 −0.59 −0.22
(0.20) (0.31) (0.19) (0.10)
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Chapter 3

Estimating Missing Observations in
Economic Time Series

Two related problems are considered. The first concerns the maximum likelihood esti-
mation of the parameters in an ARIMA model when some of the observations are missing
or subject to temporal aggregation. The second concerns the estimation of the missing
observations. Both problems can be solved by setting up the model in state space form
and applying the Kalman filter.

Key Words: Autoregressive-integrated-moving average processes; Kalman fil-
ter; Maximum likelihood estimation; Missing observations; Smoothing; Tem-
poral aggregation.

3.1 Introduction

It is not unusual to encounter economic time series that are currently published at
monthly or quarterly intervals but are only available on an annual basis in earlier pe-
riods. For a stock variable, such as the money supply, this means that there are missing
observations in the first part of the series, while for a flow, like investment, it means
that the early observations are subject to temporal aggregation. Note that a stock is
the quantity of something at a particular point in time, while a flow is a quantity that
accumulates over a given period of time. The relevance of these concepts is obviously not
confined to economics.

This article considers two related problems: the estimation of an autoregressive-
integrated-moving average (ARIMA) model based on all the available observations and

0 Published in Journal of the American Statistical Association (1984), Vol. 79, pp. 125–131. Co-
author A. C. Harvey. The work was carried out while R. G. Pierse was a Research Assistant on the
program in Methodology, Inferrence and Modelling in Econometrics at the London School of Economics.
Financial support from the SSRC is gratefully acknowledged. The authors would like to thank an
Associate Editor of this journal and a referee for helpful comments on an earlier draft. In addition
they have benefited from valuable discussions with P. Pereira and with several of the participants in
the Symposium on Time Series Analysis of Irregularly Observed Data held at Texas A&M University in
February 1983. Any errors remain the authors’ responsibility.
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the estimation of the missing values in the first part of the series. The solution of both
problems lies in finding a suitable state space representation of the ARIMA model. Max-
imum likelihood estimation is then possible via the prediction error decomposition, and
once this has been done the missing observations can be estimated by smoothing.

Section 3.2 introduces the state space methodology and shows how it can be applied
to series that can be modelled by stationary ARMA processes. The application of this
technique to stock variables is already fairly well known (see, e.g. Jones (1980)), but
it does not seem to have been used in connection with flows. The extension to the
more relevant case of an ARIMA model raises some nontrivial problems and has not
been dealt with before, even for a stock variable. Two approaches to estimating ARIMA
models with missing observations are described in Section 3.3. Section 3.4 deals with
the prediction of future observations and describes how the missing observations are
estimated by smoothing. The additional complications caused to ARIMA modelling by
the logarithmic transformation are considered in Section 3.5. Some examples of the
application of the techniques are given in Section 3.6, and Section 3.7 sets out a general
solution to the problem considered by Chow and Lin (1971, 1976), namely the estimation
of missing observations by regressing on a related series.

3.2 Stationary Processes

Since this article is only concerned with univariate time series, attention can be focused
on a special case of the state space model. Let αt be an m × 1 state vector that obeys
the transition equation

αt = Tαt−1 + Rεt, t = 1, . . . , T, (3.2.1)

where T is a fixed matrix of dimension m×m, R is an m× 1 vector, and εt is a sequence
of normally distributed independent random variables with mean zero and variance σ2;
that is εt ∼ NID(0, σ2). The state vector is related to a single series of observations by
the measurement equation

yt = zt
′αt + ζt, t = 1, . . . , T, (3.2.1b)

where yt is the observed value, zt is a fixed m× 1 vector and ζt is a sequence of normally
distributed independent random variables with mean zero and variance σ2ht.

Let at−1 denote the optimal or minimum mean squared estimator (MMSE) based on
all the information available at time t − 1. Let σ2Pt−1 denote the covariance matrix of
at−1 − αt−1. Given at−1 and Pt−1, the MMSE of αt, at|t−1, together with its associated
covariance matrix, Pt|t−1 is obtained by applying the prediction and updating equations
of the Kalman filter (see, e.g., Anderson and Moore (1979), or Harvey (1981b)).

3.2.1 State space formulation of an ARMA model

A stationary ARMA(p,q) model for a sequence of normally distributed variables y†1, . . . , y
†
T

can be written as

y†t = φ1y
†
t−1 + · · ·+ φpy

†
t−p + εt

+ θ1εt−1 + · · ·+ θqεt−q, t = 1, . . . , T, (3.2.2)
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where φ, . . . , φp are the AR parameters, θ1, . . . , θq are the MA parameters and εt ∼
NID(0, σ2). The model can be put in state space form that obeys a transition equation
of the form (3.2.1). The transition matrix T, has φi, i = 1, . . . , p as the ith element in
its first column, unity as element (j, j + 1), j = 1, . . . ,m− 1 and all other elements zero.
The m× 1 vector R is defined as R = (1, θ1, . . . , θm−1)′, where θq+1, . . . , θm−1 are zero if
m > q+ 1. This particular matrix and vector will be denoted Φ and θ in future sections.
Given these definitions the first element in αt is identically equal to y†t . Thus in the
measurement equation, (3.2.1b), zt = (1, 0, . . . , 0)′ for t = 1, . . . , T , and if y†t is observed
without error, yt = y†t and ht = 0.

Because the model is stationary, the initial conditions for the Kalman filter are given
by a1|0 = 0 and P1|0 = σ−2 E(αtαt

′). Given that an observation is available in every
time period, the Kalman filter produces a set of T prediction errors or innovations,
νt = yt−zt

′at|t−1 for t = 1, . . . , T . These can be used to construct the likelihood function
by the prediction error decomposition; that is,

logL(y1, . . . , yT ; Φ,θ, σ2) = −T
2

log 2π− T

2
log σ2− 1

2

T∑
t=1

log ft−
1

2σ2

T∑
t=1

ν2
t /ft. (3.2.3)

The quantities f1, . . . , fT each of which is proportional to the variance of the correspond-
ing innovation, are also produced by the Kalman filter. The parameter σ2 does not appear
in the Kalman filter, and it can be concentrated out of (3.2.3).

Careful programming of the Kalman filter recursions leads to a very efficient algorithm
for evaluating the exact likelihood function of an ARMA model; compare the evidence
presented in Gardner et al. (1980). Various modifications of the Kalman filter can also
be used for this purpose (see, e.g. Pearlman (1980)).

3.2.2 Missing observations on a stock variable

A missing observation on a stock variable can be handled very easily simply by by-
passing the corresponding updating equation. Skipping the missing observations in this
way makes no difference to the validity of the prediction error decomposition provided
that when an observation is missing the corresponding log ft term is omitted from the
likelihood. Thus the likelihood function is of the form given in (3.2.3) but with the sum-
mations covering only those values of t for which the variable is actually observed. The
T appearing in the first two terms is replaced by the number of observations.

3.2.3 Temporal aggregation of a flow variable

Let n denote the maximum number of time periods over which a flow variable is aggre-
gated and let y∗t−1 be the (n− 1)× 1 vector (y†t−1, . . . , y

†
t−n+1)′. Define an (m+n− 1)× 1

augmented state vector, αt = (α′t y
∗
t−1)′, where αt is the state vector appropriate to the

ARMA model for y†t . The transition equation for the augmented state vector is

αt =

 Φ 0
1 0′ 0′

0 In−2 0

αt−1 +

[
θ
0

]
εt, t = 1, . . . , T (3.2.4)

(When q = 0, a more economical state space representation is obtained by redefining m
as max(p, n) and letting the state vector be αt = (y†t , . . . , y

†
t−m+1)′. The matrix T in
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the transition equation is then the transpose of Φ.) If at time t, the aggregate yt of the
previous n(t) terms in the series is observed, the measurement equation is

yt = (1,0m−1
′, in(t)−1

′,0n−n(t)
′)αt =

n(t)−1∑
j=0

y†t−j, 1 ≤ t ≤ T, (3.2.5)

where i is an (n(t) − 1) × 1 vector of ones. In periods when there is no observation the
updating equation can be skipped in the same way as for a stock variable. Note that
the definition of the vector zt changes as the basis upon which the variable is aggregated
changes.

The starting values for the augmented state space model are a1|0 = 0 and P1|0 =
σ−2 E(αtαt

′). However, if a run of disaggregated observations is available at the end of the
series, the calculations can be simplified by working backwards. This is quite legitimate
since if y†t , t = 1, . . . , T is generated by an ARMA (p, q) process, the observations taken
from t = T to t = 1 can be regarded as being generated by exactly the same process;
see (Box and Jenkins, 1976, pp. 197–198). The calculations begin with the state model
appropriate to y†t and only when the agregate observations start to arrive is a transfer to
the augmented model made. The advantage of this approach is that the initial m ×m
matrix P̂1|0 = σ−2 E(α̂tα̂t

′) can be evaluated using standard algorithms. When the run
of disaggregate observations comes to an end, the MMSE of the augmented state vector
and the associated Pt matrix can be formed immediately since all the observations in the
vector corresponding to y∗t−1 are known. Note that when the observations are processed
in reverse, the aggregate observations must be regarded as arising at the beginning of the
period of aggregation rather than at the end.

3.3 Nonstationary Process

In general, economic time series are nonstationary and the usual approach is to fit an
ARIMA model. Thus if ∆ denotes the first difference operator and ∆s denotes the sea-
sonal difference operator (for a season of s periods), the series ∆d∆D

s y
†
t = w†t is modelled

as a stationary (seasonal) ARMA process.

There are basically two ways of constructing the likelihood function for an ARIMA
model with missing observations. The first approach formulates the state space model in
such a way that the observations are in levels, while the second has the observations in
differences. The choice between them depends on the pattern of missing observations. If
they are missing at regular intervals, the algorithm based on differenced observations may
be preferrable. The levels formulation is, however, more flexible. In addition it forms the
basis for the smoothing algorithm.

3.3.1 Levels formulation

Let L be the lag operator and let −δj be the coefficient of Lj in the expansion of ∆d∆D
s =

(1−L)d(1−Ls)D. Let αt be the state vector in the state space model for the stationary
ARMA(p, q) process, w†t , and define the augmented state vector, αt = (αt

′ y∗t−1
′)′,

where y∗t−1 = (y†t−1, . . . , y
†
t−d−sD)′. The transition equation for the augmented state vector
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is

αt =

[
αt
y∗t−1

]
=

 Φ 0′

1 0 · · · 0 δ1 · · · δk
0′ Ik−1 0

[ αt−1

y∗t−2

]
+

[
θ
0

]
εt, t = 1, . . . , T, (3.3.1)

where k = d+ sD.
If y†t is observed for all t = 1, . . . , T , the measurement equation is

yt = (1,0m−1
′, δ1 · · · δk)αt, t = 1, . . . , T, (3.3.2)

and the Kalman filter can be initialised at t = k with ak+1|k = (0′, y∗k+1
′)′ and

Pk+1|k =

[
P1|0 0

0 0

]
, (3.3.3)

where P1|0 = σ−2 E(αtαt
′). It is not difficult to show that the likelihood function con-

structed from the Kalman filter is identical to the likelihood function that would result
from applying the Kalman filter to the differenced observations ∆d∆D

s yt; compare a sim-
ilar argument in Harvey (1981a).

For stock variables, missing observations can be handled in the same way as described
in Section 2. For a flow variable, the measurement equation for an aggregate observation
of the form

yt =

n(t)−1∑
j=0

y†t−j

is
yt = (1,0m−1

′, δ1 + 1, . . . , δn(t)−1 + 1, δn(t), . . . , δk)
′αt. (3.3.4)

This assumes n−1 ≤ d+sD; if this is not the case, y∗t−1 must be redefined as (y†t−1, . . . , y
†
t−n+1)′.

The only problem with the levels formulation concerns starting values since in most
applications the complete set of values y†1, . . . , y

†
k will not be available. However, if at

least k consecutive observations are available at the end of the series the problem can be
solved by reversing the order of the observations.

3.3.2 Difference formulation

Suppose that observations on a stock variable are available every n time period. An
immediate difficulty arises with an ARIMA model because it may not be possible to
construct the differenced observations ∆d∆D

s y
†
t , from such a sequence. Thus, for example,

first differences cannot be formed if the variable in question is only observed every other
time period. The solution to the problem is to construct a differenced series that can be
observed. If s ≥ n and s/n is an integer, the observable differenced series is

yt = ∆d
n∆D

s y
†
t , t = nd+ SD, n(d+ 1) + sD, . . . , (3.3.5)

where
∆d
n = (1− Ln)d = (1− L)d(1 + L+ · · ·+ Ln−1)d. (3.3.6)

Expression (3.3.5) becomes

yt = (1 + L+ · · ·+ Ln−1)dw†t , (3.3.7)
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where w†t is the underlying ARMA process, ∆d∆D
s y
†
t . Thus although y†t is a stock, the

observable differenced series, yt, is a flow when considered in terms of w†t . The techniques
described for flow variables in Section 2 can be applied directly, although if d > 1 the
weights for different lags of w†t are not the same, and the measurement equation must be
amended accordingly. Similar methods can be applied when the original variable is itself
a flow.

3.4 Predicting Future Observations and Estimating

Missing Observations

Once the parameters of the ARIMA model have been estimated, optimal predictions of
future observations, together with their conditional mean squared errors (MSE’s), can
be made by repeated application of the Kalman filter prediction equations. Similarly,
MMSE’s of the missing observations can be computed by smoothing. The levels form of
the model will normally be appropriate for both purposes.

There are a number of smoothing algorithms available. The best known is probably
the fixed interval algorithm; see (Anderson and Moore, 1979, pp. 187–190) or (Harvey,
1981b, Ch. 4). It is based on a set of backward recursions starting at time T , but it
has two drawbacks in the present context. The first is that it requires the storage of a
large number of covariance matrices, the Pt and Pt|t−1’s computed from the initial pass
through the Kalman filter. The second is that the inverse of Pt|t−1 is needed and if some
of the elements in αt are known at time t − 1, this matrix will be singular. Neither
of these problems is insurmountable, but for the kind of situations with which we are
concerned, a fixed-point smoothing algorithm is more attractive.

Fixed-point smoothing can be applied by proceeding with the Kalman filter and aug-
menting the state vector each time a missing observation is encountered. Once all the
observations have been processed, the components added to the state vector will contain
the MMSE’s of the missing observations. The corresponding MSE’s can be obtained
directly from the associated augmented covariance matrix.

The recursions for the augmented parts of the state vector can, in fact, be separated
from the Kalman filter recursions for the original state vector. This is extremely useful
since it means that a new series of recursions can simply be started off with each missing
observation, leaving the basic Kalman filter undisturbed. The form of these recursions is
as follows. Suppose that the underlying variable y†t , is not observed at time t = τ . The
state vector is augmented by y†τ , which is, it should be noted, a linear combination of the
elements of ατ ; that is,

y†τ = z′ατ , (3.4.1)

where z is constant throughout the series. (Note that for a flow variable zt will not be
the same as z when there is temporal aggregation. However, for a stock variable, zt = z
whenever there is an observation.) Modifying the formulas in (Anderson and Moore,
1979, 172–173) to take account of the fact that only a linear combination of ατ is to be
estimated leads to the smoothing recursions

yτ |t = yτ |t−1 + pτ |t−1
′ztf

−1
t νt, t = τ, . . . , T (4.2a)

and
pτ |t = T(I− gtzt

′)pτ |t−1, t = τ, . . . , T, (4.2b)
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where gt = Pt|t−1ztf
−1
t . The initial values are yτ |τ−1 = z′aτ |τ−1 and pτ |τ−1 = Pτ |τ−1z.

The quantities ft, νt, and gt are all produced by the Kalman filter for the original state
space model, the vector zt being used to define the measurement equation. If there is no
observation at time t, then (4.2a) and (4.2b) collapse to yτ |t = yτ |t−1 and pτ |t = Tpτ |t−1,
respectively. The MSE of yτ |T is given by σ2fτ |T , where fτ |T is obtained from the recursion

fτ |t = fτ |t−1 − pτ |t−1
′ztf

−1
t zt

′pτ |t−1, t = τ, . . . , T (3.4.3)

with fτ |τ−1 = z′Pτ |τ−1z.
When set up in this way, the fixed-point smoothing algorithm is extremely efficient.

The storage requirements are negligible and in a typical application, the time taken to
run the augmented Kalman filter is usually less than twice the time taken for a normal
run. This is trivial compared with the time taken to compute the ML estimators of the
unknown parameters.

3.5 Logarithmic Transformations

It is very common to take logarithms of a variable before fitting an ARIMA model. This
creates no difficulties whatsoever for a stock variable. For a flow variable, however, an
immediate problem arises because it is the sum of the original variables that is observed
and the logarithm of a sum is not equal to the sum of the logarithms. Assuming that
the logarithms of the aggregated variables are normally distributed is then inconsistent
with the assumption that the corresponding disaggregated variables are normal. Notwith-
standing this point, one way to proceed is to assume that the logarithms of all variables
actually observed are normally distributed. The logarithm of the observed aggregate at
time t is

yt = log

n(t)−1∑
j=0

exp(y†t−j), (3.5.1)

where y†t is the underlying ARIMA process. Adopting the notation of (3.3.4), but assum-
ing that n = k for simplicity, the measurement equation can be written as

yt = log[exp {(1,0m−1
′, δ1, . . . , δn)αt}+

m+n∑
j=m+1

exp(αjt)], (3.5.2)

where αjt is the jth element in αt. this equation is obviously nonlinear but by using the
extended Kalman filter, as in (Anderson and Moore, 1979, pp. 193–195), an approxima-
tion to the likelihood function can be computed by the prediction error decomposition.

3.6 Example

The airline passenger data given in (Box and Jenkins, 1976, p. 531) consists of 144
monthly observations on the number of passengers carried by airlines over the period 1949
to 1960. It is highly seasonal and (Box and Jenkins, 1976, Ch. 9) fitted the following
model to the logarithms of the observations:

∆∆12yt = (1 + θ1L)(1 + θ12L
12)εt. (3.6.1)



66

The above model was estimated using four variations of the data set: (i) all 144
observations; (ii) the observations from January to November deleted for the last six years;
(iii) the logarithms of the observations of each of the last six years aggregated and assigned
to December; (iv) the raw observations for each of the last six years aggregated and
assigned to December. The second data set represents an example of missing observations,
with the variable treated as though it were a stock observed annually, rather than monthly,
for part of the sample period. The third and fourth data sets are examples of temporal
aggregation. Data set (iii) would be relevant if the observations used in the ARIMA
model were original observations rather than logarithms. Note that placing the missing or
temporally aggregated observations at the end of the series, whereas in practice they might
come at the beginning, is unimportant. As already noted, the order of the observations
can always be reversed without affecting the underlying ARIMA model.

Table 3.1: Maximum Lkelihood Estimates of
Parameters for Airline Passenger Model, (3.6.1)

Parametersa

Data set θ1 θ12

(i) Full Data −.402 −.557
(.090) (.073)

(ii) Missing Observations −.457 −.758
(.121) (.236)

(iii) Temporal Aggregation (logs) −.475 −.741
(.114) (.223)

(iv) Temporal Aggregation (raw data) −.477 −.738
(.114) (.221)

a Figures in parentheses are asymptotic standard errors.

The computer program we wrote is a fairly general one that can handle both missing
observations and temporal aggregation. The pattern of missing observations need not
be regular. The only proviso is that there should be a run of d + sD observed values at
either the beginning or the end of the series. In writing the program, considerable care was
taken to devise a computationally efficient routine for evaluating the likelihood function.
Particular attention was paid to the evaluation of P1|0, the matrix used to initialise the
Kalman filter, and the algorithm adopted is described in some detail in our original
research report (Harvey and Pierse (1982)). Maximisation of the likelihood function
was carried out by one of the Gill-Murray-Pitfield numerical optimisation routines in
the UK NAG library, E04JBF. This is a Quasi-Newton algorithm that uses numerical
derivatives and allows simple bounds to be placed on the parameters. By choosing a
suitable parameterisation, we were able to devise a very effective procedure in which
we were able to constrain the roots of the MA polynomial to lie outside or on the unit
circle; again see (Harvey and Pierse, 1982, Appendix B). The reason for allowing strictly
noninvertible MA processes is set out in Harvey (1981b).

The results of exact ML estimation are shown in Table 3.1. The estimates obtained
with data sets (ii), (iii) and (iv) are quite close to the estimates obtained with the full
set of observations. The higher asymptotic standard errors are a reflection of the smaller
number of observations.
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Table 3.2: Estimates of Logarithms of Missing Observations and
Associated Root Mean Squared Errors for 1957

Month

Data set Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

(ii) Missing Observations 5.733 5.738 5.893 5.850 5.843 5.951 6.051 6.055 5.938 5.8123 5.680 —
(.045) (.049) (.052) (.054) (.055) (.055) (.055) (.054) (.052) (.049) (.045)

(iii) Temporal Aggregation (logs) 5.770 5.778 5.937 5.896 5.890 5.997 6.094 6.093 5.971 5.839 5.700 5.818
(.041) (.040) (.039) (.038) (.037) (.037) (.037) (.037) (.038) (.039) (.040) (.041)

(iv) Temporal Aggregation (raw data) 5.772 5.779 5.939 5.848 5.893 6.001 6.098 6.099 5.976 5.844 5.704 5.823
(.041) (.041) (.039) (.038) (.037) (.036) (.036) (.036) (.037) (.039) (.041) (.041)

Actual Values 5.753 5.707 5.875 5.852 5.872 6.045 6.146 6.146 6.001 5.849 5.720 5.817

Table 3.2 shows the estimates of the missing observations for 1957 computed by the
smoothing algorithm described in Section 3.4. The root mean squared errors associated
with each estimate are

RMSE(yt|T ) = σ̃
√
ft|T ,

where ft|T is given by (3.4.3) and σ̃ is the square root of the ML estimator of σ2. For
data sets (ii) and (iii) the estimates are all remarkably close to the actual values. Similar
results were obtained for the other years in which there were missing observations. The
theoretical justification for the estimates obtained when there is temporal aggregation but
the model is in logarithms—case (iv)— is somewhat weaker because of the approximation
involved in the use of the extended Kalman filter. However, the results presented in Table
3.2 lend some support to the use of this device in smoothing, as well as estimation. The
figures presented for data set (iv) are virtually indistinguishable from those derived for
data set (iii).

The results in Table 3.2 refer to estimates of the logarithms of the missing observations.
If xt denotes the original observation, a direct estimate of a missing xt is given by xt|T =
exp(yt|T ). However, the relationship between the normal and lognormal distributions
suggests the modified estimator

x ∗
t|T = exp

{
yt|T +

1

2
MSE(yt|T )

}
. (3.6.2)

The estimator is unbiased in the sense that the expectation of xt − x ∗
t|T is zero when

the parameters of the underlying ARIMA model are known. For the airline passenger
data, the use of the modification in (3.6.2) made very little difference. In the case of
(ii), for example, the direct and modified estimates for May 1957 were 344.8 and 345.4
respectively. The true value is 355. For the same data point, the 95% prediction interval
was 309.5 to 384.1.

3.7 Regression

Chow and Lin (1971, 1976) approach the problem of estimating missing observations by
assuming that y†t is related to a set of k nonstochastic variables that are observed in all
time periods. They assume a linear relationship of the form

y†t = xt
′β + ut, t = 1, . . . , T, (3.7.1)

where xt is the k × 1 vector of related variables, β is a k × 1 vector of parameters, and
ut is a stationary stochastic disturbance term.
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Given the covariance matrix of the disturbances, finding estimates of the missing
observations is basically an exercise in best linear unbiased estimation and prediction.
However, it does require the construction and inversion of the covariance matrix asso-
ciated with the variables (aggregates in the flow case) actually observed. Furthermore
the covariances between the missing values and the observed values must also be found.
In solving the problem in this way Chow and Lin concentrate on situations where the
observations are missing at regular intervals and the disturbances are either serially un-
correlated or generated by an AR(1) process.

The Kalman filter can be applied directly to (3.7.1) by using the techniques described
in Section 3.2, with y†t replaced by y†t − xt

′β. The likelihood function must then be
maximised nonlinearly with respect to β as well as the ARMA parameters and any
estimates of MSE’s obtained in a subsequent smoothing operation will only be conditional
on β. This constitutes a possible disadvantage compared to the Chow-Lin approach
although it does avoid the necessity for repeated inversions of relatively large covariance
matrices. However, it is possible to conserve the advantages of the Chow-Lin approach
while applying the Kalman filter by redefining the state space model to include β in the
state vector (cf. Harvey and Phillips (1979)). This formulation yields the BLUE of β
for given values of the ARMA parameters and enables β to be concentrated out of the
likelihood function. (If consistent estimators of the ARMA parameters can be obtained,
this estimator of β will be asymptotically efficient under suitable regularity conditions.)
Note that it will normally be necessary to process the observations backwards to obtain
starting values.

The above techniques can also be used if the regression model has been framed in first
differences as suggested by Denton (1971) and Fernandez (1981). In this case the model
is

∆y†t = (∆xt)
′β + ut, t = 2, . . . , T. (3.7.2)

The Kalman filter can handle models in which ut is an ARMA process rather than the
serially uncorrelated process assumed in the references just cited. In fact even when ut
is serially uncorrelated, the Kalman filter may still be advantageous since the inversion
of the (T − 1)× (T − 1) matrix in expressions (3) and (4) of the paper by Fernandez is
avoided.

Finally, it is worth noting that one suggestion made by Chow and Lin is to use a time
trend and seasonal dummies as the explanatory variables in (3.7.1). Computing estimates
of the missing values from such a model can also be carried within the ARIMA framework
described in Sections 3.3 and 3.4. If the disturbance in (3.7.1) is a serially uncorrelated
process, εt, the model is a special case of (3.6.1) in which θ1 = θ12 = −1. Although this
model is strictly noninvertible, starting off the Kalman filter in the manner suggested in
Section 3.3 ensures that estimates of missing values and predictions of future observations
are exactly the same as if the model had been estimated within the regression framework
of Chow and Lin (cf. Harvey (1981a)).

3.8 Conclusion

The results reported in Section 3.6 show that maximum likelihood estimation of ARIMA
models can be carried out efficiently when there are missing or temporally aggregated ob-
servations. Furthermore, mimimum mean squared estimates of the missing observations
together with their conditional root mean squared errors, can be computed at vey little
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extra cost. Additional complications arise with temporal aggregation when the ARIMA
model is based on logarithms, but an approximate solution can be obtained by the ex-
tended Kalman filter. This solution is not altogether satisfactory from the theoretical
point of view, although it does seem to give quite reasonable results with the airline data.

Although the approach developed here can handle most configurations of missing
values, it does need an unbroken run of observations at the beginning or end of the series.
One way of relaxing this requirement is by modifying an algorithm given in Rosenberg
(1973). An indication of how this may be done can be found in Harvey and McKenzie
(1983).
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Chapter 4

Temporal Aggregation and the
Power of a Unit Root

The asymptotic local power of unit root tests with the same data span is shown to be
independent of sampling frequency. A measure of the power trade-off between sampling
frequency and time span for distinct alternatives is derived using an approximate slopes
approach. Only small span increases are generally required to maintain power when re-
ducing sampling frequency. Monte Carlo results support the asymptotic analysis for finite
samples. An application is made to a consumption function for the UK. Cointegration of
consumption and wealth is rejected with quarterly data but convincingly accepted with
a longer span of annual data.

Key Words : Unit roots; Power; Sampling; Temporal aggregation
JEL Classification: C12; C15; C22

4.1 Introduction and summary

The effects of sampling frequency on estimation and inference in economic models have
been explored in the literature in a number of different ways. Nijman and Palm (1990),
for example, analyse the gain in forecasting efficiency obtained by using monthly instead
of quarterly models to forecast monthly series and weigh this against the cost of collecting
monthly National Accounts data. Lippi and Reichlin (1991) assess the effect of temporal
aggregation on estimated measures of persistence in the context of trade cycle analysis
while Hotta et al. (1993) look at problems arising from overlapping aggregation caused
by commonly used smoothing procedures.

This paper focuses on the effect of temporal aggregation on the power of tests for
a unit root in simple time series models, following the line of previous work by Shiller
and Perron (1985) and Perron (1989b, 1991). The topic of testing for the presence of a
unit root in economic time series has received much attention in the literature following
the influential paper by Nelson and Plosser (1982), and various test statistics have been

0 Published in Journal of Econometrics (1995), Vol. 65, pp. 333–345. Co-author Andy Snell. The
authors would like to thank Len Gill and Steve Satchell for helpful comments. Financial support from
ESRC grant no. R000232912 is gratefully acknowledged.
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proposed by Dickey and Fuller (1979, 1981), Phillips (1987a) and Phillips and Perron
(1988) among others. Unit root tests also form the basis of the tests for cointegration
between economic time series proposed by Engle and Granger (1987) and the power of
these tests to reject the null hypothesis of a unit root (implying no cointegration) is of
considerable importance. In this paper the relationship between power and sampling fre-
quency is explored. This is an issue of direct practical relevance to the applied researcher
who often has the option of choosing between data sets of different frequencies covering
different time spans.1 The macroeconomist, for example, typically has available either
quarterly observations since the war or annual data since the beginning of the century.
By contrast, in the study of financial markets, it is possible to collect some data on an
almost continuous basis over a short period of time or use the published sources which
cover a much longer time span but at weekly or monthly intervals.

There is a widely held view in empirical work that long data spans are important for
identifying mean reversion in slowly decaying processes (see, for example, Diebold et al.
1991)). This view is supported by the Monte Carlo results of Shiller and Perron (1985)
and Perron (1989b) who find that ‘over a substantial range of parameter values . . . [power
depends more] on the span of the data rather than the number of observations’ (op. cit.
p.381). At the analytical level, Perron (1989b) finds that with fixed alternatives, tests for
a unit root are only consistent when the time span rises with the number of observations.

In Section 4.2 of the paper, the view that it is the data span rather than the number
of observations that affects power in the context of testing for unit roots is expressed
more forecfully than previously by showing that, when comparing models with the same
data span, the asymptotic local power of a one-sided unit root test is independent of the
frequency of sampling. In Section 4.3, we turn to lookat power against fixed alternatives
using an approach due to Geweke (1981). Using the almost sure limit of the ratio of
competing test statistics (comparing a model in ‘basic’ time units with a corresponding
temporally aggregated model) as a measure of relative power, a theorem is stated that
allows this ratio to be interpreted as the increase in span required to maintain power
fixed at some arbitrary level when moving from the basic model to the aggregated model.
This provides a measure of the trade-off between sampling frequency and time span when
the interest is in power against a distinct rather than a local alternative. In most cases
it is found that the increase in span that is required to keep power fixed is very small
relative to the order of temporal aggregation. In order to help the investigator assess the
absolute power of a unit root test given a particular data set, an approximation to the
power function is proposed that is easy to compute. Section 4.4 presents the results of
some Monte Carlo simulations for some simple models. These show that the asymptotic
analytical results of Sections 4.2 and 4.3 perform well in finite samples. Finally, in Section
4.5 the results of the paper are applied to a model of consumer behaviour estimated by
Molana (1991). Although Molana was unable to reject the null hypothesis that consump-
tion and wealth are not cointegrated, using the short span of available quarterly data,
when his model is reestimated using annual data over a longer span, the null hypothesis
is convincingly rejected.

1Harvey and Pierse (1984) show how data sets of different frequencies can sometimes be combined
using the Kalman filter. However, this requires knowledge of the order of integration of the series which
must be determined in some way, such as by a unit root test.
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4.2 Asymptotic local power and temporal aggrega-

tion

Let yt be a variable generated by the discrete first order process2

yt = ρyt−1 + ut t = 1, 2, . . . , nb (4.2.1)

where nb is the number of observations in ‘basic’ time units and ut is an error which is
assumed to follow a finite order stationary ARMA(p, q) process whose largest AR root
has modulus less than ρ.

Eq. (4.2.1) represents a model in ‘basic’ time units which is to be compared with a
counterpart aggregated over a time interval of m (where m is a finite integer). The form
of the aggregation will depend on whether yt is a stock or a flow counterpart. Aggregating
over a time interval of mh (where m is a finite integer) gives us the mth order temporally
aggregated variable. In the former case the aggregated variable, denoted as y∗t is simply
yt observed at the points t = m, 2m, 3m, and so on. In the case of a flow variable,

y∗t = (1 + L+ L2 + · · ·+ Lm−1)yt,

where L is the lag operator.
In either case, the aggregated form of model (4.2.1) is given by

y∗t = ρ∗y∗t−1 + u∗t , t = m, 2m, . . . , nam, (4.2.2)

where u∗t is a finite-order stationary ARMA(p, q∗) process, na = [nb/m] is the number of
temporally aggregated observations (where [x] denotes the integer part of x), and

ρ∗ = ρm. (4.2.3)

Amemiya and Wu (1972) and Brewer (1973) show that, for the stock variable case,
q∗ = [((p+1)(m−1)+q)/m], and for the flow variable case, q∗ = [((p+2)(m−1)+q)/m].
As m→∞, then for the stock case, q∗ → p+ 1 for q ≥ p+ 1, otherwise q∗ → p. IN the
flow case, q∗ → p+ 2 for q ≥ p+ 2, otherwise q∗ → p+ 1.

Consider testing the unit root hypothesis

H0 : ρ = 1 against H1 : ρ = e−c/nb , (4.2.4)

using some appropriate statistic, t. H1 represents a one-sided local alternative to the null
hypothesis for c > 0.3

Let the statistic calculated using nb observations of the basic sampling frequency be
denoted by tnb and that using na observations of the aggregated sampling frequency by
tna . Now consider a sequence of tests for increasing values of s, s = 1, 2, . . ., where

na = s and nb = sm. (4.2.5)

Note that s is the time span measured in temporally aggregated time units. We now
prove that the asymptotic local power of a class of unit root tests is independent of the
degree of temporal aggregation.

2It is possible to derive (4.2.1) from an underlying model formulated in continuous time by integrating
over some time interval (see Bergstrom (1984) for details). Whether the underlying economic decision
process being modelled is more appropriately viewed as discrete or continuous is an open question and
does not affect the validity of the discrete representation (4.2.1).

3In the terminology of Phillips (1987b), yt is said to be near integrated under H1.
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Proposition 1. Any test of (4.2.4) that is asymptotically independent of nuisance pa-
rameters under both H0 and H1 has a limiting distribution under both null and local
alternative that is independent of the frequency of sampling, m.

Proof: The null4 and alternative for the temporally aggregated model are

H0 : ρ∗ = 1 against H1 : ρ∗(= ρm) = e−c/na . (4.2.6)

tnb and tna are similar tests so that under a common null they have the same limiting
distribution. On the alternative hypotheses H1 in (4.2.4) and (4.2.6), consider a sequence
of tests for increasing values of s where na and nb are defined y (4.2.5). Since by assump-
tion the statistics tnb and tna are asymptotically independent of the parameters of their
respective error processes, it follows that as s → ∞, tnb and tna have the same limiting
distribution and therefore the same asymptotic local power. Q.E.D.

We note that the conditions of Proposition 1 are weak and are met by most of the
various different tests for unit roots5 in the literature such as those proposed by Dickey
and Fuller (1979, 1981), Phillips (1987a) and Phillips and Perron (1988). In practice,
provided that data spans are long enough, Proposition 1 implies that the power of a
unit root test against alternatives close to unity is going to be largely unaffected by the
frequency of observation. The intuition behind the result is that the power loss from
discarding ((m− 1)/m)ths of the data points is made up by the increased separation of
H0 from H1 resulting from temporal aggregation.

4.3 Power against fixed alternatives

The previous section looked at power against a sequence of local alternatives. When
we turn to consider fixed alternatives then in order to maintain the same power with a
temporally aggregated model, the span of the data has to increase. Here an approach of
Geweke (1981) is followed to derive a large-sample approximation to the required increase
in span. First some definitions are needed.

Let tb be a statistic based on the basic data yt, t = 1, 2h, . . . , nb and let ta be a statis-
tic based on the temporally aggregated data yt, t = m, 2m, . . . , nam. Let t∗i be a critical
value such that H0 is rejected in favour of H1 if ti > t∗i , (i = a, b), and let β(ni, t

∗), be the
Type II error associated with a common critical value, t∗ with sample size ni. Finally,
let ni be the smallest integer for which β(ni, t

∗) < β̄, for some Type II error β̄ ∈ [0, 1].

Assumption 1. Let tb and ta be statistics with identical asymptotic distributions under
H0 and let them both be consistent under H1, such that, for some appropriate power,
k > 0,

ti/(ni)
k a.s.−→ ci <∞ as ni →∞.

4 It is clear that, for even values of m, H0 in (4.2.6) is also consistent with the hypothesis that
ρ = −1. There is thus, in principle, an identification problem here. In practice, however, the possibility
of negative unit roots in economic time series is virtually never entertained, so that it is reasonable to
restrict consideration to ρ ≥ 0.

5This still applies when the tests are being used on residuals from a cointegrating regression to test
a null of no cointegration. A proof of this is available from the authors on request.
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Proposition 2. Under the conditions of Assumption 3:

lim{(n̄b/n̄a)k} = ca/cb .

This result is a straightforward extension of (Geweke, 1981, p. 1431) to which the reader
is referred for a proof.

In Proposition 2 as t∗ tends to infinity, the sample sizes nb and na must also tend to
infinity because the tests are consistent. Both tests have the same asymptotic distribution
under H0 so the ratio in the proposition may be interpreted as being evaluated at some
constant power 1− β for a common asymptotic test size of zero. The conditions for the
proposition are weak and are satisfied by the commonly used tests.

To see how Proposition 2 may be used to assess the power-preserving span increase
referred to above, take an example. Suppose that ut in (4.2.1) is white noise. Let ρ̂ be
the OLS estimate of ρ in (4.2.1) and ρ̂∗ the OLS estimate of ρ∗ in (4.2.2) and consider the
test statistics t̂b = nb(ρ̂− 1) and t̂a = na(ρ̂

∗− 1). For this case k = 1 and under the H1 of
ρ < 1, the almost sure limits of tb/nb and ta/nb are ρ− 1 and ρm − 1, respectively. The
ratio of sample sizes (na to nb) required to maintain power at the arbitrary level 1 − β
for a critical value t∗ is, therefore, (1−ρ)/(1−ρm) and the corresponding relative span is
simply m(1−ρ)/(1−ρm) = m/

∑
i = 0m−1ρi. For example, if quarterly and annual data

are being compared and if at quarterly frequency ρ = 0.9, then the proposition indicates
that a 16.3% increase in span is required so that 40 quarterly observations should give
the same power as 12 annual ones. If the Dickey-Fuller t-ratio is used, then the formula
for the ratio of spans is {m(1 − ρ)(1 + ρm)/((1 + ρ)(1 − ρm))}0.5 which gives a required
increase in span for ρ = 0.9 of 0.7%.

More complicated cases are the Zα and the ADF t-ratio tests when yt is anARMA(1, 1)
flow variable given by

yt = ρyt−1 + εt + θεt−1.

In this case the process remains ARMA(1, 1) after temporal aggregation. For the Zα test
of Phillips (1987a), k = 1 and

plim

(
tb
nb

)
≡ plim

(
Zα
nb

)
=−

{
1− ρ− θ(1− ρ2)

(1 + θ2 + 2θρ)

}2

×
{

1 + θ2 + 2θρ+ θ(1 + ρ2)

(1 + θ2 + 2θρ)(1− ρ)

}
.

Replacing θ and ρ in this expression with θ∗ and ρ∗ from the aggregated model gives
plim(ta/na), and the power-preserving span ratio is simply m{plim(tb/nb)/ plim(ta/na)}.
For m = 2, ρ = 0.9, and θ = 0.25, the required span increase is 3.6%.

In the case of the ADF t-test, the MA error is approximated by the addition of lagged
differences to the regression. For low values of θ, an ADF of order one may be sufficient
to approximate the process. For this case k = 1

2
and

plim

(
tb√
nb

)
=

−(1 + θ2 + θρ)√
2(1 + θ + θρ+ θ2)/(1− ρ)

.

Again, replacing θ and ρ with θ∗ and ρ∗ from the aggregated model gives a corresponding
form for plim(ta/

√
na), and the power-preserving span ratio is

√
m{plim(tb/

√
nb)/ plim(ta/

√
na)}.

For m = 2, ρ = 0.9, and θ = 0.25, the formula predicts a required span increase of 3.3%.
If θ = 0.6, then this figure rises to 17.6%.
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Proposition 2 provides a measure of ‘efficiency’ in terms of the relative power under
H1. This must be distinguished from the more usual notion of efficiency which is in terms
of the relative variances of parameter estimates. The latter has been examined by Palm
and Nijman (1994) who find that the increase in span required to achieve equal efficiency
of parameter estimates for the AR(1) model with m = 2 is 2ρ2/(1 + ρ2). This compares
with our measure of power-preserving span for the n(ρ̂ − 1) statistic of 2/(1 + ρ) which
is strictly larger. Our measure will of course vary according to the test statistic used.6

As well as having a measure of relative power of basic and aggregated samples under
H1, it is also interesting to gauge absolute power in each case. The power, P , of the unit
root test of sample size n is given by

P (γ, n, t∗n) =

∫ t∗n

−∞
fn(x; γ, n) dx (4.3.1)

where fn is the pdf of the test statistic, γ is a vector of nuisance parameters and t∗n is the
critical value for sample size n. The pdf in (4.3.1) is in general unknown but a change of
variables is usually possible such that

P (γ, n, t∗n) =

∫ g(t∗n,γ,n)

−∞
f ∗n(x; γ, n) dx (4.3.2)

where the sequence of functions f ∗n(x; γ, n) converges to the asymptotic distribution f(x)
independent of γ and n as n→∞. An approximation to (4.3.2) is, therefore,

P (γ, n, t∗n) '
∫ g(t∗n,γ,n)

−∞
f(x) dx . (4.3.3)

To illustrate, consider the Dickey-Fuller t-ratio test for the simplest case of (4.2.1) where
ut is white noise. In this case, f(x) is the standard normal distribution function and

g(t∗n, γ, n) = t∗n −
√
n(ρ− 1)√

1− ρ2
. (4.3.4)

In the same model, the test statistic based on n(ρ̂− 1) also has an asymptotic standard
nortmal distribution, but here

g(t∗n, γ, n) =
t∗n√

n(1− ρ2)
+

√
n(1− ρ)√

1− ρ2
. (4.3.5)

Finally, consider the Augmented Dickey-Fuller t-ratio test for (4.2.1), where ut is now
ARMA(1,0) so that yt is ARMA(2,0). Again f(x) is standard normal with

g(t∗n, γ, n) = t∗n +

√
n(1− ρ1 − ρ2)

√
1 + ρ1 − ρ2√

2{(1− ρ2
1 − ρ2

2)(1− ρ2)− 2ρ2
1ρ2}

. (4.3.6)

[The critical values t∗n for all these tests are tabulated in (Fuller, 1976, Tables 8.5.1 and
8.5.2).] It should be clear that both the relative power measure in Proposition 2 and the
approximation to the power function in (4.3.3) can be computed and in most practical
circumstances given values for γ and ρ.
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Figure 4.1: Power functions: ARMA(1,0) stock case, n(ρ− 1) test, ρ = 0.9.

Figure 4.2: Power functions: ARMA(1,1) flow case, Zα test, ρ = 0.9, θ = 0.25.

4.4 Monte Carlo simulation

Both Propositions 1 and 2 and the approximations in (4.3.3) of Section 4.3 are based
on asymptotic results. To assess how useful these are in finite samples, Monte Carlo
simulations were conducted for a number of simple models for yt and illustrating the use
of different unit root tests. Simulations are reported for three models of the yt process:7

the ARMA(1,0) stock variable case and two ARMA(1,1) flow models, one with a low
value of the moving average parameter (θ = 0.25) and one with a high value (θ = 0.6).

For each model a different test statistic is illustrated: the Dickey-Fuller n(ρ− 1) test
for model 1, the Phillips (1987a) Zα test for model 2, and the ADF t-ratio test for model

6In the case of estimation ML is asymptotically efficient, and so is a natural choice for an estimator.
In the context of test against distinct alternatives there is no such natural candidate.

7 These were selected as being representative of a large number of simulations that were run, all
programmed using the GAUSS econometric programming language.
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Figure 4.3: Power functions: ARMA(1,1) flow case, ADF test. ρ = 0.9, θ = 0.6.

3. the ADF t-ratio test was computed following the procedure recommended by Said
and Dickey (1984), where the number of lagged differences included in the regression is
increased with the number of observations, n, but at a slower rate [a rate of orderO(n1/4)
was used]. The Zα test was implemented using a Parzan lag window8 for the weights on
the correction factor, with the lag length increasing with n, again at rate O(n1/4).

The results, based on 5000 replications, are presented in Figs. 1-3, where power curves
are graphed for values of m = 1, 4, 12, where ρ = 0.9 in the ‘basic ’ (m = 1) model. These
curves illustrate the gain in power of moving from quarterly (m = 1) to annual (m = 4)
or from monthly (m = 1) to annual (m = 12) data. the dotted lines in the figures plot
the power for m = 2 against the number of observations scaled by the power-preserving
span ratio for the test statistic as derived in Section 4.3. In Proposition 2 were to hold
exactly in finte samples, then this dotted line would lie exactly on top of the m = 1 curve.
The closeness of the dotted lines to the m = 1 curves in all three figures thus shows how
remarkably well Proposition 2 holds for all our models, even in very small samples.

Finally, the power approximation to the power function based on (4.3.3) was computed
for the m = 4 curves for the Dickey-Fuller n(ρ− 1) test and the ADF t-ratio test, and is
plotted by the crosses in Figs. 1 and 3. For the DF test in Fig. 1 it can be seen that the
approximation, using Eq. (4.3.5), while it slightly underestimates power at very small
sample sizes, holds very well at all other sample sizes. For the ADF t-ratio test in Fig. 3
the approximations were computed as in Section 4.3, using (4.3.3) and the formula

g(t∗n, γ, n) = t∗n +
√
nzn,

where zn is the plim of the estimated AR(O(n1/4)) process under the truer ARMA(1,1)
model. It can be seen from the figure that the approximation overestimates power at
small sample sizes and underestimates it at large sample sizes. However, taken overall
the approximation, while obviously not as good as that for the simpler model, is still not
bad, and can serve as a rough guide to finite-sample power.

8This was the choice in the simulations reported by Phillips and Perron (1988).
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4.5 The cointegration of consumption and wealth

In a recent paper, Molana (1991) extends the intertemporal model of consumer behaviour
of Hall (1978) to allow for credit constraints and derives a specification relating (non-
durable) consumption to the stock of wealth. However, on the basis of an augmented
Dickey-Fuller (ADF) test using quarterly observations from 1966(4) to 1981(4), he was
unable to reject the null hypothesis that consumption and wealth are not cointegrated.
Although quarterly data on wealth are only available from 1966(4), annual data go back
to 1957. We repeated Molana’s exercise9 using the 25 annual data points between 1957
and 1981 and our results are compared to his in Table 4.1.

Table 4.1: Tests for the cointegration of non-durable consumption and wealth

Span Frequency CRDW ADF Zt CRDW c ADF c Zc
t

1966-1981 Quarterly 0.83 −1.22 — 0.11 −3.18 −3.15
1966-1981 Annual 0.63 −2.53 −1.99 0.13 −3.47 −3.34
1957-1981 Annual 0.81 −3.56 −3.02 0.17 −3.46 −3.13

CRDW is the cointegrating regression Durbin-Watson statistic, ADF the
cointegrating regression augmented Dickey-Fuller statistic, Zt the Phillips Zt
test statistic and superscript c denotes the appropriate 5% critical values
(obtained by simulation).

The cointegrating regression was lnCt = α+ β lnWt + ut where Ct is real nondurable
consumption and Wt is real net household wealth (seasonals were included in the quar-
terly model). CRDW , ADF , and Zt are the cointegrating regression Durbin-Watson,
augmented Dickey-Fuller and Phillips Zt test statistics respectively, and the superscript
c denotes the appropriate 5% critical value. Critical values were estimated by numerical
simulation on the assumption that lnC and lnW follow independent random walks with
drift given by the average quarterly or annual growth rate of the respective series.

The quarterly roots in the ADF auxiliary regression were not reported in Molana
(1991). In the annual data however, where an AR(2) auxiliary regression proved adequate,
the largest of the two roots was found to be 0.552. An estimate of the largest root in the
quarterly cointegrating regression is therefore given by 0.552

1
4 = 0.862 (see for example

Amemiya and Wu (1972)). Propositions 1 and 2 indicate that with a root so close to unity,
we should suffer little loss in power in moving from quarterly to annual data with the
same time span. The first two rows of Table 1 show that despite relatively high CRDW
statistics, the ADF and Zt tests based on the 1966-1981 span and using either frequency
of data observation, fail to reject noncointegration by a large margin. Using the formula
for the power approximation derived in (4.3.6) in Section 4.3, (consistent) estimates of
ρ1 and ρ2 from the annual data, and setting T = 15 gives a power estimate of 0.08.10

In the light of this, Molana’s own failure to reject is unsurprising. The third row shows
the gain from increasing the span; the ADF now rejects noncointegration and although
Zt remains insignificant, it only does so by the smallest of margins. Finally, updating

9In Molana’s work the use of quarterly data was necessary to explore dynamics etc. However, this does
not preclude the use of annual data to establish cointegration as the first stage of a two-step procedure.

10The corresponding figure for the 1957-1981 span is 0.26, a threefold increase.
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the span to 1987 gives highly significant CRDW , ADF and Zt values of 0.78, −4.09 and
−3.31, respectively. We may conclude therefore that consumption and wealth in the UK
are indeed cointegrated and that Molana’s failure to find a cointegrating relationship can
be explained by the low power of unit root tests when applied to data of a short time
span.
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Chapter 5

Econometric Analysis of
Aggregation in the Context of

Linear Prediction Models

This paper deals with the problem of aggregation where the focus of the analysis is
whether to predict aggregate variables using macro or micro equations. The Grunfeld-
Griliches prediction criterion for choosing between aggregate and disaggregate equations
is generalised to allow for contemporaneous covariances between the disturbances of mi-
cro equations and the possibility of different parametric restrictions on the equations of
the disaggregate model. A new test is proposed of the hypothesis of ‘perfect aggrega-
tion’ which tests the validity of aggregation either through coefficient equality or through
the stability over time of the composition of the regressors across the micro units. The
tools developed in the paper are then applied to employment demand functions for the
UK economy disaggregated by 40 industries. Firstly a set of unrestricted log-linear dy-
namic specifications are estimated for the disaggregate equations and then linear param-
eter restrictions are imposed as appropriate. Corresponding unrestricted and restricted
aggregate equations are estimated. Two different levels of aggregation are considered:
aggregation over the 23 manufacturing industries and aggregation over all 40 industries
of the economy. In both cases the hypothesis of perfect aggregation is firmly rejected.
For the manufacturing industries the prediction criterion marginally favors the aggregate
equation but over all industries the disaggregated equations are strongly preferred.

Key Words: Aggregation; Linear prediction models, Labour demand.

5.1 Introduction

The problem of aggregation over micro units has been approached in the empirical liter-
ature from a number of different viewpoints. In the case of linear models one important

0 Published in Econometrica (1989), Vol. 57, pp. 861–888. Co-authors M. H. Pesaran and M.
S. Kumar. This is a substantially revised version of the paper ‘On the Problem of Aggregation in
Econometrics’, presented at the European Meeting of the Econometric Society, Budapest, 1986. The
authors are grateful to Angus Deaton, Arnold Zellner, Ron Smith, Clive Granger, and the referees for
their helpful comments. Partial support from the ESRC is gratefully acknowledged.
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issue addressed in this literature is the problem of ’aggregation bias’, defined by the devi-
ation of the macro parameters from the average of the corresponding micro parameters.
(See, for example, Theil (1954), Boot and de Wit (1960), Orcutt et al. (1968), Edwards.
and Orcutt (1969), Barker (1970), Gupta (1971), Sasaki (1978), and Winters (1980)).1

Another closely related issue is the prediction problem originally discussed by Grunfeld
and Griliches (1960), where the focus of the analysis is whether to predict aggregate
variables using macro or micro equations. Our primary concern in this paper is with the
prediction problem in the context of linear models. We present a generalization of the
Grunfeld-Griliches (GG) prediction criterion which allows for contemporaneous covari-
ances between the disturbances of the micro equations, and the possibility of different
linear parametric restrictions on the equations of the disaggregate model. We also de-
velop a formal statistical test of the hypothesis of ‘perfect aggregation’ which, unlike
the test proposed by Zellner (1962) in the context of the seemingly unrelated regression
model, does not necessitate the requirement that all coefficients across the equations of
the disaggregated model be the same. The proposed test allows for the possibility of valid
aggregation either through coefficient equality or through the invariance of the composi-
tion of the regressors across the micro units over time. The choice criterion and the test
of perfect aggregation developed in the paper are then applied to two alternative spec-
ifications of employment functions for the UK economy disaggregated by 40 industries,
and for the manufacturing sector disaggregated by 23 industries. As far as the choice
criterion is concerned, the empirical results show that for the economy as a whole the
disaggregate model fits better than the aggregate specification, while the reverse is true
for the manufacturing industries taken as a group. The slightly better fit obtained for
the aggregate model in the case of the manufacturing industries should not, however, be
taken to mean that there are no aggregation problems at this level. In fact the application
of the test of perfect aggregation to the employment functions provides strong evidence in
favor of rejecting the hypothesis of perfect aggregation both for the economy as a whole,
and for the manufacturing sector. Our results also suggest serious upward bias in the
estimates of output and real wage elasticities of aggregate employment demand obtained
for the UK in the literature using aggregate relations. The slightly better within-sample
performance of the aggregate specification in the case of the manufacturing industries is
best interpreted as an indication of the misspecification of the disaggregate equations.
The plan of the paper is as follows. Section 5.2 sets out the basic econometric frame-
work. Section 5.3 examines the small sample bias of the GG prediction criterion. Section
5.4 generalises the basic model so that different specifications for the micro equations
are possible, and derives a goodness-of-fit criterion for discrimination between aggregate
and disaggregate models that does not suffer from the small sample problem. Section
5.5 considers alternative methods of testing for the errors of aggregation, and develops
a new test of the hypothesis of perfect aggregation. Section 5.6 deals with the problem
of misspecification of the disaggregate model and the implications that this has for the
use of the proposed choice criterion. Section 5.7 contains a detailed application of the
econometric methods developed in the paper to the UK employment functions.

1 On the problem of aggregation across nonlinear micro equations see, for example, Ando (1971),
Kelejian (1980), Stoker (1984, 1986a), and the references cited therein.
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5.2 The Basic Econometric Framework

We start with the micro model analyzed by Theil (1954), and subsequently by Grunfeld
and Griliches (1960), and others, and suppose that the n observations of the m micro
units {yi, i = 1, 2, . . . ,m; t = 1, 2, . . . , n} are generated according to the following linear
specifications:

yit =
k∑
j=1

βijxi,jt + uit (i = 1, 2, . . . ,m; t = 1, 2, . . . , n),

or in matrix notations (Kloek (1961))

Hd : yi
n×1

= Xi
n×k

βi
k×1

+ ui
n×1

(5.2.1)

In the above specification it is assumed that the variations in dependent variables of
all micro units can be explained by means of linear combination of the same set of k
explanatory variables. This assumption will be relaxed in the next section. Writing
(5.2.1) as a system of seemingly unrelated equations (SURE), following Zellner (1962) we
have

y = Xβ + u (5.2.2)

where y = (y′1,y
′
2, . . . ,y

′
m)′, β = (β′1,β

′
2, . . . ,β

′
m)′, u = (u′1,u

′
2, . . . ,u

′
m)′, and X is an

mn×mk block-diagonal matrix of full column rank with matrix Xi as its ith block. We
also make the following assumption:

Assumption 2. The mn× 1 disturbance vector u is distributed independently of X, has
mean zero and the variance matrix Ω = Σ⊗ In, where Σ = (σij), and In is the identity
matrix of order n.

The problem of aggregation can arise when an investigator interested in the behaviour
of the macro variable ya =

∑m
i=1 yi, considers the single macro equation

Ha : ya
n×1

= Xa
n×k

b
k×1

+ νa
n×1

(5.2.3)

where Xa =
∑m

i=1 Xi, instead of the m micro equations in (5.2.1). Following Grunfeld
and Griliches (1960) we examine the question of whether to predict ya using the macro
equation (5.2.3), or the micro equations (5.2.1).

5.3 The Small Sample Bias of the Grunfeld-Griliches

Criterion

The GG prediction (or more accurately the within-sample goodness-of-fit) criterion for
the discrimination between the disaggregate model, Hd, and the aggregate model, Ha can
be written as:

Choose Hd if A′ded < e′aea, otherwise choose Ha,

where ed and ea are the estimates of the errors in predicting ya under Hd and Ha re-
spectively. The estimates employed by GG for ed and ea are based on the ordinary least
squares (OLS) method and are given by

ea = Maya, Ma = In −Xa(X
′
aXa)

−1X′a = In −Aa, (5.3.1)
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and

ed =
m∑
i=1

Miyi, Mi = In −Xi(X
′
iXi)

−1X′i = In −Ai. (5.3.2)

It is important to note that in general ed is not an efficient estimator of ud = ya −∑m
i=1 Xiβi, unless the disturbances of the micro equations are contemporaneously uncor-

related (i.e. σij = 0, for i 6= j), or when Xi can be written as exact linear functions of
Xa. The problem of efficient estimation of βi, and hence ud, and the effect that this has
for the GG criterion will be discussed later. For the moment we assume that the GG
criterion, as specified above, is applied even in the case where the micro equation distur-
bances are contemporaneously correlated, and investigate the small sample bias that such

a procedure entails. Like the justification offered for Theil’s R
2

criterion, the rationale
behind the use of the GG criterion must lie in the fact that if the micro equations are
correctly specified, then ‘on average’ the fit of ya from the macro equation should not be
any better than that obtained from the micro equations. That is we should have

Ed(e
′
ded) ≤ Ed(e

′
aea), (5.3.3)

where Ed(·) represents the mathematical expectations operator under Hd. However, using
(5.3.1) and (5.3.2) it is easily seen that2

Ed(e
′
ded)− Ed(e

′
aea) = −E(ξ′Maξ)− 2

k∑
s=1

m∑
i>j

σij
{

1− E
(
ρ2
s,ij

)}
,

where ξ =
∑m

i=1 Xiβi−Xab, and ρs,ij is the sth canonical correlation coefficient between
the explanatory variables of the ith and the jth micro equations. Therefore, in general the
inequality condition (5.3.3) need not be satisfied even if Hd is correctly specified. There
are, however, two circumstances under which the GG criterion satisfies the inequality
relationship (5.3.3):

(i) when Xi can be written as exact linear functions of Xj, for all i and j. In this
case ρ2

s,ij = 1, and irrespective of the values of σij we have Ed(e
′
ded) − Ed(e

′
aea) =

−E(ξ′Maξ).

(ii) when the micro disturbances are all contemporaneously uncorrelated (σij = 0, i 6=
j). In general the direction of the bias involved in the use of the GG criterion in
small samples depends on the signs of σij for i 6= j.

The finite sample bias in the use of the GG criterion will not disappear even when
βi are estimated efficiently by the SURE method. Consider the simple case where Σ is
known. The SURE estimator of ud, which we denote by es, will be

es = S(Inm −A)y

where S stands for the n× nm summation matrix

S = [In : In : · · · : In] , (5.3.4)

2 In deriving this result we have also made use of the relation k − tr(Ai Aj) =
∑k
s=1(1− ρs,ij) ≥ 0.

See, for example, (Rao, 1973, pp. 582-587).
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and
A = X(X′Ω−1X)−1X′Ω−1. (5.3.5)

Under Hd, es = S(Inm −A)u, and hence

Ed(e
′
se)− Ed(e

′
aea) = kσ2

a − E(ξ′Maξ)− E
{

tr
[
(X′Ω−1X)−1X′S′SX

]}
,

where σ2
a =

∑m
i,j=1 σij. Again leaving the case where Xi are exact linear functions of Xa

to one side, the strict inequality Ed(e
′
ses) ≤ Ed(e

′
aea) holds only in the special case where

σij = 0, for i 6= j.

5.4 A Generalised Goodness-of-fit Criterion for Dis-

criminating Between Aggregate and Disaggre-

gate Models

From the results of the previous section it is now a straightforward matter to derive a
choice criterion for discrimination between the disaggregate and the aggregate models that
does not suffer from the finite sample bias of the GG criterion. But it is first important to
extend the econometric framework of Section 5.2, so that different specifications for the
micro equations can be considered. Such a generalization is particularly important when
the primary purpose of the disaggregation is to achieve a better explanation of the macro
variables. Accordingly, we consider the following specifications for the disaggregate and
the aggregate models:

H̃d : yi
n×1

= Xi
n×ki

βi
ki×1

+ ui
n×1

(i = 1, 2, . . . ,m),

H̃a : ya
n×1

= Xa
n×ka

b
ka×1

+ νi
n×1

where rank(Xi) = ki, and rank(Xa) = ka. In this formulation there are no restrictions
on the number of columns of Xi, or what these columns may represent. The micro
equations under Hd can also be viewed as a restricted version of the equations under Hd,
with each micro equation having its own specific linear parametric restrictions. In this
way a wide range of different specifications across the micro equations can be allowed for.
The specification of the macro equation is also generalised so that the investigator can
specify a restricted form of the macro equation defined in (5.2.3).

Consider now the following ‘adjusted’ goodness-of-fit criteria for the aggregate and
the disaggregate models:

s2
a = e′aea/(n− ka), (5.4.1)

and

s2
d =

m∑
i,j=1

σ̂ij, (5.4.2)

where
σ̂ij = {n− ki − kj − tr(AiAj)}−1 e′iej, (5.4.3)

with ea and ei being respectively the OLS residual vectors of the regressions under H̃a

and H̃d, and Ai = Xi(X
′
iXi)

−1X′i. The use of s2
d as a measure of the goodness-of-

fit of the disaggregate model is justified on the grounds that it represents an unbiased
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(and consistent) estimator of σ2
a = V(

∑m
i=1 uit), the population variance of the error of

predicting ya from the disaggregate model. It is now easily seen that under H̃d,

Ed(s
2
d)− Ed(s

2
a) = −(n− ka)−1 E(ξ′Maξ) ≤ 0, (5.4.4)

where ξ is now defined by

ξ =
m∑
i=1

Xiβi −Xab. (5.4.5)

Therefore, as required we have Ed(s
2
d) ≤ Ed(s

2
d), and unlike the GG criterion, the use

of the proposed goodness-of-fit criteria s2
a and s2

d will ‘on average’ result in the choice
of the disaggregate model in finite samples, assuming, of course, that the disaggregate
model is correctly specified. In situations where the disaggregate model fits worse than
the aggregate model (i.e. s2

d > s2
a) it is likely that the disaggregate model is misspecified.

The implications for the above choice criterion when the disaggregate model is subject to
errors of specification will be discussed below. Here, for comparison purposes it is worth
considering the following decomposition of the s2

d criterion:

s2
d = (n− ka)−1e′ded + (n− ka)−1

m∑
i=1

(ki − ka)σ̂ii (5.4.6)

+ 2(n− ka)−1

m∑
i>j

{φij/(1− φij)} e′iej,

where

ed =
m∑
i=1

ei, and

φij = (n− ka)−1 {Ki + kj − ka − tr(AiAj)} .

The GG prediction criterion focuses on the first term on the right-hand side of (5.4.6)
and ignores the asymptotically negligible second and third terms. The second term
represents the contribution to the s2

d criterion arising out of the possible differences in
the number of estimated coefficients between the aggregate and the disaggregate models.
The third term in (5.4.6) captures the effect of the contemporaneous correlation amongst
the disturbances of the micro equations.

5.5 Tests of Aggregation

In studying the aggregation problem our emphasis so far has been on the model selection
procedures. An alternative approach would be to employ classical hypothesis testing pro-
cedures and develop a statistical test of the conditions necessary for valid aggregation. In
the context of the generalised disaggregate model H̃d, the necessary condition for perfect
aggregation is given by ξ = 0, where ξ is defined in (refeq45). Under the hypothesis of
‘perfect aggregation’

Hξ : ξ =
m∑
i=1

Xiβi −Xab = 0,
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it readily follows from (5.4.4) that E2
d(sd) = Ed(s

2
a) = σ2

a, and as far as the fit of ya is
concerned we should not expect to gain from disaggregation.3

Before developing a formal test of Hξ, it is important to note that the condition ξ = 0
can be given a meaningful interpretation only in the context of the basic model (5.2.1)
where βi are of the same dimension and refer to the same type of variables across the
micro equations. In this case the condition ξ = 0 is clearly satisfied under the ‘micro-
homogeneity’ hypothesis,4

Hβ : β1 = β2 = · · · = βm.

This is not, however, the only situation where Hξ holds. Another hypothesis of interest
which yields ξ = 0, is the ‘compositional stability’ hypothesis

Hx : Xi = XaCi, (i = 1, 2, . . . ,m),

where Ci are k× k nonsingular matrices of fixed constants, such that
∑m

i=1 Ci = Ik. The
‘compositional stability’ hypothesis represents a set of restrictions on the joint probability
distribution of the regressors and states that the composition of the regressors across micro
units remain fixed over time. This condition for valid aggregation in linear models has
been discussed in the econometric literature by Klein (1953) and Wold and Jurlen (1953).
Distributional assumptions on the regressors have also been employed in the literature, for
example, by Ando (1971), McFadden and Reid (1975), Kelejian (1980), and more recently
by Stoker (1984) to connect the aggregate function to the underlying micro equations in
the context of nonlinear models. Under Hx, the macro coefficient vector b, is defined in
terms of the micro coefficients through the identity b =

∑m
i=1 Ciβi. The condition ξ = 0

will also be met under the mixed hypothesis5

4Hβx : Xi = XaCi, (i = 1, . . . , s; s < m),

βs+1 = βs+2 = · · · = βm = b1,

where in this case Xa =
∑s

i=1 Xi,
∑s

i=1 Ci = Ik and bi =
∑s

i=1 Ciβ. The test proposed
by Zellner (1962) for aggregation bias is a test of the micro homogeneity hypothesis, Hβ,
and is not necessarily relevant as a test of Hξ : ξ = 0. The Zellner test can therefore be
unduly restrictive. Rejection ofHβ does not necessarily imply that the perfect aggregation
hypothesis Hξ should also be rejected. What is needed is a direct test of ξ = 0. In what
follows we develop such a test in the case of the basic disaggregated model (5.2.1) and
the aggregate model (5.2.3). Although our results can be extended to the generalised

model H̃d, we have chosen not to do this here, since we do not think that the perfect
aggregation condition ξ = 0 can be given a plausible interpretation under H̃d. In the case
of the generalised model neither the micro homogeneity hypothesis nor the compositional
stability hypothesis can be maintained.

3 For the basic disaggregated model (5.2.1), the hypothesis Hxi is equivalent to the n-covariance
condition discussed in Theil (1954) and Lancaster (1966), in the special case where the number of
regressors is equal to one.

4 Notice that this hypothesis cannot hold under the generalised disaggregated model Hd.
5 The aggregation condition is also met by an alternative mixed hypothesis where the k regressors

Xi can be partitioned into two subsets, one of which satisfies the compositional stability hypothesis and
the other has an associated parameter vector satisfying the micro homogeneity hypothesis.
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5.5.1 A test of perfect aggregation

To help clarify the nature of the test that we are proposing, we first develop the test
in the case where Σ, the covariance matrix of the micro disturbances, is known. A
computationally feasible version of the test will then be discussed. The idea behind the
test is straightforward and asks whether the estimator of ξ is significantly different from
zero. When Σ is known an efficient estimator of ξt is given by

ξ̃ = §Xβ̃ −Xab̂, (5.5.1)

where β̃ and b̂ are the SURE and the OLS estimators of the parameters of the disag-
gregate and the aggregate equations respectively, and § is the summation matrix defined
by (5.3.4). Substituting β̃ = (X′Ω−1X)−1X′Ω−1y, b̂ = (X′aXa)

−1X′aya in (5.5.1) now
yields ξ = Hy where H = §A − Aa§. The matrices Aa and A are already defined by
(5.3.1) and (5.3.5), respectively. On the null hypothesis that ξ =

∑m
i=1 Xiβi −Xab = 0,

we have ξ = Hu. Therefore, under the assumption that u is normally distributed with
zero means and a known nonsingular variance matrix Ω = Σ⊗ In,

ξ̃
′
(HΩH′)−1ξ̃ ∼ χ2

n.

A necessary condition for HΩH′ to have a full rank can be obtained in the following
manner: since, by assumption Ω is a nonsingular matrix, then rank(HΩH ′) = rank(H).
But,

rank(H) ≤ rank(SA) + rank(AaS),

rank(AaS) = rank(Aa) = k,

rank(A) = tr(A) = mk, rank(S) = n,

and
rank(SA) ≤ min(n,mk).

Consequently, rank(H) ≤ k+ min(n,mk), and for matrix H to have full rank equal to n,
it is necessary that k + min(n,mk) ≥ n, or

k(m+ 1) ≥ n. (5.5.2)

This rank condition is clearly satisfied when m is large relative to n/k. But in situa-
tions where the number of micro equations is relatively large, the computational burden
of obtaining the SURE estimates, β̃ in (5.5.1), can be considerable. One possibility
would be to construct a test of Hξ based on the OLS estimates of ,8 instead of the SURE
estimates. The estimate of t based on the OLS estimators is given by

ξ =
m∑
i=1

Xiβ̃i −Xab̂ = ea − ed,

where ea and ed are already defined by (5.3.1) and (5.3.2), respectively. Under Hd, and
on the assumption that the hypothesis of perfect aggregation Hξ holds, we have

ξ̂ =
m∑
i=1

(Ai −Aa)ui =
m∑
i=1

bfHiui. (5.5.3)
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Now assuming that ui are normally distributed, then conditional on Xi, we have

m−1/2ξ̂|Xi ∼ N(0,Ψm),

where

Ψm = m−1

m∑
i,j=1

σijHiHj. (5.5.4)

Therefore, assuming that Ψm is a nonsingular matrix,6 we arrive at the result

m−1(ea − ed)
′Ψ−1

m (ea − ed) ∼ χ2
n, (5.5.5)

which is the OLS counterpart of (5.5.1).
When Σ = (σij) is unknown, it is still possible to obtain an ‘approximate’ test of the

perfect aggregation hypothesis by replacing σij in (5.5.1) or (5.5.5) with their SURE or
OLS estimates. Here, we focus on the latter and consider testing Hξ by means of the
statistic

am = m−1(ea − ed)
′Ψ̂
−1

m (ea − ed), (5.5.6)

where

Ψ̂m = m−1

m∑
i,j=1

σ̂ijHiHj, (5.5.7)

σ̂ij = {n− 2k + tr(AiAj)}−1 e′iej. (5.5.8)

We shall refer to a test of Hξ based on (5.5.6) as the perfect aggregation test, or the
a-test for short.

It seems reasonable to suppose that the distribution of am, on the null hypothesis of
perfect aggregation will tend towards a χ2

n as m→∞, although at this stage we are not
able to present a proof.7

5.6 Disaggregation and Specification Error

The model selection criterion and the aggregation test developed in this paper are based
on the assumption that the disaggregate model is correctly specified. In reality, however,
both the disaggregate and the aggregate models may suffer from errors of specification,
with the latter also being subject to the additional problem of aggregation error. In
such a circumstance the issue of whether disaggregation is useful for the study of macro
phenomena and the extent of the gain that may be expected from disaggregation depends
very much on the relative importance of the two types of errors of specification and
aggregation. In this section the implications that errors of specification may have for the
use of our proposed choice criterion will be examined.

Let the correctly specified disaggregate model be

yi
n×1

= Xi
n×ki

βi
ki×1

+ Wi
n×si

γi
si×1

+ ui
n×1

(i = 1, 2, . . . ,m) (5.6.1)

6 Notice that a necessary condition for Ψm to be invertible is given by (5.5.2).
7 A proof of this result for the special case where the disturbances are independently distributed is

given in Pesaran and Pierse (1989).
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which in a stacked form can also be written as

y = Xβ + Wiγ + u, (5.6.2)

where X is now an mn × k̃ (k̃ =
∑m

i=1 ki) block diagonal matrix with Xi as its ith
block, γ = (γ ′1, . . . ,γ

′
m)′, and W is an mn× s̃, (s̃ =

∑m
i=1 si) block diagonal matrix with

Wi on its ith block. The other notations are as in relation (5.2.2). Suppose now that
a researcher misspecifies this model by omitting the variables in W, and continues to
employ the model selection criterion based on s2

a and s2
d, defined by (5.4.1) and (5.4.2)

respectively. Clearly, the result Ed(s
2
d) ≤ Ed(s

2
a), which provided the rationale for the

choice criterion, need no longer hold.
Stacking the OLS residuals ei = Miyi in the vector e = (e′1, e

′
2, . . . , e

′
m)′, s2

d can also
be written as s2

d = e′Le in which = (Λ⊗ In), and Λ is an m×m matrix with a typical
element equal to [tr(MiMj)]

−1. Now under the correctly specified model (5.6.2),

e = My, M = Imn −X(X′X)−1X′,

= MWγ + Mu.

Hence
Ed(s

2
d|X,W) = σ2

a + γ ′W′MLMWγ. (5.6.3)

Since in general L may not be a positive semi-definite matrix, without further information
about the nature of the specification error, it will not be possible to say whether misspec-
ification leads to an upward or a downward bias in the application of the choice criterion.
Expanding (5.6.3) in terms of the misspecification of the individual micro equations, we
have

Ed(s
2
d|X,W) = σ2

a + (n− ka)−1

m∑
i=1

d′idi (5.6.3’)

+ 2
m∑
i>j

{d′idj/ tr(MiMj)} ,

where di = MiWiγi, and tr(MiMj) = n− ki − kj + tr(AiAj). The direction of the bias
resulting from misspecification clearly depends on the sign of the cross-equation terms
d′idj, i 6= j, and their quantitative importance relative to the equation-specific terms
d′idi. In practice, however, it is reasonable to expect that Ed(s

2
d) > σ2

a.
Now turning to the s2

a criterion, under (5.6.1) we obtain

Ed(s
2
a|X,W) = σ2

a + (n− ka)−1ξ′Maξ ≥ σ2
a, (5.6.4)

where

ξ =
m∑
i=1

Xiβi +
m∑
i=1

Wiγi = ξa + ξs. (5.6.5)

Comparing (5.6.3) and (5.6.4) it is clear that in general it is not possible to say whether
Ed(s

2
a) exceeds Ed(s

2
d). The result depends on the relative importance of the specification

error and the aggregation error for the explanation of the macro variable ya. In their
work, Grunfeld and Griliches (1960) consider a special case of some interest where there
are micro specification errors that cancel out in the aggregate. In the context of model
(5.6.1) this can arise either when there are, for example, errors of measurement in the
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micro variables that cancel out exactly in the aggregate8 (i.e. ξs =
∑m

i=1 Wiγi = 0), or
when the micro specification errors involve omission of macro variables already included
in the aggregate model,9 (i.e. Maξs = 0). In such a case, using (5.6.4), we have

Ed(s
2
a|X,W) = σ2

a + (n− ka)−1ξ′Maξa,

and only aggregation errors (ξa 6= 0) cause the expectations of s2
a to exceed the true error

variance of the aggregate model. However, even in this special case it is not possible to
say whether it is better to use the aggregate model. The answer still depends on the
relative importance of the micro specification errors in the disaggregate model and the
aggregation error in the aggregate model for the explanation and prediction of macro
behavior. The issue of whether one should choose the aggregate or the disaggregate
model cannot be resolved by a priori reasoning alone and has to be settled with respect
to particular problems and in the context of specific models.

5.7 Applications: Employment Demand Functions

in the UK

In this section the methods described in the preceding sections will be applied to the
annual estimates of disaggregate and aggregate employment demand functions for the
UK economy. Although our emphasis will be on the aggregation problem, it is hoped
that the disaggregate results are of some interest in their own right.

Our empirical analysis is based on the Cambridge Growth Project Databank and uses
a consistent set of data on man-hours (EHi), outputs (Yi), and real product wages (Wi)
across 41 industry groups. Details of the data and the sources are given in the Data
Appendix (.1). For the employment equation at the industry level we have adopted the
following fairly general log-linear dynamic specification:

LEHit = βi1/m+ βi2(Tt/m) + βi3LEHi,t−1 + βi4LEHi,t−2 (5.7.1)

+ βi5LYit + βi6LY i, t− 1 + βi7LWit + βi8LWi,t−1

+ βi9(SLY Tt/m) + βi,10(SLY Tt−1/m) + uit,

(i = 1, 2, 3, 5, 6, . . . , 41; t = 1956, 1957, . . . , 1984),

where LEHit is log of man-hours employed in industry i at time t, Tt is time trend
(T1980 = 0), LYit is log of industry i output at time t, LWit is log of average real wage
rate per man-hour employed in industry i at time t, and SLY Tt =

∑41
i=1,i 6=4 LYit. Industry

4 (Mineral oil and natural gas) is excluded from the analysis, on the grounds that output
and employment in this industry were negligible before 1975.

The above specification for the employment demand function can be justified theoret-
ically when employment decisions are made at the industry level by cost minimizing firms
with identical production functions and the same given demand and factor price expecta-
tions. In this framework the inclusion of lagged employment variables can be justified on

8 The problem of measurement errors in a disaggregate model in the special case where m = k = 2 is
discussed by Aigner and Goldfeld (1974).

9 It is beyond the scope of the present paper to go into the reasons for the importance of macro
variables in the explanation of micro behavior. In general they may arise because individual micro
behavioral relations are not independent but are influenced or constrained by outcomes (or expectations
of outcomes) of the market as a whole.
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the grounds of inertia in revision of expectations, adjustment costs involved in hiring and
firing of workers, or aggregation over different labour types. (See, for example, Sargent
(1978) and Nickell (1984).) The variable SLY Tt, which measures the level of aggregate
output (in logs), is a proxy measure intended to capture changes in demand expectations
arising from the perceived interdependence of demand in the economy by the firms in the
industry.10 The time trend is included in the specification in order to allow for the effect
of neutral technical progress on labour productivity.11 Ideally, we would have liked to
avoid using a simple time trend as a proxy for the trend productivity. But, unfortunately,
direct reliable observations on technical change, especially at the industry level are not
available.12 The use of time trends in regression equations with nonstationary variables
also poses a number of important econometric problems and, as shown by Nelson and
Kang (1983), Mankiw and Shapiro (1985, 1986), and Durlauf and Phillips (1986), can
result in biased inferences.13 In view of these measurement and econometric problems
it is not clear how one should proceed to allow for trend changes in labour productivity
on employment demand functions.14 Here, in the absence of direct measures of trend
productivity at the industry level we estimate (5.7.1) with a time trend, but also briefly
report on the effects of omitting the time trends.15

For the aggregate employment function we adopted the following dynamic specifica-
tion:

SLETt = b1 + b2Tt + b3SLETt−1 + b4SLETt−2 + b5SLY Tt (5.7.2)

+ b6SLY Tt−1 + b7SLWTt + b8SLWTt−1 + ut

(t = 1956, 1957, . . . , 1984),

where

SLETt =
41∑

i=1, i 6=4

LEHit, and SLWTt =
41∑

i=1, i 6=4

LWit.

Here we are assuming that the purpose of the study is to explain SLETt, which is the sum
of the logarithms of industry employment (in man-hours). This is clearly different from
the more usual practice of specifying aggregate employment functions in terms of the

10 Apart from the aggregate variable SLY Tt, the employment function (5.7.1) is similar to the equations
estimated by Peterson (1988), as a part of the Cambridge Multisectoral Dynamic Model of the UK
economy. (See Barker and Peterson (1988).

11 Notice that, for the ease of comparison of the aggregate and the disaggregate parameter estimates,
the time trend and the aggregate output variable that are common to all the micro equations are specified
in the ‘average’ form. Clearly this has no effect on the overall fit of the equations for a fixed level of
disaggregation.

12 In their work on aggregate employment demand functions, (?, p. 168) use a production function ap-
proach to obtain an index of labour-augmenting technical progress as a ‘residual’. This approach requires
time series data on capital stock and the share of capital which are not readily available at the indus-
try level. Moreover, since their measure of technical progress is constructed using actual employment,
including it as a regressor in the employment demand function can lead to biased estimates.

13 Notice, however, that in the case of the test of perfect aggregation where the test is justified
asymptotically for a fixed sample size but with an increasing number of micro units, the inclusion of
time trends in the micro equations does not affect the validity of the test.

14 However, see Harvey et al. (1986) where a stochastic specification (a random walk with a drift) is
advanced for trend productivity. In their formulation Tt, is modelled as Tt = a + Tt−1 + εt, where εt is
a white-noise process.

15 The effect of replacing the time trend by other proxies such as distributed lag functions of gross
investment as a way of modelling endogenous technical change à la Kaldor Kaldor (1957, 1961) is discussed
in Lee et al. (1989).
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logarithm of the sum of industry employment. For our purposes the specification (5.7.2)
has the advantage that it fits directly within the theoretical framework of the paper,
and as is pointed out, for example, by Lovell (1973), it also satisfies the Klein-Nataf
consistency conditions. A theoretical analysis of the alternative methods of aggregating
micro specifications such as (5.7.1), and an econometric investigation of the relative merits
of such aggregation methods, are beyond the scope of the present paper.

5.7.1 Results for the economy as a whole

The estimates of the unrestricted version of the industry demand functions (5.7.1) for
the 40 industry groups 1, 2, 3, 5, 6, . . . , 41, over the sample period 1956–84 are set out in
Table 5.1. The estimates of the standard errors of the regression coefficients are given in

the brackets. The Table also includes the adjusted multiple correlation coefficient (R
2
),

the equations’ standard errors (σ̂), the maximised values of the log-likelihood function
(LLF), the Durbin-Watson statistic (DW), the Lagrange multiplier statistic for testing
against second order residual autocorrelation (χ2

SC).



96Table 5.1: Disaggregate Employment Demand Functions (Unrestricted)
(1956–1984)

Industry groups INPT/40 T/40 LYit LYi,t−1 LEHi,t−1 LEHi,t−2 LWit LWi,t−1 SLY Tt/40 SLY Tt−1/40 σ̂ R
2

LLF DW χ2
SC(2)

1. Agriculture, 56.4355 0.0264 0.2538 0.1743 0.5162 0.0152 −0.4196 −0.0073 −0.2408 −0.1762 0.0148 0.9981 87.21 1.9633 0.93
Forestry and Fishing (80.5624) (80.5624) (0.1580) (0.1722) (0.1926) (0.2165) (0.1479) (0.0899) (0.1315) (0.1091) (0.1358)

2. Coal Mining −46.3870 −0.3462 0.2753 −0.4222 1.1160 −0.1770 −0.2095 −0.0670 0.0901 0.0709 0.0159 0.9986 85.11 1.6715 1.07
(60.2401) (0.0742) (0.0362) (0.0600) (0.1186) (0.1076) (0.0356) (0.0615) (0.1188) (0.1315)

3. Coke −334.1719 −1.4903 −0.0190 0.5195 0.1201 −0.1380 −0.3478 0.0845 0.9039 0.2270 3.3499 0.9763 54.48 2.4823 0.05
(89.0939) (0.3678) (0.1169) (0.2007) (0.1636) (0.1091) (0.0762) (0.0998) (0.3324) (0.3801)

4. Mineral Oil and — — — — — — — — — — — — — — —
Natural Gas

5. Petroleum −438.0316 −0.7008 0.3845 −0.4844 0.5455 0.1274 −0.2769 −0.0819 0.7001 0.7214 0.0580 0.9136 47.53 1.9463 0.68
Products (286.8173) (0.2349) (0.3395) (0.3300) (0.2211) (0.2427) (0.1085) (0.1570) (0.7530) (0.7879)

6. Electricity, etc. 91.2396 −0.2074 0.2053 0 : 2029 1.1513 −0.6629 −0.1465 −0.0588 −0.1838 −0.1144 0.0205 0.9855 77.73 2.0344 0.41
(69.2323) (0.2179) (0.2592) (0.3127) (0.2277) (0.2021) (0.0937) (0.1039) (0.2523) (0.2579)

7. Public Gas −103.6365 −0.4472 −0.1297 0.1423 0.4114 0.1617 −0.2605 0.1188 0.2816 0.3240 0.0329 0.9707 63.97 2.2360 2.99
Supply (116.3665) (0.2799) (0.2341) (0.2165) (0.2288) (0.1842) (0.0962) (0.1212) (0.2945) (0.2682)

8. Water Supply 42.9711 0.0492 0.6751 −0.8120 0.8817 −0.0969 −0.3652 0.3937 −0.5947 0.7993 0.0448 0.9149 55.07 1.8170 0.90
(76.4264) (0.3303) (0.5110) (0.5967) (0.2256) (0.1862) (0.1664) (0.1806) (0.4200) (0.3770)

9. Minerals and Ores 197.0285 −0.0037 0.2785 0.0091 0.4998 0.1898 −0.1741 0.0437 −0.5639 −0.0421 0.0342 0.9722 62.89 2.0457 0.72
(119.2942) (0.1311) (0.1428) (0.1517) (0.2283) (0.1899) (0.0814) (0.0971) (0.4006) (0.3775)

10. Iron and Steel −349.9418 −0.9245 0.1361 0.0248 0.4620 −0.0029 −0.4526 0.0666 0.9679 0.2003 0.0279 0.9925 68.77 1.9940 0.85
(110.1168) (0.3780) (0.1031) (0.0976) (0.2354) (0.1512) (0.1087) (0.1491) (0.3587) (0.4190)

11. Non-Ferrous −58.6696 −0.4029 0.1387 −0.2285 1.3339 −0.5140 −0.0696 0.0623 0.8235 −0.4050 0.0251 0.9863 71.84 2.2252 1.69
Metals (38.5798) (0.2149) (0.1359) (0.1414) (0.1682) (0.1418) (0.0549) (0.0592) (0.2501) (0.2939)

12. Non-Metallic −389.8347 −0.5395 0.3985 −0.2419 0.5945 0.0854 −0.3173 −0.1961 0.4744 0.4906 0.0179 0.9933 81.72 2.3446 3.62
Mineral Products (116.1591) (0.2589) (0.1690) (0.1680) (0.2070) (0.1785) (0.1212) (0.1348) (0.3233) (0.3838)

13. Chemicals and −159.1132 −0.0882 0.0983 0.1058 0.2440 0.2676 −0.2988 −0.1215 0.3032 0.2011 0.0158 0.9789 85.22 2.2664 5.28
Manmade Fibres (71.0291) (0.1744) (0.1607) (0.1596) (0.2123) (0.1780) (0.0923) (0.1146) (0.3051) (0.2983)

14. Metal Goods −31.2352 −0.2375 0.2866 0.0653 0.6460 −0.0954 −0.1761 0.0345 0.3585 −0.2214 0.0207 0.9858 77.48 2.1717 5.66
(54.8630) (0.2189) (0.1359) (0.1618) (0.2287) (0.1537) (0.1164) (0.1288) (0.3055) (0.3215)

15. Mechanical −131.8896 0.1976 0.5334 −0.2266 0.4505 −0.1080 −0.2575 −0.3748 −0.0908 0.5055 0.0144 0.9912 87.94 2.0471 3.81
Engineering (56.4251) (0.1567) (0.1187) (0.1038) (0.2068) (0.1457) (0.1193) (0.1400) (0.1860) (0.1974)

16. Office Machinery, −397.5477 0.2032 0.2159 −0.0564 1.0066 0.1224 −0.6515 −0.1085 0.3853 −0.0189 0.0303 0.9166 66.37 1.7819 2.05
etc. (147.5041) (0.3070) (0.0947) (0.1499) (0.2501) (0.2832) (0.1613) (0.2020) (0.2938) (0.3014)

17. Electrical 11.0264 −0.3711 0.4461 −0.2587 1.0101 −0.2373 −0.4120 0.4282 0.1741 −0.1295 0.0179 0.9678 81.67 2.2173 2.73
Engineering (35.8630) (0.2243) (0.1248) (0.1853) (0.2172) (0.1463) (0.1355) (0.1440) (0.2172) (0.2073)

18. Motor Vehicles −210.7119 −0.2799 0.5063 −0.3633 0.8391 −0.1636 −0.0568 −0.1675 0.5151 0.1640 0.0192 0.9867 79.67 2.3117 2.34
(61.6410) (0.1336) (0.0718) (0.1230) (0.1883) (0.0946) (0.1000) (0.1043) (0.2088) (0.2397)

19. Aerospace 200.2420 −0.7488 0.0710 0.0468 0.5991 −0.3688 −0.0085 −0.1422 −0.2225 −0.2250 0.0284 0.9864 68.28 2.0370 1.17
Equipment (98.6992) (0.1808) (0.0821) (0.2238) (0.2001) (0.0921) (0.0879) (0.2480) (0.2600)

20. Ships and Other −159.2346 0.2741 0.6650 −0.3609 1.1618 −0.1246 −0.0186 −0.0490 0.6358 −0.5276 0.0302 0.9840 66.47 2.2101 2.48
Vessels (63.9773) (0.2704) (0.1660) (0.1540) (0.2077) (0.2075) (0.0808) (0.0921) (0.2322) (0.2384)

21. Other Vehicles −127.8464 −0.4292 0.2594 0.0648 0.8089 −0.0679 −0.1583 0.0360 0.1202 0.1451 0.0258 0.9969 71.09 1.9994 1.32
(84.5230) (0.2006) (0.1060) (0.1115) (0.2445) (0.2152) (0.0656) (0.0669) (0.1989) (0.2126)

(continued)
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Table 5.1: Continued

Industry groups INPT/40 T/40 LYit LYi,t−1 LEHi,t−1 LEHi,t−2 LWit LWi,t−1 SLY Tt/40 SLY Tt−1/40 σ̂ R
2

LLF DW χ2
SC(2)

22. Instrument −102.7548 −0.2292 −0.0485 −0.1541 0.6941 −0.1319 −0.2264 0.1475 0.5565 0.2893 0.0246 0.9311 72.37 1.7674 0.81
Engineering (86.1619) (0.1516) (0.2108) (0.1699) (0.2304) (0.2037) (0.1196) (0.1373) (0.2681) (0.3691)

23. Manufactured −209.2242 −0.4900 0.7273 0.0656 0.2394 0.2501 −0.1577 −0.0753 0.0340 0.0808 0.0174 0.9816 82.49 1.7024 4.77
Food (138.5611) (0.2336) (0.3465) (0.2334) (0.2303) (0.1746) (0.0869) (0.1211) (0.1695) (0.1486)

24. Alcoholic Drinks, 101.6376 −0.6943 0.5685 −0.0005 0.8466 −0.2612 −0.0878 0.0948 −0.2328 −0.2029 0.0282 0.9152 68.45 2.0663 2.53
etc. (121.3637) (0.3435) (0.4859) (0.4296) (0.2624) (0.2854) (0.1068) (0.1051) (0.4551) (0.4300)

25. Tobacco −300.3142 −0.2605 0.7063 −0.2275 0.8345 0.4788 0.0238 −0.0569 −0.6541 0.8452 0.0496 0.8803 52.10 2.3769 5.28
(126.6923) (0.4339) (0.4676) (0.5169) (0.2947) (0.3493) (0.0730) (0.0907) (0.5131) (0.4385)

26. Textiles −127.5754 0.1293 0.4654 −0.1376 0.5979 0.0464 −0.4302 0.0292 0.1772 −0.0316 0.0186 0.9979 80.59 2.2309 2.33
(62.4817) (0.5631) (0.1663) (0.1515) (0.2123) (0.1390) (0.0970) (0.1446) (0.3237) (0.2984)

27. Clothing and −59.4303 −0.1340 0.4585 0.0217 0.5867 −0.0346 −0.4004 0.1067 −0.0342 0.0194 0.0118 0.9981 93.85 2.0674 0.26
Footwear (26.3298) (0.2073) (0.1154) (0.1572) (0.2160) (0.1428) (0.0833) (0.1092) (0.1568) (0.1683)

28. Timber and 33.7633 −0.5183 0.2993 −0.0213 0.3362 −0.1005 −0.2491 0.1186 0.1765 0.1864 0.0140 0.9859 88.71 1.9694 1.53
Furniture (44.1269) (0.1714) (0.0895) (0.1248) (0.2314) (0.1190) (0.0853) (0.0892) (0.2467) (0.2876)

29. Paper and Board −17.8043 −0.2271 0.5324 0.3381 0.1236 0.1281 −0.2353 −0.0844 −0.1617 −0.0889 0.0200 0.9921 78.36 2.2984 4.73
(37.0048) (0.1687) (0.1528) (0.1761) (0.2513) (0.1320) (0.0722) (0.1120) (0.3221) (0.2940)

30. Books, etc. 106.4095 0.0419 0.3518 −0.0926 1.2912 −0.6039 −0.0640 −0.0395 −0.1222 −0.1749 0.0124 0.9296 92.29 2.2104 3.23
(41.1675) (0.0468) (0.1167) (0.1381) (0.2215) (0.1718) (0.0611) (0.0649) (0.1968) (0.1937)

31. Rubber and Plastic −124.2511 −0.6223 0.1943 −0.0152 0.4938 0.1046 −0.2650 0.2121 0.5905 −0.0211 0.0176 0.9811 82.18 2.1726 7.97
Products (52.6895) (0.2588) (0.2485 (0.2093) (0.2227) (0.1469) (0.1171) (0.1475) (0.4566) (0.3819)

32. Other Manufactures 202.2515 −0.4204 0.1757 0.1393 0.5916 −0.0512 0.0166 0.1451 0.3999 −0.7045 0.0134 0.9921 90.08 1.9558 0.90
(80.7245) (0.1658) (0.0858) (0.1148) (0.1755) (0.0985) (0.0939) (0.0967) (0.1678) (0.1813)

33. Construction 84.3552 −0.0906 0.3618 −0.2488 1.1406 −0.3369 −0.2854 0.3684 0.1373 −0.2078 0.0174 0.9709 82.53 1.5347 1.84
(48.6187) (0.0723) (0.1301) (0.1453) (0.1571 (0.1199) (0.1122) (0.1105) (0.1798) (0.1962)

34. Distribution, etc. 111.7644 0.5543 0.0254 0.5177 0.6887 −0.1943 −0.2772 −0.1398 −0.0449 −0.5522 0.0142 0.9587 88.44 2.2835 2.14
(46.6165) (0.2857) (0.1910) (0.2715) (0.2281) (0.1634) (0.1209) (0.1452) (0.1750) (0.2230)

35. Hotels and 131.717 0.1650 0.2394 0.1746 0.6033 −0.1807 −0.3824 0.2140 −0.0718 −0.1783 0.0209 0.9077 77.22 1.9588 0.30
Catering (132.1092) (0.1157) (0.2469) (0.3314) (0.2542) (0.2362) (0.1426) (0.1300) (0.2039) (0.1910)

36. Rail Transport 9.2868 −0.0880 0.0969 0.311 0.8301 −0.0399 −0.0821 0.0953 −0.0469 −0.1113 0.0253 0.9952 71.59 1.9033 3.80
(135.1609) (0.1796) (0.1543) (0.1906) (0.2087) (0.2156) (0.1427) (0.1388) (0.2911) (0.2803)

37. Other Land 141.1240 −0.4169 0.0524 0.1751 0.9730 −0.5159 −0.0200 0.0269 0.1628 −0.1715 0.0170 0.9724 83.11 2.4060 5.29
Transport (74.6539) (0.1293) (0.1457) (0.1818) (0.2248) (0.2020) (0.0599) (0.0638) (0.1645) (0.1545)

38. Sea, Air, and Other 8.3655 −0.112 0.3135 −0.3582 1.1912 −0.4875 −0.2868 0.1941 −0.1525 0.4478 0.0216 0.9254 76.26 2.2168 1.04
(132.0896) (0.1340) (0.1866) (0.1944) (0.1884) (0.2454) (0.1370) (0.1291) (0.2147) (0.2436)

39. Communications 72.2461 −0.4312 0.6876 −0.5043 0.7816 −0.2629 −0.1278 0.2150 0.0045 0.2006 0.0178 0.9392 81.85 2.3222 2.15
(57.0163) (0.2596) (0.2987) (0.2480) (0.1689) (0.1616) (0.0851) (0.0879) (0.2004) (0.1648)

40. Business Services −0.2212 0.0139 0.9929 88.96 .1808 1.79
(131.8402) (0.3506) (0.1452) (0.1485) (0.2703) (0.2248) (0.0839) (0.0783) (0.1145) (0.1257)

41. Miscellaneous 41.4060 0.2004 0.2764 −0.2928 0.8375 0.0023 −0.1728 0.0470 −0.0622 0.0803 0.0240 0.9429 73.10 1.6954 2.48
Services (241.2260) (0.3980) (0.2071) (0.2149) (0.2620) (0.2789) (0.1434) (0.1433) (0.2152) (0.1956)

Notes. For source of data see the Appendix (.1). Standard errors in brackets. σ̂ is equation standard error, R
2

is adjusted
multiple correlation coefficient, LLF is the maximised value of the log-likelihood function, DW is the Durbin-Watson statistic,
and χ2

SC(2) is the Lagrange multiplier test against second order residual serial correlation.
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The results are in general quite satisfactory: the equations fit reasonably well, and the

value of R
2

for the majority of the industries is well above 0.95. Only in the case of the
tobacco industry does it fall below 0.90. With the exception of the estimates for industry
31 (Rubber and Plastic Products), the results do not show significant evidence of residual
serial correlation. The parameter estimates, when statistically significant, have signs that
are a priori plausible. The short run elasticities of employment with respect to real wages
and output are generally well determined and have the correct signs. The (current) real
wage variable is significant at the five percent level in 23 out of the 40 industry groups, and
the (current) output variable is significant in 17 of the industries. Notice also that the few
incorrectly signed estimates obtained for the real wage and the output variables are not
statistically significant, even at the 10 percent level of significance using a one-tailed test.
Overall the results provide further evidence in support of the view that both the demand
and the product wage variables are significant determinants of changes in employment,
although, as is already stressed by Peterson (1988), in the case of most industries changes
in demand have been historically more important than changes in product wages in the
explanation of employment changes.
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Table 5.2: Disaggregate Employment Demand Functions (Restricted)
(1956–1984)

Industry groups INPT/40 T/40 LYit LYi,t−1 LEHi,t−1 LEHi,t−2 LWit LWi,t−1 SLY Tt/40 SLY Tt−1/40

1. Agriculture, 52.1517 — 0.2687 0.1752 0.5312 — −0.4211 — −0.2437 −0.1729
Forestry and Fishing (64.9478) (0.1375) (0.1121) (0.0589) (0.0821) (0.0981) (0.1088)

2. Coal Mining 41.2000 −0.3502 0.2734 −0.4181 1.1604 −0.2648 −0.2018
(14.3416) (0.0670) (0.0345) (0.0589) (0.0811) (0.0765) (0.0296)

3. Coke −351.5712 −1.3100 — 0.6330 — — −0.3005 — 1.0448 —
(44.6561) (0.1752) (0.1471) (0.0418) (0.1564)

4. Mineral Oil and — — — — — — — — — —
Natural Gas

5. Petroleum −70.7959 −0.5087 0.3640 — 0.5185 −0.3144 — — —
Products (71.7711) (0.1297) (0.1324) (0.1348) (0.0869)

6. Electricity, etc. 18.5225 — 0.1614 — 1.2739 −0.5958 −0.1732 — — —
(14.6976) (0.0798) (0.1744) (0.1563) (0.0687)

7. Public Gas −47.1096 −0.6014 — 0.0611 0.4191 — −0.1507 — 0.5379 —
Supply (97.2188) (0.1995) (0.0659) (0.1524) (0.0496) (0.1827)

8. Water Supply 8.1676 — 0.6536 −0.6536 0.8112 — −0.4027 0.4027 −0.6415 0.7906
(18.9241) (0.4042) (0.4042) (0.0785) (0.1086) (0.1086) (0.3085) (0.3064)

9. Minerals and Ores 172.9158 — 0.2655 — 0.6931 — −0.1494 — −0.5337 —
(79.1246) (0.1265) (0.0790) (0.0622) (0.2560)

10. Iron and Steel −349.9558 −0.9045 0.1083 — 0.4978 — −0.3873 1.1803 —
(58.8686) (0.2732) (0.0893) (0.0832) (0.0777) (0.2928)

11. Non-Ferrous −84.8257 −0.5749 0.1817 −0.3091 1.2461 −0.4796 −0.0756 0.0756 0.5854 —
Metals (30.7245) (0.1517) (0.1286) (0.1273) (0.1458) (0.1229) (0.0481) (0.0481) (0.1789)

12. Non-Metallic −280.5702 −0.3729 0.3101 — 0.6919 — −0.2356 −0.2214 0.5170 —
Mineral Products (60.6439) (0.2148) (0.1511) (0.0877) (0.1075) (0.0959) (0.2901)

13. Chemicals and −125.0557 — — — 0.6205 — −0.2810 — 0.6049 —
Manmade Fibres (23.8339) (0.0693) (0.0337) (0.0773)

14. Metal Goods −32.2448 −0.1231 0.4365 — 0.5798 — −0.1671 — — —
(25.5280) (0.0976) (0.0444) (0.0542) (0.0817)

15. Mechanical −149.7049 — 0.4122 −0.1779 0.3215 — −0.3100 −0.2725 — 0.6080
Engineering (38.5546) (0.0584) (0.0977) (0.1093) (0.0868) (0.1104) (0.1488)

16. Office Machinery −3.4674 — 0.1694 −0.1694 1.2748 −0.3244 −0.3884 0.3123 — —
etc. (22.7537) (0.0865) (0.0865) (0.2004) (0.1800) (0.1379) (0.1344)

17. Electrical 2.5709 −0.3785 0.5239 −0.2827 0.9582 −0.1929 −0.4143 0.4027 — —
Engineering (32.7774) (0.2110) (0.0757) (0.1276) (0.1935) (0.1228) (0.1259) (0.1295)

18. Motor Vehicles −184.6112 −0.2365 0.4908 −0.3811 0.9237 −0.1783 — −0.1843 0.5856 —
(50.0625) (0.1093) (0.0629) (0.1093) (0.1610) (0.0897) (0.0713) (0.1774)

19. Aerospace 200.3920 −0.6788 0.0732 — 0.7560 −0.4659 — −0.1252 — —
Equipment (53.1219) (0.1586) (0.0654) (0.1659) (0.1440) (0.0674)

20. Ships and Other −0.7667 — 0.4809 −0.4809 1.4717 −0.4717 — — 0.5103 −0.5103
Vessels (0.3086) (0.1171) (0.1171) (0.1543) (0.1543) (0.2000) (0.2000)

21. Other Vehicles −132.1537 −0.4754 0.3130 — 0.7270 — −0.1432 — — 0.2845
(54.3892) (0.1730) (0.0729) (0.0884) (0.0462) (0.1069)

(continued)
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Industry groups INPT/40 T/40 LYit LYi,t−1 LEHi,t−1 LEHi,t−2 LWit LWi,t−1 SLY Tt/40 SLY Tt−1/40

22. Instrument −11.3576 −0.3580 0.3611 — 0.5319 — −0.2624 — — —
Engineering (44.4947) (0.1353) (0.1005) (0.1253) (0.1134)

23. Manufactured −172.1572 −0.4510 0.6697 — 0.3177 0.2237 −0.1962 — — 0.1157
Food (76.0519) (0.1973) (0.1734) (0.1742) (0.1560) (0.0645) (0.1233)

24. Alcoholic Drinks, −15.1802 −0.4844 0.2933 — 0.7283 — −0.0945 0.0591 — —
etc. (73.4889) (0.1411) (0.1167) (0.1239) (0.0919) (0.0882)

25. Tobacco −213.3698 −0.3959 0.7424 — 0.7367 0.2633 — — — —
(80.8449) (0.1161) (0.2840) (0.2225) (0.2225)

26. Textiles −68.1499 — 0.5278 −0.1236 0.5880 — −0.3428 — — —
(10.0202) (0.0546) (0.0754) (0.0600) (0.0465)

27. Clothing and −68.9489 — 0.4514 — 0.5364 — −0.3756 — — —
Footwear (11.9600) (0.0372) (0.0411) (0.0284)

28. Timber and 60.3105 −0.3017 0.3769 — 0.4312 — −0.2460 0.1493 — —
Furniture (20.9479) (0.0788) (0.0365) — (0.0582) — (0.0662) (0.0740)

29. Paper and Board −44.7394 −0.3259 0.4680 0.1585 0.3644 — −0.2503 — — —
(13.2869) (0.1040) (0.0652) (0.0925) (0.0842) (0.0433)

30. Books, etc. 58.9250 — 0.2973 −0.2575 1.4842 −0.7029 −0.0454 — — —
(20.8186) (0.0583) (0.0592) (0.1686) (0.1518) (0.0482)

31. Rubber and Plastic −64.4432 −0.3192 0.5398 −0.1401 0.6844 — −0.1820 — — —
Products (14.2846) (0.1872) (0.0588) (0.0963) (0.0818) (0.1007)

32. Other Manufactures 60.3555 −0.3233 0.2345 — 0.6028 — — — 0.4274 −0.4274
(20.0274) (0.0653) (0.0435) (0.0933) (0.1287) (0.1287)

33. Construction 7.2409 — 0.5490 −0.4527 1.0813 −0.2453 −0.4434 0.3376 — —
(20.5598) (0.0828) (0.0863) (0.1559) (0.1135) (0.0822) (0.1096)

34. Distribution, etc. 109.9863 0.3892 — 0.5034 0.5641 — −0.3036 — — −0.5578
(43.3346) (0.2057) (0.1964) (0.0884) — (0.1187) — — (0.1655)

35. Hotels and −58.7494 — 0.3544 — 0.7096 — −0.3876 0.1959 — —
Catering (44.4425) (0.1150) (0.1022) (0.1191) (0.1094)

36. Rail Transport −65.1073 — — 0.4070 0.8047 — −0.0729 — — —
(26.2802) (0.0979) (0.0532) (0.0531)

37. Other Land 146.4317 −0.4542 — 0.2451 0.9023 −0.4855 — — — —
Transport (37.8129) (0.1047) (0.0701) (0.1931) (0.1838)

38. Sea, Air, and Other 48.5900 −0.1921 0.1924 — 1.1919 −0.5542 −0.0853 — — —
(104.9126) (0.1054) (0.1634) (0.1741) (0.2189) (0.0683)

39. Communications 14.3221 −0.6566 0.9014 −0.4533 0.8261 −0.2785 −0.1686 0.1565 — —
(41.3966) (0.2354) (0.1808) (0.1966) (0.1727) (0.1579) (0.0822) (0.0807)

40. Business Services 209.6513 — 0.3108 — 0.6781 −0.3104 — — — −0.1633
(49.1545) (0.0718) (0.1759) (0.1680) (0.0486)

41. Miscellaneous −39.9043 — 0.2123 — 0.8264 — −0.1408 — — —
Services (33.3057) (0.0790) (0.0970) (0.0747)

For source of data see the Data Appendix (.1). The standard errors are in brackets. The relevant summary and diagnostic
statistics are given in Table 5.3.



M. H. Pesaran, R. G. Pierse, M. S. Kumar / Econometric analysis of aggregation 101

As far as the time trends are concerned they are significant at the five percent level only
in 12 of the industry estimates, and there are no cases where the coefficient of the time
trend is positive and statistically significant. In fact omitting the time trend variable
from the analysis in general proved to have only a marginal effect on the coefficient
estimates and the significance of the real wage and the output variables.16 The results
in Table 5.1 are, however, subject to two important shortcomings: in many cases they
seem to be over-parameterised, and the estimates for the industries 16 (Office Machinery,
etc.), 20 (Ships and Other Vessels), and 25 (Tobacco) are unstable.17 To deal with these
shortcomings we estimated a restricted version of the industry employment functions by
imposing suitable linear restrictions on the coefficients of (5.7.1). The coefficient estimates
of this ‘restricted’ specification and their estimated standard errors are summarised in
Table 5.2. The chi-squared statistics for testing the validity of the restrictions together
with a number of important diagnostic statistics for tests of misspecification arising from
residual serial correlation, functional form, nonnormal errors, and heteroscedasticity are
given in Table 5.3. These results are generally more satisfactory than the unrestricted
versions. The parameter restrictions cannot be rejected, and only in the case of a very
few of the industries do diagnostic statistics indicate that the regression equations are
likely to be misspecified.18 Also note that the restricted estimates for the industries 16,
20, and 25 are no longer unstable, although the equations for the latter two industries are
specified in first differences and do not possess long run solutions. The long run elasticities
of employment with respect to output and real wages for the 38 industries that do have
long run solutions are displayed graphically in Figures 5.1 and 5.2, respectively. Although
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Figure 5.1: Histogram of the long run elasticities of employment with respect to output
in different industries.

16 The effects of omitting the time trend variable on the coefficient estimates were particularly marked
only in the case of industries 2, 3, 5, 10, 24, 32, and 37.

17 The autoregressive parts of the regressions for these three industries have unstable roots.
18 The results in Table 5.2 are also of some interest insofar as they show evidence of significant aggregate

output effects on employment demand at the industry level. See footnote 10.
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Figure 5.2: Histogram of the long run elasticities of employment with respect to real
wages in different industries.

there is still a great deal more room for improving the results by, for example, including
‘industry specific’ variables in the employment demand functions, we believe that the
results obtained so far provide a reasonable basis for the application of the methods
developed in this paper to the restricted and unrestricted disaggregate results and those
that can be obtained by the direct estimation of the aggregate specification (5.7.2). For
the unrestricted estimate of (5.7.2) we obtained

SLETt = −136.50− 0.0217Tt + 0.5862SLETt−1 (5.7.3)

(51.47) (0.0861) (0.2274)

+ 0.0819SLETt−2 + 0.4817SLY Tt + 0.0088SLY Tt−1

(0.1833) (0.0670) (0.1253)

−0.3508SLWTt − 0.0334SLWTt−1 + ûit,

(0.0799) (0.0955)

LLF − 7.77, R
2

= 0.9958, σ̂ = 0.3717,

DW = 2.06, n = 29, χ2
SC(1) = 0.88,

χ2
FF (1) = 0.6279, χ2

N(2) = 4.86, χ2
H(1) = 1.48.

The notations are as before, and the test statistics χ2
SC , χ2

FF , χ2
N , and χ2

H are already
defined at the foot of Table 5.3. This aggregate specification passes all the tests and has
reasonable short run and long run properties. However, it is again over-parameterised.
The coefficients of Tt, SLETt−1, SLY Tt−1, and SLWTt−1 are statistically insignificant
whether considered singly or jointly. The chi-squared statistic for the joint test of zero
restrictions on the coefficients of these variables was equal to 0.53. So we also estimated
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the following restricted version of (5.7.2):

SLETt = −134.07 + 0.6956SLETt−1 + 0.4611SLY Tt (5.7.4)

(15.22) (0.0417) (0.0457)(51.47)

−0.3718SLWTt + ûit,

(0.0354)

LLF = −8.39, R
2

== 0.9963, σ̂ = 0.3481,

DW = 2.27, n = 29, χ2
SC(1) = 0.65,

χ2
FF (1) = 0.86, χ2

N(2) = 5.53, χ2
H(1) = 2.20.

The coefficient estimates are all well determined and imply long run elasticities of aggre-
gate employment with respect to output and real wages of 1.52 and −1.22, respectively.19

The long run real wage elasticity is only marginally different from the value of −0.92
reported recently by ? and (Nickell, 1984, p. 177) for the U.K. This similarity is espe-
cially striking considering the differences that exist between the two analyses as far as
the aggregation procedure, the specification of employment function, and the estimation
periods are concerned.

We are now in a position to compare the disaggregate and the aggregate results. As far
as the in-sample ‘predictive’ performance of the aggregate and the disaggregate models
is concerned, we computed the s2

d criterion (as defined by (5.4.2) for the unrestricted
and the restricted versions of the disaggregate model. These were 0.1091 and 0.1000
respectively, thus providing evidence of a slightly better fit for the restricted version of
the disaggregate model.20 The value of the goodness-of-fit criterion for the aggregate
equations (5.7.3) and (5.7.4) were equal to 0.1382 and 0.1211, respectively. These results
are summarised in Table 5.4, where the uncorrected GG criterion (the first term on the

19 To check for the possible effect of the simultaneous determination of output, employment, and
real wages on the OLS estimates, we also estimated (5.7.4) by the instrumental variable method using
zt = {1, SLETt−1, SLETt−2, SLY Tt−1, SLY Tt−2, SLWTt−1, SLWTt−2} as instruments. We obtained
the following results:

SLETt = −137.01 + +0.6840SLETt−1 + 0.4745SLY Tt − 0.3830SLWTt + ûit,

(20.70) (0.0569) (0.0708) (0.0540)

R
2

= 0.9963, σ̂ = 0.3487, DW = 2.25, n = 29,

χ2
SC(1) = 0.56, χ2

FF (1) = 0.07, χ2
N (2) = 4.15, χ2

H(1) = 2.18,

which differ only marginally from the OLS results. In fact the Wu-Hausman statistic (T2 statistic in Wu
(1973)), for the test of the ‘exogeneity’ of SLY Tt and SLWTt in (5.7.4), using zt as the instruments,
was equal to 0.112, which is well below the 5 percent critical value of the F distribution with 2 and 23
degrees of freedom.

20 Notice that in general there is no reason to believe that the restricted model should perform better
than the unrestricted model as far as the s2

d criterion is concerned. Although it is true that the imposition
of statistically ‘acceptable’ linear restrictions on the parameters of the micro equations, such as omitting
one or more variables from the micro equations whose t or F values are less than unity, lowers the
estimates of σii, the same is not true of the estimates of the contemporaneous covariances, σij , i 6= j.
As a result the effect of parameter restrictions on

s2
d =

m∑
i=1

σ̂ii + 2
∑
i>j

σ̂ij

will, in general, be ambiguous.
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Table 5.3: Summary and Diagnostic Test Statistics for the Restricted Employment
Equations

(1956–1984)

Industry groups R
2

χ2
r σ̂ χ2

SC(1) χ2
FF (1) χ2

N(2) χ2
H(1)

1. Agriculture, Forestry and Fishing .9983 0.04(3) 0.0137 0.01 7.25 0.39 2.25
2. Coal Mining .9986 3.72(3) 0.0158 0.84 0.91 0.32 0.05
3. Coke .9771 5.20(5) 0.0449 0.24 0.67 0.27 1.87
4. Mineral Oil and Natural Gas — — — — — — —
5. Petroleum Products .9178 4.89(5) 0.0566 0.48 0.01 1.83 0.85
6. Electricity, etc. .9876 2.19(5) 0.0190 0.17 1.26 0.18 0.12
7. Public Gas Supply .9719 3.97(4) 0.0322 1.29 0.00 4.86 1.42
8. Water Supply .9279 0.73(4) 0.0412 1.67 0.00 0.47 1.05
9. Minerals and Ores .9760 2.40(5) 0.0318 1.36 0.16 32.70 0.00
10. Iron and Steel .9933 2.49(4) 0.0265 0.08 0.19 1.42 0.43
11. Non-Ferrous Metals .9864 2.63(2) 0.0250 0.01 3.47 0.20 1.89
12. Non-Metallic Mineral Products .9935 3.44(3) 0.0177 1.11 0.23 0.76 3.15
13. Chemicals and Manmade Fibers .9795 6.27(6) 0.0156 3.51 1.80 0.96 1.14
14. Metal Goods .9877 2.37(5) 0.0192 0.09 0.27 0.38 1.00
15. Mechanical Engineering .9913 3.64(3) 0.0143 0.93 0.10 0.02 0.73
16. Office Machinery, etc. .8922 10.47(4) 0.0345 0.05 2.68 7.24 5.05
17. Electrical Engineering .9698 1.02(2) 0.0173 0.33 0.11 2.19 2.29
18. Motor Vehicles .9874 1.29(2) 0.0186 1.55 8.92 3.89 0.01
19. Aerospace Equipment .9878 2.21(4) 0.0268 0.90 0.30 1.81 1.30
20. Ships and Other Vessels .9817 9.70(6) 0.0323 0.45 0.61 0.40 4.46
21. Other Vehicles .9973 1.69(4) 0.0241 0.01 0.81 0.17 0.04
22. Instrument Engineering .9250 7.92(5) 0.0257 0.47 3.07 0.01 0.84
23. Manufactured Food .9837 0.85(3) 0.0164 1.69 2.78 1.33 4.38
24. Alcoholic Drinks, etc. .9232 2.56(4) 0.0269 1.32 0.02 0.94 2.06
25. Tobacco .8796 7.09(6) 0.0497 0.25 8.22 0.65 7.62
26. Textiles .9981 3.18(5) 0.0175 0.05 4.46 0.74 5.09
27. Clothing and Footwear .9984 3.76(6) 0.0110 0.36 1.92 0.62 0.03
28. Timber and Furniture .9864 4.24(4) 0.0138 0.00 2.43 1.34 0.30
29. Paper and Board .9927 2.86(4) 0.0192 1.09 1.33 1.74 4.41
30. Books, etc. .9306 4.69(4) 0.0123 1.70 0.01 0.14 0.44
31. Rubber and Plastic Products .9818 4.73(4) 0.0173 0.21 1.59 0.96 1.03
32. Other Manufactures .9917 7.18(5) 0.0137 0.37 0.21 1.12 0.00
33. Construction .9689 5.54(3) 0.0179 5.00 2.34 1.62 1.00
34. Distribution, etc. .9580 5.44(4) 0.0143 0.49 0.02 0.94 2.06
35. Hotels and Catering .9169 3.49(5) 0.0198 0.58 1.88 0.45 0.63
36. Rail Transport .9960 2.36(6) 0.0230 0.28 0.00 1.27 1.98
37. Other Land Transport .9747 4.04(5) 0.0163 0.02 1.23 0.64 2.71
38. Sea, Air, and Other .9155 7.87(4) 0.0229 0.27 4.31 0.39 2.75
39. Communications .9351 4.42(2) 0.0184 1.56 0.48 0.14 1.81
40. Business Services .9940 1.81(5) 0.0128 0.98 2.01 1.98 0.17
41. Miscellaneous Services .9512 3.21(6) 0.0222 0.06 0.47 0.39 1.91

Notes : χ2
r is the chi-squared statistic for the test of r linear restrictions on

the parameters of unrestricted employment equations (see Table 5.1). The
value of r is given in brackets after the statistic. χ2

SC(1) is the first order LM
test of residual serial correlation. χ2

FF (1) is Ramsey’s RESET test of order 1.
χ2
N(2) is a test of normality of the errors. χ2

H(1) is a heteroscedasticity test of

order 1. σ̂ is equation’s standard error. R
2

is the adjusted multiple correlation
coefficient. The underlying regressions and the test statistics reported in this
table are computed on Data-FIT package. For details of relevant algorithms
and references, see Pesaran and Pesaran (1987a).
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right-hand side of (5.4.6) is also reported in brackets. On the basis of the proposed choice
criterion the restricted as well as the unrestricted versions of the disaggregate model are
preferable to the aggregate equation. The computation of the statistic for the test of
perfect aggregation defined by (5.5.7) also provided additional support in favour of the
disaggregate model. In the case of the unrestricted version the value of this test statistic
was equal to 81.66, which is approximately distributed as a χ2

29, thus firmly rejecting
the hypothesis of perfect aggregation. This is also clearly reflected in the estimates of
the long run elasticities obtained from the disaggregate and the aggregate results. For
example, concentrating on the restricted versions of the employment functions, the long
run elasticity of aggregate employment with respect to output based on the disaggregate
results (Table 5.2) turned out to be equal to 0.724 as compared with the figure of 1.52
obtained using the aggregate specification (5.7.4).21 Similarly the long run elasticity
of aggregate employment with respect to real wages based on the disaggregate results
was equal to −0.4551 as compared with the estimate of −1.22 based on the aggregate
specification (5.7.4). These results clearly suggest the existence of important upward bias
in the estimates of output and real wage elasticities of employment demand obtained in
the literature using an economy wide aggregate specification.

5.7.2 Results for the Manufacturing Industries

Having rejected the aggregate employment function in favour of the disaggregate model,
the question of what the appropriate level of disaggregation should be naturally arises.
One possibility would be to repeat the above analysis for all possible levels of disaggre-
gation. Here in the way of illustration we only consider the problem in the case of the
manufacturing industries. The disaggregate results for this industry grouping are given
by the industries labelled 10 to 32 inclusive in Tables 5.1 and 5.2. We also obtained the
following estimates of the unrestricted and the restricted employment demand functions
for the manufacturing sector as a whole:

SLEMt = −65.58− 0.0039Tt + 0.7491SLEMt−1 (5.7.5)

(22.19) (0.0565) (0.2211)

−0.0162SLEMt−2 + 0.4933SLYMt − 0.0897SLYMt−1

(0.1655) (0.0531) (0.1170)

−0.2979SLWMt − 0.0148SLWMt−1 + ûit,

(0.0659) (0.0837)

LLF7.20, R
2

= 0.9968, σ̂ = 0.2218, DW = 2.21, n = 29,

χ2
SC(1) = 4.56, χ2

FF (1) = 0.01, χ2
N(2) = 0.24, χ2

H(1) = 1.70,

21 The estimates of the long run elasticities for the disaggregate model were computed from the simple
averages of the micro coefficients.
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and

SLEMt = −66.82 + 0.7407SLEMt−1 + 0.4004SLYMt (5.7.6)

(6.65) (0.0417) (0.0434)

+0.0906∆SLEMt − 0.3137SLWMt + ûit,

(0.0551) (0.0343)

LLF7.13, R
2

= 0.9972, σ̂ = 0.2080, DW = 2.19, n = 29,

χ2
SC(1) = 0.34, χ2

FF (1) = 0.00, χ2
N(2) = 0.21, χ2

H(1) = 1.47,

where

SLEMt =
32∑
i=10

LEHit, SLYMt =
32∑
i=10

LYit, SLWMt =
32∑
i=10

LWit.

The restricted version (5.7.6) clearly cannot be rejected against the unrestricted version
(5.7.5).22 In this application the values of the goodness-of-fit criterion (s2

d) for the unre-
stricted and the restricted models were 0.0506 and 0.0437 respectively, indicating that the
restricted version of the disaggregate model has a better in-sample performance insofar
as predicting the aggregate employment variable SLEMt is concerned. The goodness-of-
fit criterion for the aggregate specifications (5.7.5) and (5.7.6) are given by 0.0492 and
0.0433 respectively. (See also Table 5.4.) Hence on the basis of the choice criterion, for
the manufacturing industries the aggregate models give a marginally better fit than either
of the disaggregate models. This, of course, does not mean that the aggregate model is
not subject to the aggregation error problem. In fact the application of the test of perfect
aggregation to this example resulted in the value of 69.92 for the am statistic which is
well in excess of the 5(= n) degrees of freedom.

The rejection of the perfect aggregation hypothesis is also reflected in the large differ-
ences that exist between the estimates of the long run real wage and output elasticities
of the manufacturing employment based on the disaggregate and the aggregate results.
In the case of the restricted models, the estimates of the long run real wage elasticity
based on the aggregate and the disaggregate models were −1.21 and −0.509, respectively.
The corresponding figures for the long run real output elasticities were 1.54 and 0.763,
respectively. The better performance of the aggregate model should be interpreted as
an important indication that the disaggregate employment functions are misspecified.
This suggests the need for a much more detailed analysis of employment demand at the
industry level, which may involve including ‘industry specific’ variables in employment
equations, experimenting with a different choice of functional forms across industries,
or searching for new industry-specific explanatory variables, or even compiling a more
reliable set of micro data.

5.8 Concluding Remarks

In this paper our primary concern has been with the problem of choice between macro
and micro regression equations for the purpose of predicting macro variables. The test of

22 We also estimated the restricted version (5.7.6) by the IV method using z,=
(1, SLEMt−1, SLEMt−2, SLYMt−1, SLYMt−2, SLWMt1 , SLWMt−2) as instruments and obtained
very similar results.



M. H. Pesaran, R. G. Pierse, M. S. Kumar / Econometric analysis of aggregation 107

Table 5.4: Relative Predictive Performance of the Aggregate and the
Disaggregate Employment Functions

(1956–1984)

Aggregate Equations Disaggregate Equations3

Unrestricted1 Restricted2 Unrestricted Restricted

All industries4 0.1382 0.1211 0.1091 0.1000
(0.0846)6 (0.0859)

Manufacturing5 0.0492 0.0433 0.0506 0.0437
(0.0439) (0.0389)

1 See equations (5.7.3) and (5.7.5).
2 See equations (5.7.4) and (5.7.6).
3 See the results in Tables 5.1 and 5.2.
4 Excluding Industry 4, Mineral Oil and Natural Gas.
5 Industries 10 to 32 inclusive.
6 Bracketed figures refer to the degrees-of-freedom uncorrected measure of
the choice criterion, given by the first term in the expression for s2

d defined in
(5.4.6).

perfect aggregation developed in the paper also addresses the macro prediction problem;
although as our application to the UK employment demand functions shows, it has some
bearing on the problem of aggregation bias as well. In using the goodness-of-fit criterion
and the test of perfect aggregation it is, however, important to note that these methods,
like most other methods of inference in econometrics, suffer from the fact that they may
have little to say on the validity of the aggregation conditions outside the estimation
period. In the case of aggregation across micro units this problem is especially serious
as the extension of the results of aggregation tests to the post estimation period requires
stability of the micro coefficients as well as the stability of the industrial composition of
the economy.

.1 Data Appendix: Data Sources and Definitions

The data used in the empirical analysis in Section 5.7 are annual observations on 41
industry groups for the UK obtained from the Cambridge Growth Project Databank.
The data on industry man-hours, employment, wages and salaries, and employers’ con-
tributions were originally provided by the Institute for Employment Research at the
University of Warwick. The data on industry output were obtained from the Central
Statistical Office’s commodity flow accounts adjusted for our industrial classification.
The data on producer price indices of industry output were obtained from a number of
published sources including the Department of Trade and Industry’s publication “British
Business”, the CSO’s publications, the “Annual Abstract of Statistics” and the “Monthly
Digest of Statistics”, and the Department of Energy’s “Energy Trends”.

Some of the 41 industry groups are identical to the ‘groups’ distinguished in the 1980
Standard Industrial Classification. However, in view of the significant differences between
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Table 0.5: Classification of Industry Groups
(In Terms of the 1980 Standard Industrial Classification)

Industry Division, Class or Group

1. Agriculture, Forestry, and Fishing 0
2. Coal Mining 1113, 1114
3. Coke 1115, 1200
4. Mineral Oil and Natural Gas 1300
5. Petroleum Products 140
6. Electricity, etc. 1520, 1610, 1630
7. Public Gas Supply 1620
8. Water Supply 1700
9. Minerals and Ores n.e.s. 21, 23
10. Iron and Steel 2210, 2220, 223
11. Non-Ferrous Metals 224
12. Non-Metallic Mineral Products 24
13. Chemicals and Manmade Fibers 25, 26
14. Metal Goods n.e.s. 31
15. Mechanical Engineering 32
16. Office Machinery, etc. 33
17. Electrical Engineering 34
18. Motor Vehicles 35
19. Aerospace Equipment 3640
20. Ships and Other Vessels 3610
21. Other Vehicles 3620,363,3650
22. Instrument Engineering 37
23. Manufactured Food 41, 4200, 421, 422, 4239
24. Alcoholic Drinks, etc. 4240, 4261, 4270, 4283
25. Tobacco 4290
26. Textiles 43
27. Clothing and Footwear 45
28. Timber and Furniture 46
29. Paper and Board 4710, 472
30. Books, etc. 475
31. Rubber and Plastic Products 48
32. Other Manufactures 44, 49
33. Construction 5
34. Distribution, etc. 61, 62, 63, 64, 65, 67
35. Hotels and Catering 66
36. Rail Transport 71
37. Other Land Transport 72
38. Sea, Air, and Other 74, 75, 76, 77
39. Communications 79
40. Business Services 81, 82, 83, 84, 85
41. Miscellaneous Services 94, 98, 923, 95, 96, 97.



M. H. Pesaran, R. G. Pierse, M. S. Kumar / Econometric analysis of aggregation 109

them in a large number of cases, the groups are listed in Table 0.5, using as a reference the
Division, Class or Group of the 1980 Standard Industrial Classification. In the analysis
of the manufacturing sector groups 10 to 32 inclusive are included.

For empirical estimation, the man-hours employed (EHt) are defined as a product of
the actual hours worked per week and the numbers employed in each of 41 industries,
including self employed (’000s) in these industries. Industry output (Y ) is gross value
added by industry in 1980 prices (m). Average real wage rate (W ) is a measure of the
real product wage by industry. It is obtained by first deflating an industry’s total labour
costs including both employees’ wages and salaries and employers’ national insurance
contributions (m) by the price index of industry output (1980 = 1.00). This is then
divided by the man-hours employed in that industry to obtain the average real wage
rate. All the data are annual covering the period 1954–1984 with both the aggregate
and disaggregate equations estimated over the period 1956–1984. These data, and the
computer programs used both in estimation and in the computation of the choice criterion
and the statistics for the test of perfect aggregation, are available on request from the
authors.
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Chapter 6

A proof of the asymptotic validity of
a test for perfect aggregation

An asymptotic proof is presented for a test of perfect aggregation in linear models
developed in Pesaran et al. (1989a). The limiting distribution is derived by letting the
degree of disaggregation increase without bound for a fixed sample size.

6.1 Introduction

In a recent paper, Pesaran et al. (1989a), henceforth PPK, propose a new test of the
hypothesis of perfect aggregation in the context of a linear disaggregate model. It is
shown there that, when the covariance matrix of the disaggregate model is known, then
this test statistic is distributed as χ2

n, where n is the number of observations. However,
when the covariance matrix is unknown, the exact distribution of the statistic is not easily
computable. The purpose of this paper is to show that in this case the test is still valid
asymptotically. Since the test statistic has dimension n, the usual asymptotic theory
which lets n, the sample size, tend to infinity is clearly not applicable. Instead we derive
a limiting distribution by allowing the degree of disaggregation denoted by m to increase
without bound. Similar large m-asymptotics have been used previously by Powell and
Stoker (1985) and Granger (1987). The perfect aggregation test is derived in section6.2.
Section 6.3 presents a proof of the asymptotic validity of the test for the special case
where the covariance matrix is diagonal.

6.2 The perfect aggregation test

Let the disaggregate model be written as

Hd : yi = Xiβi + ui, i = 1, 2, . . . ,m. (6.2.1)

where yi is an n× 1 vector of n observations on the ith micro-unit, Xi is an n× k matrix
of n observations on k regressors for the ith micro-unit, ui is an n×1 vector of associated

0 Published in Economic Letters (1989), Vol 30, pp. 41–47. Co-author M. H. Pesaran. The authors
are grateful to Jon Breslaw and James MacKinnon for helpful comments.
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disturbances. The disturbances ui are assumed to be distributed independently of Xi

with E(ui) = 0 and E(uiu
′
j) = σijIn.

The aggregate model is given by

Ha : ya = Xab + νa, (6.2.2)

where

ya =
m∑
i=1

yi and Xa =
m∑
i=1

Xi.

Then the hypothesis of perfect aggregation is defined by

Hξ : ξ =
m∑
i=1

Xiβi −Xab = 0, (6.2.3)

in which case the regression functions of (6.2.1) and (6.2.2) coincide. It can be seen that
this hypothesis encompasses the two special cases of ‘micro-homogeneity’ (β1 = β2 =
· · · = βm) and ‘compositional stability’ (Xi = XaCi, i = 1, 2, . . . ,m) but it can also be
satisfied in more general cases (see PPK for details).

A test of the hypothesis (6.2.3) can be constructed based on OLS estimates of βi. Let

ξ̂ =
m∑
i=1

Xiβ̂i −Xab̂ = ea − ed, (6.2.4)

where the hat denotes OLS estimates,

ea = (In −Aa)ya,

ed =
m∑
i=1

(In −Ai)yi =
m∑
i=1

ei,

Aa = Xa(X
′
aXa)

−1X′a,

Ai = Xi(X
′
iXi)

−1X′i = In −Mi.

The test statistic is then given by

am = m−1(ea − ed)
′Ψ̂
−1

m (ea − ed),

Ψ̂m = m−1

m∑
i,j=1

σ̂ijHiHj, (6.2.5)

Hi = Ai −Aa,

σ̂ij = {n− 2k + tr(AiAj)}−1e′iej.

It is shown in PPK that σ̂ij is an unbiased estimator of the covariance element σij.
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6.3 A proof of the asymptotic validity of the test

In this section a proof is presented of the asymptotic validity of the test of perfect ag-
gregation for the special case where the disturbances uit are distributed independently
across equations so that σij = 0, i 6= j. The framework adopted is to let the degree of
disaggregation, m, increase without bound while keeping the sample size, n, fixed.

The following assumptions are made:

Assumption 1. The standardised micro-disturbances νit = uit/
√
σii are identically dis-

tributed, independently both across time periods and across equations, with zero means,
unit variances and finite third-order moments.1

Assumption 2. The average matrix Xm = m−1Xa, and the aggregate projection ma-
trix Xm(X

′
mXm)−1X

′
m, converge (in probability) to finite limits.

Assumption 3. The elements of the disaggregate projection matrices, Ai = Xi(X
′
iXi)

−1X′i,
remain bounded in absolute value as m→∞. Notationally, we write |Ai| < P <∞.

Assumption 4. The elements of the variance matrix Σ = (σij) remain bounded m→∞.
Namely, |σij| < τ 2 <∞,∀i, j.

Assumption 5. The variance matrix Ψm defined by

Ψm = m−1

m∑
i,j=1

σijHiHj,

tends to a non-singular matrix Ψ, as m→∞.

Theorem 1. Under Assumptions 1—5 and conditional on X, the statistic

am = (ea − ed)
′

(
m∑
i=1

σ̂iiH
2
i

)−1

(ea − ed)

will be asymptotically distributed as a χ2
n variate on the null hypothesis of perfect aggre-

gation (6.2.3), as m→∞.

Proof. Let

gm =

(
m∑
i=1

σ̂iiH
2
i

)−1/2

(ea − ed). (6.3.1)

Then the test statistic in the theorem can be written as

am = g′mgm. (6.3.2)

Consider now the probability limit of Ψ̂m = m−1
∑m

i=1 σ̂iiH
2
i , as m → ∞. Under (1) we

obtain

Ψ̂m = [m(n− k)]−1

m∑
i=1

(u′iMiui)H
2
i . (6.3.3)

1 The assumption that νit have finite third-order moments can be replaced by the slightly weaker
assumption that, for some positive δ, E |νit|2+δ is uniformly bounded. See, for example, (White, 1984,
Theorem 5.10).
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But, since Mi is an idempotent matrix of rank n− k, we can also write

σ−1
ii u′iMui =

n−k∑
t=1

ε2it, i = 1, 2, . . . ,m, (6.3.4)

where εit represents scalar random variables distributed independently across i and t with
zero means and unit variances. Substituting (6.3.4) in (6.3.3) yields

Ψ̂m = (n− k)−1

n−k∑
t=1

m−1

(
m∑
i=1

σiiε
2
itH

2
i

)
. (6.3.5)

But, noting that Hi = Ai −Aa, we have

m−1

m∑
i=1

σiiε
2
itH

2
i = fmAa + Fm − FmAa −AaFm, (6.3.6)

where

fm = m−1

m∑
i=1

σiiε
2
it, Fm = m−1

m∑
i=1

σiiε
2
itAi.

Now, under Assumption 4, it readily follows that

plim
m→∞

(fm) ≤ τ 2 plim
m→∞

(
m−1

m∑
i=1

ε2it

)
,

and since εit are identically and independently distributed random variables then, by the
law of large numbers, m−1

∑m
i=1 ε

2
it

p→ 1, and

plim
m→∞

(fm) ≤ τ 2 <∞. (6.3.7)

Similarly, under Assumptions 3 and 4, we have

plim
m→∞

(Fm) ≤ τ 2P <∞, (6.3.8)

where P is already defined by Assumption 3. The results (6.3.7) and (6.3.8) establish the
existence of the probability limits of fm and Fm, as m→∞, and this in turn establishes
[using (6.3.6) and noting that, by Assumption 2, matrix Aa, has a finite limit as m→∞]
that

plim
m→∞

(
m−1

m∑
i=1

σiiε
2
itH

2
i

)
= lim

m→∞

(
m−1

m∑
i=1

σiiH
2
i

)
.

Using this result in (6.3.5), we finally obtain

Ψ̂m = m−1

m∑
i=1

σ̂iiH
2
i

p→ lim
m→∞

(
m−1

m∑
i=1

σiiH
2
i

)
= Ψ. (6.3.9)

Therefore, asymptotically we have2

gm
a∼ Ψ−1/2m−1/2(ea − ed).

2 Note that, by Assumption 5, matrix Ψ is non-singular.
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But, under (1) and on the assumption that Hξ :
∑m

i=1 Xiβ̂i = Xab̂ holds,

m−1/2(ea − ed) = m−1/2

m∑
i=1

Hiui.

Hence,

gm
a∼ m−1/2

m∑
i=1

zi, (6.3.10)

in which

zi =
√
σiiΨ

−1/2Hiνi,

and νi = ui/
√
σii. We now show that under the assumptions of the theorem, as m→∞,

the sum sm = m−1/2
∑m

i=1 zi tends to a multivariate normal distribution with mean zero
and covariance matrix In, an identity matrix of order n. For this purpose, it is sufficient
to demonstrate that for any fixed vector λ = (λ1, λ2, . . . , λn)′, the limiting distribution
of λ′sm is N(0,λ′λ).

Let

dm = λ′sm = m−1/2

m∑
i=1

wi, (6.3.11)

in which

wi =
√
σiiλ

′Ψ−1/2Hiνi, i = 1, 2, . . . ,m (6.3.12)

is now a scalar random variable. We have, for all i,

E(wi) = 0,

V(wi) = σiiλ
′Ψ−1/2H2

iΨ
−1/2λ > 0.

Setting µ = Ψ−1/2λ, then

C2
m =

m∑
i=1

V(wi) = µ′

(
m∑
i=1

σiiH
2
i

)
µ. (6.3.13)

Denoting the (s,t) element of matrix Hi by hi,st, we also have [using (6.3.12)]

wi =
√
σii

n∑
t=1

(
n∑
s=1

µshi,st

)
νit.

Therefore, since by assumption Ψ is non-singular and hi,st are bounded in absolute value
for all i, then

|wi| ≤ nκ
√
σii

∣∣∣∣∣
n∑
t=1

νit

∣∣∣∣∣ ,
where |µshi,st| < κ <∞. Consequently,

E |wi|3 ≤ n3κ3σ
3/2
ii E

∣∣∣∣∣
n∑
t=1

νit

∣∣∣∣∣
3

.
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However, since the random variables νit are i.i.d. with finite third-order moments,
E |
∑n

t=1 νit|3 ≤ nθ3, where θ3 = E |νit|3, and

E |wi|3 ≤ n4κ3θ3σ
3/2
ii . (6.3.14)

We are now in a position to apply the Liapunov Central Limit Theorem to the sum dm
defined by (6.3.11).3 Setting

B3
m =

m∑
i=1

E |wi|3,

then using (6.3.14) it follows that

B3
m ≤ (n4κ3θ3)

m∑
i=1

σ
3/2
ii ,

which together with (6.3.13) yields4

lim
m→∞

[
Bm

Cm

]
≤
[
n4/3κθ

(λ′λ)1/2

]
lim
m→∞

m−1/2

[
m∑
i=1

σ
3/2
ii

]1/3

.

But, under Assumption 4,

lim
m→∞

m−1/2

[
m∑
i=1

σ
3/2
ii

]1/3

≤ lim
m→∞

(m−1/6τ) = 0,

and for a fixed n, we have lim(Bm/Cm) = 0, as m → ∞, and the condition of the
Liapunov theorem will be met. Hence,

gm
a∼ sm

a∼ N(0, In).

Now, using (6.3.2), we have
am = g′mgm

a∼ χ2
n.

Q.E.D.

3See, for example, (Rao, 1973, p. 127).
4 Notice that limm→∞{µ′(m−1

∑m
i=1 σiiH

2
i )µ} = µ′Ψµ = λ′λ.



Chapter 7

Testing for Aggregation Bias in
Linear Models

The problem of aggregation over micro units has had a long tradition in the econometrics
literature, stretching back to the pioneering work of Theil (1954). In this literature two
issues in particular have attracted attention. The first concentrates on the prediction
problem of choosing whether to use macro or micro equations to predict aggregate vari-
ables. This issue was raised by Grunfeld and Griliches (1960) and is further addressed in
a recent paper by Pesaran et al. (1989b) (PPK). In PPK a generalised prediction crite-
rion and a formal statistical test of the hypothesis of perfect aggregation are developed.
The present paper considers the second strand in this literature which is concerned with
the problem of ’aggregation bias’ defined by the deviation of the macro parameters from
the average of the corresponding micro parameters. (See for example Theil (1954), Boot
and de Wit (1960), Orcutt et al. (1968), Gupta (1971) and Sasaki (1978).) In this paper
we develop direct tests of aggregation bias in contrast to the indirect test proposed by
Zellner (1962) which tests the hypothesis that all the disaggregated coefficients are equal.
We also derive generalised versions of the tests for the case where the parameters of in-
terest are subsets or (possibly non- linear) functions of the full parameter vector. This is
particularly relevant when the focus of the analysis is on the long run properties of the
aggregate and disaggregate models. Since the tests of the aggregation bias, whether of
the type discussed here or the one proposed in Zellner (I962), assume the disaggregate
model is correctly specified, in this paper we also develop a Durbin-Hausman type mis-
specification test of the disaggregate model. Section 7.1 sets out the statistical framework
and assumptions. Section 7.2 develops the aggregation bias tests. Section 7.3 derives the
Durbin-Hausman type misspecification test of the disaggregate model. Section 7.4 ap-
plies these tests to a disaggregate model of employment demand for the United Kingdom
taken from PPK.

0 Published in Economic Journal (1990), Vol. 100 (Conference 1990), pp. 137–150. Co-authors K.
C. Lee and M. H. Pesaran.
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7.1 Framework and Assumptions

In order to develop the tests we consider the following general disaggregate model:

Hd : yt = Xiβi + ui, i = 1, 2, . . . ,m (7.1.1)

where yi is the n×1 vector of observations on the dependent variable for the ith unit, Xi

is the n× k matrix of observations on the regressors in (7.1.1) for the ith unit, βi is the
k × 1 vector of the coefficients associated with columns of Xi, and ui is the n× 1 vector
of disturbances for the ith unit. The corresponding aggregate equation that satisfies the
Klein-Nataf consistency requirement is given by 1

Ha : ya = Xaba + v, (7.1.2)

where

ya =
m∑
i=1

yi, Xa =
m∑
i=1

Xi,

and ba is the k × 1 vector of macro parameters. The n× 1 disturbance vector v, will be
equal to ua =

∑m
i=1 ui, only if the ‘perfect aggregation’ condition

Hξ : ξ =
m∑
i=1

Xiβi −Xaba = 0, (7.1.3)

discussed in detail in PPK, is satisfied. Here we focus on the problem of aggregation bias
and develop alternative methods of analysing and formally testing the extent of this bias
in economic applications. In what follows we adopt the following assumptions:

Assumption 3. The n elements of the disturbance vector ui = {uit}, have zero means,
constant variances and are serially independently distributed. They also satisfy the mo-
ment condition

E |uit|2+δ < ∆ <∞, for some δ > 0, and all t.

Assumption 4. The disturbance vectors ui are distributed independently of Xi, and
E(uiuj

′) = σijIn, for all i and j, (σii > 0).

Assumption 5. The matrices Xi have full rank, the probability limits

plim
n→∞

(n−1Xi
′Xi) = Σij, i, j = a, 1, 2, . . . ,m,

exist, and the k × k matrices Σii, i = a, 1, 2, . . . ,m are non-singular.

We also base our tests on the OLS estimates

b̂ = (Xa
′Xa)

−1Xa
′ya, β̂i = (Xi

′Xi)
−1Xi

′yi, i = 1, 2, . . . ,m,

although, in principle, the tests proposed below can also be constructed using the more
efficient SURE (Seemingly Unrelated Regression Equations) estimators of βi, due to
Zellner (1962).

1 See Lovell (1973), and the discussion in PPK (p. 25).
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7.2 Direct Tests of Aggregation Bias

The problem of ‘aggregation bias’, as originally discussed by Theil (1954) is defined in
terms of the deviations of macro parameters from the averages of the corresponding micro
parameters.2 In the context of the linear disaggregate and aggregate models (7.1.1) and
(7.1.2), the vector of aggregation bias is defined by

ηβ = b− 1

m

m∑
i=1

βi, (7.2.1)

A test of aggregation bias then involves testing the hypothesis H0 : ηβ = 0. In testing
this hypothesis the case where b is given a priori (for example by a ‘consensus’ view)
should be distinguished from the case where b is defined as the pseudo true value of
b̂ assuming that the disaggregate model is correctly specified. In the former case the
relevant statistic for testing the hypothesis H0 : ηβ = 0 is given by

q1 =

(
b− 1

m

m∑
i=1

β̂i

)′
Ω̂
−1

n

(
b− 1

m

m∑
i=1

β̂i

)
, (7.2.2)

where Ω̂n represents a consistent estimator of Ω = m−2
∑m

i,j=1 Cov(β̂i, β̂j).
3 Under

assumptions 3–5 it is easily seen that q1 is asymptotically distributed as χ2
k The statistic

q1 takes b as a fixed vector, and tests for the deviation of the average of micro parameters
from this fixed vector on the assumption that Hd holds. In practice, however, it is rare
that a ‘consensus’ value for b or some of its elements is available, and b needs to be
chosen in light of the knowledge of the disaggregate model. When Hd holds the pseudo
true value of b is given by

b = plim
n→∞

(b̂|Hd) =
m∑
i=1

Ciβi, (7.2.3)

where
Ci = Σ−1

aa Σai, i = 1, 2, . . . ,m, (7.2.4)

satisfy the condition
∑m

i=1 Ci = Ik. Ik is an identity matrix of order k.) The matrices
Ci are the probability limits of the coefficients in the OLS regressions of the columns
of Xi on Xa; the ‘auxiliary’ equations in Theil’s terminology. Notice that result (7.2.3)
holds only when Hd is correctly specified. We will use this result later as the basis of a
Durbin-Hausman type test of misspecification of the disaggregate model. For the time
being, however, we assume that the disaggregate model Hd is correctly specified and write
H0 as

H0;
m∑
i=1

(
Ci −

1

m
Ik

)
βi = 0. (7.2.5)

An indirect, albeit familiar method of testing (7.2.5), originally proposed by Zellner
(1962), is to test the micro-homogeneity hypothesis

Hβ : β1 = β2 = · · · = βm.

2 For empirical analysis of aggregation bias see, for example, the papers by Boot and de Wit (1960),
Gupta (1971) and Sasaki (1978).

3 Note that Cov(β̂i, β̂j) = σij(Xi
′Xi)

−1(Xi
′Xj)(Xj

′Xj)
−1.
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Testing Hβ as a method of testing H0 is however rather too restrictive. Although Hβ

implies H0, the reverse is not true. It is possible for ηβ = 0 to hold even when the
micro-homogeneity hypothesis is rejected. Here we propose a direct test of H0 based on
the OLS estimate of ηβ, namely

η̂β = b̂− 1

m

m∑
i=1

β̂i. (7.2.6)

Under H0, η̂β is given by

η̂β =
m∑
i=1

Piui, (7.2.7)

where

Pi = (Xa
′Xa)

−1Xa
′ − 1

m
− (Xi

′Xi)
−1Xi

′. (7.2.8)

This suggests basing a test of H0 on the statistic

q2 = n−1η̂β
′Φ̂
−1

n η̂β, (7.2.9)

Φ̂n = n−1

m∑
i,j=1

σ̂ijPiPj
′, (7.2.10)

and σ̂ij is a consistent estimator of σij.
4 Notice that except for the extreme case where

Xi = m−1Xa, matrix Φ̂n will in general be non-singular.

Theorem 1. Suppose

(i) The disaggregate model Hd is correctly specified;

(ii) Assumptions 3–5 hold;

(iii) The matrix Φ̂n defined by (7.2.10) and the matrix n−1(PiPi
′) both are non-singular

and also converge in probability to non-singular matrices.

Then on the hypothesis of no aggregation bias, H0, the statistic q2 defined in (7.2.9) is
asymptotically distributed as a chi-squared variate with k degrees of freedom.

Proof. See the Mathematical Appendix.

This theorem provides an asymptotic justification for the use of q2 in testing the null
hypothesis of no aggregation bias, and holds for σij 6= 0 and m ≥ 2, but requires n, the
sample size, to be sufficiently large. This contrasts the asymptotic framework underlying
the perfect aggregation test proposed in PPK where n is fixed but m is allowed to increase
without bounds.

The test statistics q1 and q2 are applicable when the focus of the analysis is on all the
elements of βi. In practice, it is often the case that the parameters of interest are subsets
or, more generally, (non-linear) functions of βi. To deal with such cases we now consider
a generalisation of (7.2.1) and write the null hypothesis of no aggregation bias as

ηg = g(b)− 1

m

m∑
i=1

g(βi), (7.2.11)

4 In small samples we suggest using the unbiased (and consistent) estimator of σij proposed in PPK.
(See equation (5.9) in PPK.)
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where g(βi) is an s× 1 (s ≤ k) vector of known functions of βi.
Denoting the s × k derivative matrix ∂g(βi)/∂βi

′ by G(βi) and assuming that
rank[G(βi)] = s, the relevant statistic for the test of ηg = 0 when b is set a priori
is given by

q∗1 =

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]′
Ω̂
−1

n

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]
(7.2.12)

where Ω̂n is now defined by

Ω̂n =
1

m2

m∑
i,j=1

ĜiĈov(β̂i, β̂j)Ĝj
′, (7.2.13)

and Ĝi = G(β̂). (The expression for Cov(β̂i, β̂j) is given in footnote 3.) Then on the

null hypothesis of ηg = 0 (with b set a priori), q∗1
a∼ χ2

s.
Turning to the case where b is defined by (7.2.3), Theorem 1 continues to hold with

this difference that the appropriate statistic is now given by

q∗2 = n−1η̂′gΦ̂
−1

n η̂g
a∼ χ2

s, (7.2.14)

where

η̂g = g(b̂)− 1

m

m∑
i=1

g(β̂i), (7.2.15)

and Φ̂n is defined by (7.2.10), although in this more general case Pi is now given by

Pi = Ĝa(Xa
′Xa)

−1Xa
′ −m−1Ĝi(Xi

′Xi)
−1Xi

′, (7.2.16)

in which Ĝa = G(b̂) and ĝi = g(β̂i). Notice, also that under ηg = 0, the asymptotic
distribution of q∗2 will be a chi-squared with s(≤ k) degrees of freedom. The statistics q∗1
and q∗2 are direct generalisations of q1 and q2 and will reduce to them in the case where
g(βi) = βi.

So far, we have limited attention to aggregation bias of the type discussed by Theil
(1954) where the bias is defined in terms of the deviations of macro parameters from
the simple average of the corresponding micro parameters, as in (7.2.1). It is possible
that in some circumstances the macro parameters of interest are derived from the micro
parameters via a more general function than the average expression (1/m)

∑
g(βi). An

obvious example is when the macro parameters are defined as weighted averages of the
corresponding micro parameters. To deal with this and other more complicated averaging
schemes, we adopt a generalisation of (7.2.11) and consider aggregation bias defined as

ηh = g(b)− h(β1, . . . ,βm) (7.2.17)

where h(b, . . . ,b) = g(b). As before, aggregation bias is zero under the micro homogene-
ity hypothesis, Hβ, but zero aggregation bias (i.e. ηh = 0) does not necessarily imply
Hβ.

The relevant statistics for the test of ηh = 0 are given by

q∗1 =
[
g(b)− h(β̂)

]′
Ω̂
−1

n

[
g(b)− h(β̂)

]
(7.2.12′)
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and

q∗2 =
[
g(b̂)− h(β̂)

]′
Φ̂
−1

n

[
g(b̂)− h(β̂)

]
(7.2.13′)

where h(β) = h(β1,β2, . . . ,βm). The covariance matrices (Φn and Ωn have the same
form as before and are given by (7.2.10) and (7.2.13) respectively, with the difference that

the matrix Ĝi in (7.2.13) need now be replaced by Ĥi = ∂h(β̂)/∂β, and the matrix Pi

by
Pi = Ĝn(Xa

′Xa)
−1Xa

′ − Ĥi(Xi
′Xi)

−1Xi
′. (7.2.18)

Once more, q∗1
a∼ χ2

s under the null hypothesis that ηh = 0, and is the appropriate
statistic where g(b) is given a priori. The statistic q∗2 is relevant when g(b) is estimated
from an aggregate equation and is also asymptotically distributed as χ2

s under the null
hypothesis.

In the application of the above tests to cases where the general functions g(βi) or
h(β1, . . . ,βm) are non-linear in the parameters, special care needs to be exercised in the
way the nonlinear restrictions ηg = 0 or ηh = 0 are formulated. As has been discussed in
the recent literature,5 when the Wald statistic is used for testing nonlinear restrictions,
the value of the test statistic depends on the form of the nonlinear restrictions used in
the formulation of the null hypothesis. Although asymptotically this does not matter,
in finite samples it is possible to obtain very different values for the Wald statistic by
parameterising the hypothesis to be tested in different ways. A simple example which is
directly relevant to the empirical application that follows in Section 7.4 helps clarify some
of these points. Suppose, for example that we are interested in testing the hypothesis for
a single sector i that the long run elasticity of yit with respect to xit in the simple model

log yit = βi0 + βi1 log yit−1 + βi2 log xit + uit, (7.2.19)

is equal to, say ci. A usual way of formulating this hypothesis is by means of the nonlinear
restriction

d1(β1) = βi2/(1− βi1)− ci = 0. (7.2.20)

This is not, however, the only way that the hypothesis can be formulated. An alternative
and in many ways much more satisfactory formulation of this hypothesis is the linear
restriction

d2(β1) = βi2 + c1βi1 − ci = 0. (7.2.21)

Although the Wald tests of (7.2.20) and (7.2.21) are equivalent asymptotically, in small

samples, depending on how different ĉi = β̂12/(1 − β̂i1) is from ci, they can lead to
very different results. In this particular example, the linearity of the restriction (7.2.21)
recommends it over the nonlinear formulation (7.2.20),6 but in general, the choice between
alternative parameterisations of nonlinear restrictions is not a straightforward matter.

Similar considerations also apply to our Wald tests of the aggregation bias. Suppose
we are interested in testing the hypothesis that the macro long run elasticity of Yt =∑

log yit with respect to Xt =
∑

log xit is equal to, say, c. When the micro homogeneity
hypothesis does not hold, there is no unique method of defining the macro long run
elasticity in terms of the micro parameters βi1 and βi2. Here we consider two possible

5 See, for example, Gregory and Veall (1985, 1987), Lafontaine and White (1986), Breusch and
Schmidt (1985).

6 Specifically, in calculating the Wald statistic in the two cases, Var(d2) involves the known hypoth-

esised value of ci, while Var(d̂1) involves ĉi, and so becomes less reliable under H0 as ĉi deviates from
ci.
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methods, the first of which is based on the average of the micro long run elasticities
g(βi) = β12/(1− βi1, namely

ε1x =
1

m

m∑
i=1

g(βi) =
1

m

m∑
i=1

βi2
1− βi1

,

and the second of which is based on the averages of the micro parameters, namely

ε2x = h(β1, . . . ,βm) =
1

m

m∑
i=1

βi2

(
1− 1

m

m∑
i=1

βi1

)−1

.

Depending on which of these two definitions are adopted, the null hypothesis of interest
can be written as

ηg = c− ε1x = 0, (7.2.22)

or
ηh = c− ε2x = 0. (7.2.23)

As they stand both restrictions are non-linear in the micro parameters and the application
of the Wald test to them will be subject to the type of small sample problems emphasised
by Gregory and Veall (1985, 1987). Notice, however, that restriction (7.2.23) has the
advantage that it can be written in linear form:

η′h = c− 1

m

m∑
i=1

βi2 +
1

m

m∑
i=1

cβi1 = 0, (7.2.24)

which is the appropriate form to use in the application of the Wald test. Unfortunately,
in general the same is not true of the nonlinear restriction (7.2.22). The significance of
these issues will be illustrated in Section 7.4.

7.3 A Misspecification Test of the Disaggregate Model

The tests of aggregation bias advanced above are based on the assumption that the
disaggregate model Hd is correctly specified. In particular the tests based on the q2 and
q∗2 statistics assume that estimating the macro-parameters directly from the regression
of ya on Xa, or indirectly by utilising the expression

∑m
i=1 Ciβi should not make any

difference asymptotically, in the sense that both give consistent estimators of b under
Hd. This implication of the disaggregate model can be tested by means of a Durbin-
Hausman type misspecification test and suggests basing a test of Hd on the statistic

η̂s = b̂−
m∑
i=1

Ĉiβ̂i, (7.3.1)

where Ĉi represents a consistent estimator of Ci defined by (7.2.4).7 Using the least

squares estimates Ĉi = (Xa
′Xa)

−1Xa
′Xi, (i = 1, 2, . . . ,m), we have

η̂s = (Xa
′Xa)

−1Xa
′ed, (7.3.2)

7 See Durbin (1954) and Hausman (1978). Also see Ruud (1984), and Pesaran and Smith (1989) for
a unified treatment of misspecification tests in the context of simultaneous equation models.
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where

ed =
m∑
i=1

(yi −Xiβ̂i) =
m∑
i=1

Miyi, (7.3.3)

and
Mi = In −Xi(Xi

′Xi)
−1Xi

′.

Since (Xa
′Xa) is by assumption a non-singular matrix, a test based on η̂s and Xa

′ed
will be equivalent and for simplicity we use the latter. Suppose now Xa and Xi have p
variables in common and write8

Xa = (Xa1|Xa2); Xi = (Xi1|Xi2), for all i,

where the n× p matrix Xa1 contains the observations on the common set of variables. It
is now easily seen that

Xa
′ed[ 0

p×1
: Xa2

′ed
(k−p)×1

],

and the appropriate statistics on which to base the misspecification test are the non-zero
components of Xa

′ed, namely Xa2
′ed. Under Hd, we have

Xa2
′ed =

m∑
i=1

Xa2
′Miui, (7.3.4)

which suggests the following theorem.

Theorem 2. Suppose

(i) Assumptions 3–5 hold;

(ii) The matrices n−1(Xa2
′MiXa2) are non-singular in finite samples, and also converge

in probability to non-singular matrices;

(iii) The matrix

V̂n = n−1

m∑
i,j=1

σ̂ij(Xa2
′MiMjXa2), (7.3.5)

is non-singular for a finite n, and converges in probability to the non-singular matrix,
V.

Then on the hypothesis that the disaggregate model is correctly specified the test statistic

q3 = n−1ed
′Xa2V̂

−1
n Xa2

′ed, (7.3.6)

is asymptotically distributed as a χ2 variate with k − p degrees of freedom.
Proof. See the Mathematical Appendix.

This theorem complements Theorem 1 and in a sense precedes it. Since Theorem 1
assumes the validity of the disaggregate specification, it is important that the misspec-
ification test of Theorem 2 is carried out before testing for aggregation bias. It is also
worth noting that since in general

∑m
i=1 Ĉiβ̂i is not necessarily a more efficient estimator

of b =
∑m

i=1 Ciβi than b̂, the familiar Hausman formula for the covariance of η̂s, namely

8 Examples of such variables include the intercept term, time trends and seasonal dummies.
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Cov(
∑m

i=1 Ĉiβ̂i) is not valid. However, when βi are estimated by the SURE method, the

resultant estimators, sayβ̃i will be efficient and the covariance difference formula

Cov(η̃s) = Cov(b̂)− Cov

(
m∑
i=1

C̃iβ̃i

)
≥ 0,

applies. But even in this case to avoid some of the computational problems that arise
because of the possible singularity of Cov(b̂) − Cov(

∑m
i=1 C̃iβ̃i), a direct derivation of

the variance of η̃s, along the above lines seems to be more desirable.

7.4 An Application

In this section we apply the tests developed in this paper to the annual estimates of
aggegate and disaggregate employment demand functions for the U.K. economy presented
in PPK. The general log-linear dynamic specification used in the analysis is as follows

LEit = βi1/m+ βi2(Tt/m) + βi3LEi,t−1 + βi4LEi,t−2 + βi5LYit

+ βi6LYi,t−1 + βi7LWit + βi8LWi,t−1 + βi9LY at

+ βi10LY a,t−1 + uit, i = 1, 2, 3, 5, 6, . . . , 41 t = 1956, 1957, . . . , 1984, (7.4.1)

where

LEit = log of man-hours employed in sector i at time t;
Tt = time trend (T1980 = 0);
LYit = log of sector i output at time t;
LWit = log of average product real wage rate per man-hours employed in sector i at time t;
LY at = average of LYit over the 40 sectors;
m = number of sectors, (m = 40).

The data cover the whole of the private sector, excluding the Mineral Oil and Natural
Gas sector (sector 4) for which the sample size is too short to permit estimation. The
rationale behind the above disaggregate model and full details of sources and definitions
can be found in PPK.

In order to check the overall validity of the disaggregate specification we first computed
the Durbin-Hausman type misspecification test statistic given by (7.3.6) in Section 7.3.
We obtained a value of 15.9 for this statistic which is distributed as χ2(7); this result
is just significant at the 5% level and indicates that the disaggregate model may be
misspecified. The specification of the disaggregate model requires further consideration,
and the following results therefore need to be treated with some caution.

For the purposes of this paper the parameters of interest from the disaggregate model
(7.4.1) are the long run elasticities with respect to wages and output given respectively
by:9

εiw =
βi7 + βi8

1− βi3 − βi4
, and εiy =

βi5 + βi6 + βi9 + βi10

1− βi3 − βi4
. (7.4.2)

9 The formula for the output elasticity allows for the long run effect of the sectoral changes on
employment of the ith sector both directly through the terms LYit and LYi,t−1, and indirectly through
the aggregate output effects LY at and LY a,t−1.
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Table 7.1: Long Run Elasticities from Restricted Employment Equations∗ (1956–84)

Industrial sector Wage Output

1 Agriculture, forestry and fishing −0.8981 (0.2679) 0.0581 (0.2904)
2 Coal Mining −1.9336 (1.3890) −1.3866 (0.4410)
3 Coke −0.3005 (0.0418) 1.6778 (0.1438)
4 Mineral Oil and Natural Gas — — — —
5 Petroleum products −0.6530 (0.2947) 0.7560 (0.3552)
6 Electricity etc. −0.5379 (0.4028) 0.5015 (0.4090)
7 Public gas supply −0.2594 (0.1128) 1.0311 (0.5060)
8 Water supply 0.0 — 0.7899 (0.7082)
9 Minerals and Ores nes. −0.4870 (0.2788) −0.8741 (0.6483)

10 Iron and steel −0.7712 (0.2483) 2.5657 (0.8473)
11 Non-ferrous metals 0.0 — 1.9619 (1.2480)
12 Non-metallic mineral products −1.4832 (0.3596) 2.6847 (1.1330)
13 Chemicals and manmade fibres −0.7405 (0.2146) 1.5938 (0.4538)
14 Metal goods nes. −0.3976 (0.1987) 1.0368 (0.2219)
15 Mechanical engineering −0.8587 (0.2457) 1.2415 (0.3497)
16 Office machinery etc. −1.5343 (2.1250) 0.0 —
17 Electrical engineering −0.0495 (0.6733) 1.0277 (0.8828)
18 Motor vehicles −0.7238 (0.4988) 2.7303 (1.6720)
19 Aerospace equipment −0.1763 (0.1042) 0.1031 (0.0953)
†20 Ships and other vessels — — — —
21 Other vehicles −0.5247 (0.2978) 2.1886 (0.6949)
22 Instrument engineering −0.5607 (0.3201) 0.7715 (0.3876)
23 Manufactured food −0.4277 (0.1530) 1.7126 (0.8334)
24 Alcoholic drinks etc. −0.1302 (0.3108) 1.0793 (0.6737)
†25 Tobacco — — — —
26 Textiles −0.8320 (0.2335) 0.9812 (0.2690)
27 Clothing and footwear −0.8101 (0.1323) 0.9737 (0.1454)
28 Timber and furniture −0.1700 (0.1214) 0.6627 (0.1240)
29 Paper and board −0.3938 (0.0968) 0.9856 (0.2567)
30 Books etc. 0.2074 (0.2758) 0.1818 (0.1955)
3i Rubber and plastic products −0.5767 (0.3846) 1.2662 (0.5789)
32 Other manufactures 0.0 — 0.5903 (0.2431)
33 Construction −0.6453 (1.0200) 0.5872 (0.9331)
34 Distribution etc. −0.6965 (0.3259) −.01248 (0.1323)
35 Hotels and catering −0.6602 (0.4499) 1.2205 (0.7663)
36 Rail transport −0.3735 (0.3632) 2.0843 (0.7845)
37 Other land transport 0.0 — 0.4203 (0.1983)
38 Sea, air and other −0.2354 (0.1985) 0.5309 (0.4275)
39 Communications −0.0267 (0.1905) 0.9905 (0.6643)
40 Business services 0.0 — 0.2333 (0.1294)
41 Miscellaneous services −0.8108 (0.7865) 1.2228 (1.0810)

Mean of long run elasticities −0.5233 0.9489
Standard deviation of elasticities 0.4437 0.8867
Median of long run elasticities −0.5247 0.9812

∗ The estimates reported in this table are based on the results in table 2 of
PPK. The bracketed figures are the estimated standard errors.

† These industries are excluded from the analysis. See the text for further
explanation.
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Table 7.1 presents estimates for these elasticities derived from the set of restricted dis-
aggregate employment equations estimated by PPK (table 2), with asymptotically valid
standard errors in parentheses.10 For two sectors, 20 and 25, the employment equations
estimated by PPK do not possess long run solutions so that there are no corresponding
elasticities in Table 7.1. These two industries are excluded from the subsequent analy-
sis. For a few sectors, PPK found no significant response with respect to the real wage
variable, and in one sector no response was found with respect to the output variable. In
these cases the estimates of the long run elasticity in the table are set equal to zero and
no standard errors are given. The last three rows of Table 7.1 present the mean, standard
deviation and the median of the distribution of the estimates of the elasticities across the
sectors. In the case of both sets of elasticity estimates the mean and median are approx-
imately equal showing that the distributions are close to being symmetric. Both of the
standard deviations are large highlighting the considerable variation in the employment
responses between sectors. This in itself can be viewed as an argument for the use of
disaggregated analysis. We now consider the application of the tests of aggregation bias
developed in Section 7.2 (namely the q∗1 and the q∗2 tests) to the disaggregated long run
elasticities of Table 7.1 and those of the corresponding restricted aggregate equation given
by:11

LEat = −140.93 + 0.6935LEa,t−1 + 0.4665LYat − 0.3948LWat + ûat, (7.4.3)

(17.177) (0.0424) (0.0488) (0.0387)

R
2

= 0.9954, σ̂2 = 0.3666, n = 29 (1954–84),

χ2
SC(1) = 1.28, χ2

FF (1) = 2.45, χ2
N(2) = 4.41, χ2

H(1) = 3.45,

where LEat, LWat and LYat are the sums of LEit, LWit, and LYit over the 38 sectors

respectively. R
2

is the adjusted R2, σ̂2 is the estimated standard error of the regression,
and χ2

SC , χ2
FF , χ2

N and χ2
H are respectively the chi-squared statistics for residual serial

correlation, functional form misspecification, normality, and homoskedasticity of the dis-
turbances.12 The estimates of the long run real wage and output elasticities based on
(7.4.3) are −1.2880 (0.2947) and 1.5221 (0.3386) respectively. The numbers in parenthe-
ses are asymptotically valid standard errors. It is clear that these results are consistent
with the hypothesis of wage and output elasticities of −1 and +1 respectively. The rele-
vant statistic for testing the hypothesis that the average of the disaggregate elasticities of
Table 7.1 is equal to unity is given by q∗1, (7.2.12). In this case g(b) = −− 1, g(β̂i) = ε̂iw
for the real wage variable and g(b) = 1, g(β̂i) = ε̂iy for the output variable where the long
run elasticities εiw and εiy are already defined in (7.4.2). The hypothesis of a unit average
long run output elasticity can not be rejected even at the 10% level, since in this case q∗1
equals 0.104 based on an estimated value for the average disaggregate output elasticity
of 0.9489. In contrast, the value of −0.5233 obtained for the average disaggregate wage
elasticity is significantly different from −1 with q∗1 taking the value of 19.27 in this case.13

The estimated q∗2 statistics reinforce the finding that the aggregate and disaggregate re-
sults differ significantly. The values of this statistic for the wage and output elasticities

10 Details of the exclusion restrictions imposed for each sector and the diagnostic statistics computed
for each equation can also be found in PPK.

11 This result corresponds to equation (7.4) in PPK, reestimated to exclude sectors 20 and 25.
12 See Pesaran and Pesaran (1987b) for further details and the relevant algorithms.
13 In the present application, q∗1 and q∗2 are both distributed asymptotically as χ2

1 under the null
hypothesis.
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are 10.95 and 4.97 respectively, rejecting the null hypothesis of no aggregation bias in
both cases.14

We also considered the alternative aggregate restrictions involving the responsiveness
of employment to real wage and output changes corresponding to (7.2.23) in the simple
model of Section7.2. As noted there, these restrictions can also be written in a linear
form as in (7.2.24) and the q∗1 statistic given by (7.2.12)′ was computed here using both
linear and nonlinear forms of the restrictions. This allows us to examine the practical
importance of the issue of parameterisation of the nonlinear restrictions in the case of the
Wald tests discussed in Section 7.2. For wage responsiveness, the values of the q∗1 statistic
were 166.88 and 66.01 for the restriction forms (7.2.23) and (7.2.24) respectively, both
forms of the test massively rejecting the null hypothesis of a long run real wage elasticity
of minus unity. For output responsiveness, the values of the q∗1 statistic were 0.129 and
0.126 respectively, so that the null hypothesis of a unit long run output elasticity cannot
be rejected in the case of either formulation.15 Clearly, the alternative parameterisations
considered here have a considerable effect on the value of the statistic obtained for the
wage restriction although the results are unaffected qualitatively.

In conclusion, our estimates of the disaggregate labour demand relationships show
that there is considerable variation across sectors so that important information may
be lost in working with aggregate figures. This is confirmed by the application of the
tests developed in the paper. Significant aggregation biases are found in the estimates
of a variety of measures of the responsiveness of employment to real wage and output
changes based on our aggregate and disaggregate employment equations. The problem
of aggregation bias seems, however, to be much more serious for the estimates of the long
run real wage elasticity as compared to the estimates of the long run output elasticity.

.1 Mathematical Appendix

Proof of Theorem 1. Under H0 defined by (7.2.5), the statistic q2 in (7.2.7) can be written
as

q2 = dn
′dn, (.1.1)

where

dn =
m∑
i=1

zin, (.1.2)

and

zin = n−
1
2 Φ̂
−1

n Piui, i = 1, 2, . . . ,m. (.1.3)

The matrices Φ̂n and Pi are defined by (7.2.10) and (7.2.8) in the text, respectively. The
proof we offer here has two stages: we first show that for each i and for any real k × 1
vector λ such that λ′λ = 1, λ′zin

a∼ N(0, φii) where φii > 0. Using this result in (.1.2), we
then show that λ′dn

a∼ λ′d, where d ∼ N(0, Ik). From this it follows that dn
a∼ N(0, Ik),

and dn
′dn

a∼ χ2
k. See proposition 5.1 in White (1984).

14 The q∗2 statistics are calculated using (7.2.14) replacing g(b̂) and g(β̂i) by their corresponding
aggregate and disaggregate long run elasticity estimates.

15 The estimates of the aggregate long run elasticities of output and real wages underlying the re-
striction form (7.2.23) are 0.9770 and −0− 4551 respectively, as compared to the estimates 0.9909 and
−0.7850 underlying the restriction form (7.2.24).
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Under Assumptions 3–5 it readily follows that

plim
n→∞

(σ̂ij) = σij, plim
n→∞

(Φn) = Φ,

where

Φ =
m∑

i,j=1

σijQij,

and the matrices Qij defined by

Qij = plim
n→∞

(n−1PiPj
′)

= Σaa −
1

m
Σ−1
aa ΣajΣ

−1
jj −

1

m
Σ−1
ii ΣiaΣ

−1
aa +

1

m2
Σ−1
ii ΣijΣ

−1
jj ,

are finite for all i and j and are non-singular for i = j. Now noting that by assumption
Φ is also non-singular we have

λ′zin
a∼ n−

1
2µ′Piui = n−

1
2

n∑
t=1

δituit, (.1.4)

where µ = Φ−1λ, and δit stands for a typical element of vector Pi
′µ. It is now easily

seen that under assumptions of the theorem, the conditions for the application of the
version of Liapounov’s Theorem cited in (White, 1984, theorem 5.10) to the right hand
side of (.1.4), which is a sum of independently, but non-identically distributed random
variables, are met and

λ′zin
a∼ N(0, φii), where φii = σiiµ

′Qiiµ > 0.

Therefore, asymptotically λ′dn =
∑m

i=1 λ
′zin is distributed as a linear function of m

normal variates and itself will be distributed normally with zero mean and variance16

lim
n→∞

V(λ′dn) = λ′λ = 1.

Hence, for a finite m, dn
a∼ N(0, Ik), and dn

′dn
a∼ χ2

k. Q.E.D.

Proof of Theorem 2. The proof is similar to that presented for Theorem 1. Under
Hd the statistic q3 defined by (7.3.6) can be written as q3 = dn

′dn where dn is defined

by (.1.2), but zin is now given by zin = n−
1
2 V̂
− 1

2
n Xa2

′Miui. Since by assumption V̂n

converges in probability to a non-singular matrix, say V, we also have

λ′zin
a∼ n−

1
2λV−

1
2 Xa2

′Miui = n−
1
2µ′Xa2

′Miui,

where λ is now a (k − p) × 1 vector of constants such that λ′λ = 1, and µ = V−
1
2λ.

Denoting the tth element of MiXa2µ by ηit we now have

λ′zin
a∼ n−frac12

n∑
t=1

ηituit, (.1.5)

16 Notice that since limn→∞V(λ′zinzjn
′λ) = σijµ

′Qijµ = φij , then limn→∞V(λ′dn) =

limn→∞V(
∑m
i=1 λ

′zin) =
∑m
i,j=1 φij = µ′(

∑m
i,j=1 σijQij)µ = µ′Φ−1µ = λ′Φ−

1
2 ΦΦ−

1
2λ = 1.



130

which is a sum of independently, but non-identically distributed random variables. As
in the proof of Theorem 1, it is easily seen that under assumptions of Theorem 2, the
Liapounov’s theorem ((White, 1984, theorem 5.10)) is applicable to (.1.5) and

λ′zin
a∼ N(0, ψii),

where

ψii = µ′
[
plim
n→∞

(n−1Xa2
′MiXa2)

]
µ > 0.

Hence, by a similar reasoning as in the proof of Theorem 1, we have

λ′dn
a∼ N(0, 1), and dn

a∼ N(bfzero, Ik−p),

which establishes that
q3 = dn

′dn
a∼ χ2

k−p.

Q.E.D.



Chapter 8

Aggregation Bias in Labour Demand
Equations for the UK Economy

Introduction

The responsiveness of employment to changes in real wages is an issue of considerable
importance, particularly for policy analysis, and over the past decade a number of studies
have been devoted to this issue in the UK. Notable examples include the papers by Nickell
(1984), Symons (1985), Wren-Lewis (1986), and Burgess (1988) for the manufacturing
sector, and by Beenstock and Warburton (1984), ?Layard and Nickell (1985a) for the
private sector and the economy as a whole. In contrast to the earlier work by Godley
and Shepherd (1964), Brechling (1965), and Ball and Cyr (1966), these recent studies
find a significant and quantitatively important effect for real wages on employment. The
point estimates of the long-run wage elasticity obtained in these studies vary widely
depending on the coverage of the data (whether the data set used is economy-wide or
just manufacturing), and on the specification of the estimated equations. A recent review
of these studies by Treasury (1985) concludes that the estimate of long-run wage elasticity
most likely falls in the region −0.5 to −1 although, under the influence of Layard and
Nickell’s important contributions, for the economy as a whole the ‘consensus’ estimate
of this elasticity in the UK currently seems to centre on the figure of −1.1 All these
studies are, however, carried out using highly aggregated data, either at the level of the
whole economy or the manufacturing sector, and given the significance of their results
for macroeconomic policy it is important that the robustness of their results to the level
of aggregation chosen are carefully investigated.

This paper extends the empirical work described in Pesaran et al. (1989b) (PPK),
and examines the effect of aggregation on the estimates of long-run wage and output
elasticities of demand for employment in the UK. The aggregate and the disaggregate
employment functions analysed in this paper differ from those in PPK in two respects.
First, the functions allow for a longer lagged effect of output on employment. Second,
in order to deal with some of the econometric difficulties associated with the use of the

0Published in T. S. Barker and M. H. Pesaran (eds.) Disaggregation in Econometric Modelling (1990),
Routledge, London, Chapter 6, pp. 113–149. Co-authors K. C. Lee and M. H. Pesaran. We are grateful
to Ed Learner and Franco Peracchi for helpful comments and suggestions. Financial support from the
ESRC and the Newton Trust is gratefully acknowledged.

1 This consensus estimate is also the same as the figure obtained by Beenstock and Warburton (1984)
for their extended data set.
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time trend as a proxy for technical change in estimating the employment functions,2 the
time trend will be replaced by a measure of embodied technological change based on the
current and past movements of gross investment, à la Kaldor (1957, 1961). This measure
of technological change is both statistically less problematic than a simple time trend and
more satisfactory from a theoretical standpoint.

The paper also applies the statistical methods recently developed for the analysis of
aggregation by PPK and Lee et al. (1990b) (LPP) to employment equations for the UK.
Specifically, the aggregation bias in the estimates of the long-run wage and output elastic-
ities will be tested statistically, and the possibility of misspecification of the disaggregate
employment equations will be investigated by means of the Durbin-Hausman type test
developed in LPP. The adequacy of the aggregate model (relative to the disaggregate
specification) will also be investigated by means of the goodness-of-fit criteria and the
test of perfect aggregation proposed in PPK.

The plan of the paper is as follows. Section 8.1 sets out the disaggregate employ-
ment functions and discusses the theoretical rationale that underlies them. Section 8.2
motivates the use of a distributed lag function in gross investment as a proxy far techno-
logical change. Section 8.3 reviews the various statistical methods to be applied. Section
8.4 presents the empirical results, and the final section provides a summary of the main
findings of the paper.

8.1 Industrial employment functions: theoretical con-

siderations

In specifying the employment demand functions we follow the literature on derivation
of dynamic factor demand models and suppose that the employment decision is made
at the industry level by identical cost minimizing firms operating under uncertainty in
an environment where adjustment can be costly. We assume that in the absence of
uncertainty and adjustment costs the industry’s employment function is given by

h∗t = f(wt, yt, at) + vt, (8.1.1)

where

h∗t = the desired level of man-hours employment (in logs),
wt = the real wage rate (in logs),
yt = the expected level of real demand (in logs),
at = an index of technological change,
vt = mean zero serially uncorrelated productivity shocks.

The actual level of employment, ht, measured in logarithms of man-hours employed in
the industry is then set by solving the following optimisation problem

min
ht,ht+1,...

E

{
∞∑
τ=0

βτ
[
(ht+τ − h∗t+τ )2 +

1

2
φ1(∆ht+τ )

2 +
1

2
φ2(∆2ht+τ )

2

]
|Ωt

}
(8.1.2)

2 The econometric problems involved in the use of time trends in regression equations containing
non-stationary variables are discussed, for example, by Mankiw and Shapiro (1985, 1986), and Durlauf
and Phillips (1986).
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where Ωt = (ht, ht−1, . . . , wt, wt−1, . . . , yt, yt−1, . . . , at, at−1 . . . , ut, ut−1, . . . , ) represents the
information set of the firm at time t, ∆ is the first difference operator, and 0 ≤ β < 1
is the real discount factor. The first term in (8.1.2) measures the cost of being out of
equilibrium, and the second and the third terms stand respectively for the costs of chang-
ing the level and the speed with which changes in employment are put into effect. The
inclusion of the last term in (8.1.2) is proposed in Pesaran (1988b) and generalises the
familiar adjustment cost-rational expectations models discussed, for example, by Sargent
(1978) and Kennan (1979), and is of some interest as it provides a theoretical justification
for the inclusion of ht−2 in the employment function.3 In practice, the speed of adjust-
ment coefficients φ1 and φ2 could vary with the state of the labour market as argued, for
example, by Smyth (1984) and Burgess (1988). Here, however, we shall assume that they
are fixed. The unique solution to the above optimisation problem is derived in Pesaran
(1988b) and is given by

ht = ψ1ht−1 + ψ2ht−2 +
∞∑
j=0

θj E(h∗t+j|Ωt) (8.1.3)

where

ψ1 = µ′1 + µ′2 > 0, ψ2 = −µ′1µ′2 < 0, θj = (µ−j−1
1 − µ−j−1

2 )/[φ2(µ2 − µ1)]

and µ1, µ2, µ′1 and µ′2 are the roots of

a2x
2 + a1x+ λ1x

−1 + λ2x
−2 = 1.

The reduced-form parameters a1, a2, λ1 and λ2 are defined in terms of the structural pa-
rameters, β, φ1 and φ2 (see, Pesaran (1988b)). It is important to note that for plausible
values of the structural parameters the theory suggests a negative value for the coeffi-
cient of ht−2 in (8.1.3). Adopting a linear approximation for (8.1.1), and assuming that
conditional expectations of wt+j, yt+j and at+j with respect to Ωt are formed rationally
on the basis of an rth order vector autoregressive (VAR) system, the decision rule (8.1.3)
becomes

ht = intercept + ψ1hh−1 + ψ2ht−2 + ct−1
′(L)zt + ut (8.1.4)

where ut = (1−ψ1−ψ2)(1−ψ1/β−ψ2/β
2)vt, zt = (at, yt, wt)

′, and ct−1(L) =
∑r

i=1 ciL
i−1

is a 3×1 vector of lag polynomials of order r−1 in the lag operator L. In the case where
the variables yt, wt and at have univariate AR(ri), i = y, w, a representations, (8.1.4)
simplifies to

ht = intercept +ψ1hh−1+ψ2ht−2+

(
ry∑
i=1

γiyL
i−1

)
yt+

(
rw∑
i=1

γiwL
i−1

)
wt+

(
ra∑
i=1

γiaL
i−1

)
at+ut,

(8.1.5)
which is a generalisation of the aggregate employment function (7.2) in PPK.4 Under
the rational expectations hypothesis (REH), the coefficients ci in (8.1.4), and γiy, γiw,

3 The inclusion of first or higher order lags of ht in the employment function can also be justified
by appeal to aggregation over different types of labour or firms with different adjustment costs (Nickell
(1984)).

4 To derive (7.2) in PPK from (8.1.5), let ry = rw = 2, and notice that when a simple linear trend is
used as a proxy for at, then at = at−1 + b, where b is a fixed constant, and(

ra−1∑
i=1

γiaL
i−1

)
at =

(
ra−1∑
i=1

γia

)
at − b

ra−1∑
i=1

(i− 1)γia = γaat + constant.
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γia in (8.1.5) will be subject to 3r − 4 and (ry + rw + ra)− 4 cross-equation restrictions,
respectively. However, given our concern with the problem of aggregation, in the present
study we do not consider imposing these restrictions, and employ instead the unrestricted
version of (8.1.5) as our maintained hypothesis.5 We then choose the orders of the lag
polynomials on ht, yt, wt, and at empirically. The validity of the RE restrictions at the
industry level and the problem of aggregation bias in the context of RE models is beyond
the scope of the present paper.

8.2 Modelling and measurement of technological change

In the empirical analysis of labour demand, technological change, broadly defined to in-
clude new scientific, engineering, and electronic discoveries and inventions, is generally
assumed to occur exogenously, evolving independently of market conditions and govern-
ment policy interventions. It is inferred either indirectly as a residual using a production
function approach, or is represented by linear, piece-wise linear, or non-linear functions of
time. Neither procedure is satisfactory. The former approach, employed, for example, by
?, assumes an a priori knowledge of the production possibilities and involves circular rea-
soning, while the latter is devoid of a satisfactory theoretical rationale and is adopted by
most researchers as a ‘practical’ method of dealing with a very difficult problem (Arrow
(1962)).6

Ideally, what we need are direct reliable measures of technological change, and there
are some data such as expenditure on research and development (R&D) and the number of
patents and product designs granted over a given period that can be used. In the absence
of suitable direct measures of technological change, here we adopt an indirect approach
and following Kaldor (1957, 1961) postulate a distributed lag relationship between the
at, the technological change index, and the rate of gross investment, GIt,

at = intercept +
∞∑
j=0

λj log(GIt−j). (8.2.1)

A static version of this relationship when used in a linear version of (8.1.1) yields a log
linear approximation to Kaldor’s ‘technical progress function’, which relates the rate of
change of productivity per worker to the rate of change of gross investment.7 According
to this model technological progress is ‘embodied’ in the process of capital accumulation
and takes place primarily through gross capital formation by the infusion of new equip-
ment and machines, embodying the most up-to-date technology into the economy. The
formulation (8.2.1) can also be justified along the lines suggested by Arrow (1962) in his
seminal paper on ‘learning by doing’. (Arrow, 1962, p. 157) himself uses cumulative
gross investment as an index of experience, which is closely related to the distributed lag
function in (8.2.1).

The technological progress function (8.2.1) is more than a theoretical postulate. It
is also based on direct empirical support. Schmookler (1966) in his pioneering work, us-
ing patents as a disaggregate measure of technological change, showed there exist strong

5 This is similar to the research strategy followed by Nickell (1984) and Burgess (1988).
6 Notice that the use of time trends in regression equations containing integrated stochastic processes

is also subject to important econometric pitfalls and as argued in Mankiw and Shapiro (1985, 1986), and
Durlauf and Phillips (1986) can lead to spurious inference.

7 See in particular (Kaldor and Mirlees, 1962, pp. 176–7). Notice, however, that Kaldor’s formulation
abstracts from the effect of real wages on labour productivity, while ours does not.
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positive correlations between gross investment and patents in railroads, petroleum refin-
ing, and building industries over the period 1873–1940. He also obtained similar results
using cross-section data. While there is some doubt about the direction of causation in
Schmookler’s findings, there is little dispute about the existence of a close relationship
between gross investment and technological change.8 Since our aim here is not to explain
the causes of technological change but to estimate its impact on employment demand,
we feel that the controversy over the causality of the investment-patents relationship has
little bearing on our analysis.

The coefficients λj, j = 1, 2, . . . measure the impact of past investments on the current
state of technological advance, and it is reasonable to assume that they are a decreasing
function of the lag length, j = 1, 2, . . .. The likely rate of decline of λj depends on the
importance of the learning-by-doing component of at. Under a pure learning story, {λj}
will be fixed or show a very slow rate of decline. The rate of decline of {λj} is likely to
be much higher if one adopts Kaldor’s idea. Here, for the purpose of empirical analysis
we assume the following geometrically declining pattern for λj

λj = α(1− λ)λj, j = 0, 1, 2, . . . α, λ > 0

and write (8.2.1) as
at = intercept + αdt(λ) (8.2.2)

where dt(λ) satisfies the following recursive formula

dt(λ) = λdt−1(λ) + (1− λ) log(GIt). (8.2.3)

Substituting (8.2.2) in (8.1.5) now yields

ht = intercept + ψ1ht−1 + ψ2ht−2 + γy(L)yt + γw(L)wt + αγa(L)dt(λ) + ut (8.2.4)

where γy(L), γw(L), and γa(L) are lag operator polynomials of orders ry − 1, rw − 1 and
ra − l, respectively. It is clear that in general α is not identifiable, although the decay
coefficient, λ, can in principle be estimated from the data. We shall return to the issue
of the estimation of (8.2.4) in section 8.4, but first we briefly review the econometric
issues concerning testing for aggregation bias and the relative predictive performance of
aggregate and disaggregate models.

8.3 The aggregation problem: econometric consider-

ations

Suppose that, for a given value of the decay parameter λ, the variables in (8.2.4), namely
ht, yt, wt, and dt(λ), are observed over the period t = 1, 2, . . . , n for each of the m firms
(industries), i = 1, 2, . . . ,m. Then the disaggregate employment equations can be written
in matrix notation as

Hd : hi = Xiβi + ui, i = 1, 2, . . . ,m (8.3.1)

8 For a review of more recent evidence see, for example Beggs (1984) and Baily and Chakrabarti
(1985). Notice, however, that Beggs uses wage expenditures as a surrogate for investment data and his
results may not be directly comparable to those obtained by Schmookler. On this see the comments by
Schankerman (1984) on Beggs’s paper.
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where hi is the n × 1 vector of observations on the log of manhours employment in the
ith firm (industry), Xi is the n× k (k = ry + rw + ra + 3) matrix of observations on the
regressors in (8.2.4) for the ith firm (industry). β is the k × 1 vector of the coefficients
associated with columns of Xi, and ui is the n× 1 vector of disturbances for the ith firm
(industry). The aggregate equation associated with (8.2.4) is given by

Ha : ha = Xaba + v (8.3.2)

where

ha =
m∑
i=1

hi. Xa =
m∑
i=1

Xi

and ba is the k × 1 vector of macro parameters.
The aggregation problem arises when the disaggregate model (8.3.1) holds but the

investigator decides to base his/her analysis on the aggregate specification (8.3.2). The
econometric implications of aggregation in linear models have been discussed in the lit-
erature in some detail.9 The principal issues concern the accuracy of predictions and
the bias in the parameter estimates. For the analysis of the predictive performance of
models (8.3.1) and (8.3.2), PPK propose using a modified version of the Grunfeld and
Griliches criterion which compares the sums of squared errors of predicting ha using the
aggregate and disaggregate models, adjusting for the differences in the degrees of freedom
(see section 4 of PPK). They also propose a test of perfect aggregation which tests the
hypothesis that

ξ =
m∑
i=1

Xiβi −Xab = 0.

To test for aggregation bias, two approaches are possible. The first is the method
employed in Zellner (1962) and involves testing the micro homogeneity hypothesis

Hβ : β1 = β2 = · · · = βm.

However, as is pointed out in LPP, as a test of aggregation bias this approach is unduly
restrictive. Instead they propose testing the hypothesis of zero aggregation bias directly
by comparing an average of the estimates of the micro coefficients, or a function thereof,
with the aggregate counterpart. In the case of the present study, the parameters of
interest are the long-run output and wage elasticities, which, assuming ry = rw = 2 in
(8.3.1), are given (in terms of the elements of βi) for the ith industry by

εiy =
βi4 − βi5

1− βi2− βi3
and

εiw =
βi6 + βi7

1− βi2− βi3
respectively.10 The null hypothesis we wish to test is that aggregation bias is zero, i.e.

ηg = g(b) = − 1

m

m∑
i=1

g(βi) = 0 (8.3.3)

9 See for example Theil (1954), Grunfeld and Griliches (1960), Boot and de Wit (1960), Zellner (1962),
Gupta (1971), and Sasaki (1978).

10 From (8.1.5) note that βi = (βi1, βi2, . . . , βik)′ = (intercept, ψi1, ψi2, γ1y, γ2y, γ1w, γ2w, γ1a, γ2a).
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where g(βi) is an s × 1 vector of parameters of interest from the disaggregate model
(8.3.1) and g(b) is the corresponding vector from the aggregate model. In the case of our
application

g(βi) = (εiy, εiw)′. (8.3.4)

Following LPP we distinguish two situations: (i) where g(b) is given a priori (for example
by a consensus view) and (ii) where g(b) is estimated from the aggregate model (8.3.2).

Two corresponding statistics are derived

q∗1 =

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]′
Ω̂
−1

n

[
g(b)− 1

m

m∑
i=1

g(β̂i)

]
a∼ χ2

s (8.3.5)

and
q∗2 = n−1η̂g

′Φ̂
−1

n η̂g
a∼ χ2

s (8.3.6)

where

η̂g = g(b̂)− 1

m

m∑
i=1

g(β̂i) (8.3.7)

and Ω̂n andΦ̂n are estimated covariance matrices defined in LPP.11 These tests of ag-
gregation bias assume that the disaggregate model Hd holds and it is important that
this assumption is also tested. To this end LPP derive a Durbin-Hausman-type mis-
specification test which examines the statistical significance of the difference between the
estimates of the parameters of the aggregate model based on the disaggregate and ag-
gregate specifications respectively. If this difference turns out to be significant then it is
likely that the disaggregate model is misspecified and the aggregation bias tests may be
misleading.

8.4 Empirical results

In this section the theoretical considerations on employment functions of sections 8.1 and
8.2 and the statistical methods outlined in section 8.3 are brought together in the esti-
mation of disaggregate and aggregate employment functions for the UK and the analysis
of aggregation bias. The data employed are taken from the Cambridge Growth Project
Databank, and full details are provided in appendix .1. Figures are available annually
for the period 1954–84 and, except for some public sector services, the whole of the UK
economy is covered, with data provided on a 41-industry basis. As in PPK, industry
4 (mineral oil and natural gas) is excluded from the analysis, and both the disaggre-
gate and the aggregate specifications are based on the remaining 40 industry groups (i.e.
m = 40). Although our data set starts in 1954, all the equations are estimated over
the period 1956–84, and the data for the years 1954 and 1955 are used to generate the
lagged values of employment, output, and real wages that are included in the employ-
ment function (see equation 8.2.4). For the technical change variable dt(λ), we employed
the recursive formula given by (8.2.3), for t = 1955, 1956, . . . , 1984 and experimented
with different methods of initializing the recursive process. We also experimented with
different estimates of the decay rate, λ.

11 It is recognized that the application of the proposed Wald test may be problematic in finite samples
when the restriction set is non-linear since the test is not invariant to the parameterisation of the
restrictions. See Gregory and Veall (1985) and LPP.
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8.4.1 Initialization of the dt(λ) process

We tried two methods for generating the initial value, d1954(λ). In one set of experi-
ments we derived d1954(λ) assuming that the process generating log(GIt) in the pre-1954
period can be characterized by a random walk and that on average E[log(GI1954)] =
E[log(GI1953)] = . . . = log(GI), where we estimate GI by the average of gross investment
over the 1954–8 period. Under these assumptions, the estimate of d1954(λ), which we

denote by d̂01 is given by12

d̂01 = log(GI). (8.4.1)

As an alternative procedure we followed the backward forecasting procedure proposed in
Pesaran (1973), and derived the following alternative estimate for d1954(λ)

d̂02 =

{
ρ̂λ

ρ̂− (1− λ)

}
log(GI1954). (8.4.2)

This estimate assumes that in the pre-1954 period log(GIt) follows the first-order autore-
gressive process

log(GIt) = ρ log(GIt−1) + εt, t = 1954, 1953, . . .

and that ρ can be estimated consistently by the OLS method using data over the period
1954–84.

8.4.2 Estimation of the decay rate parameter, λ

In the initial experiments we assumed a decay rate of λ = 0.10 and estimated the em-
ployment equations under both methods of initializing the dt(λ) process described above.
We found that the technological variable, dt(λ) showed significantly in about half of the

industries, and of these the majority demonstrated the better fit using d̂01, (i.e. had the

larger log likelihood value, LLF) as opposed to d̂02. The difference between LLF obtained
in most industries was well below 1, and in only two cases did the difference exceed 2. In
both of these d̂01 proved to be the more satisfactory measure. In view of these preliminary
results we decided to initialise the dt(λ) process with d̂01. However, we note that, apart
from the size of the coefficient on the constant in the estimated equations, there was
little qualitative difference between results obtained using either of the two initialization
methods.

Using d̂01, we also estimated the industrial employment equations by the grid search
method, for values of λ in the range (0.0, 0.30). Again restricting attention to those
industries with significant technological change effects, we found for about half of these
industries the maximum likelihood estimates of λ fell within this interval, with many of
the rest located on the λ = 0.0 bound. In general, however, we found the results to be

12 Notice that

d1954(λ) = λ

∞∑
i=0

(1− λ)i log(GI1954−i)

and under E[log(GI1954)] = E[log(GI1953)] = . . . = log(GI), we have

d01 = E[d1954(λ)] = log(GI).
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qualitatively robust to the choice of the decay parameter in the range (0.0, 0.30). In the
absence of any strong evidence of a more appropriate estimate of λ, therefore, we decided
to maintain our original choice of λ = 0.10 in the remainder of the empirical work.

8.4.3 The estimated equations

The most general set of equations that we considered are presented in Table 8.1. This
includes among the explanatory variables two lagged dependent variables, ht−1 and ht−2,
and current and lagged values of industry output, wages, and technological change (yt,
yt−1, yt−2, wt, wt−1, dt, dt−1).13 This equation follows from the theoretical discussion of
sections 8.1 and 8.2, by setting ry = 3 and rw = ra = 2 in (8.2.4). Also included in the list
of explanatory variables are current and lagged aggregate output measures, yta and yt−1,a

(yta = 1
m

∑m
i=1 yit). These variables were shown to be important in the empirical work

of PPK, and it is clearly necessary to consider their influence here also. Their inclusion
can be justified on the grounds that agents could use this aggregate information in the
formation of their conditional expectations of yt+j, wt+j, which we have shown to be
important in explaining current employment. This unrestricted model differs from that
in PPK by excluding the time trend, and by including yt−2, dt and dt−1. Replacing the
time trend by dt and dt−1 alone caused a serious deterioration in the performance of many
of the industrial equations, and in particular many became unstable. The inclusion of a
second lagged output term remedied this in most of the equations, however, and Table 8.1
represents a satisfactory set of results. The fit of most of the equations is satisfactory, with

R
2

falling below 0.90 only for industry 5 (Petroleum products). Short-run elasticities of
employment with respect to wages, employment, and technological change are generally of
the expected sign, although as the standard errors of the coefficients (shown in brackets)
indicate, the equations are in many cases overparameterised.

For this reason, a specification search was carried out on these equations to obtain
a more parsimonious set of results, and these are presented in Tables 8.2 and 8.3. Co-
efficients with t-values less than one (in absolute value) were omitted. Some a priori
incorrectly signed coefficients were also constrained to zero where the constraints were
not violated by the data. Specifically, we expect the coefficients on ht−2, and the long-
run wage and technological change effects to be negative. The χ2 statistic for testing the
validity of linear restrictions imposed on the parameters of the unrestricted equations to
obtain the results of Table 8.2 are given in the second column in Table 8.3. It can be
seen that the imposed restrictions are not rejected for any industry, at the conventional
levels of significance.

The overall performance of the equations in Table 8.2 is good and in line with those
of PPK. Real wages show up significantly (and negatively) in most industries, with no
long-run wage effect found only in industries 22, 33, 37, and 40. The output variable
also performed well, showing significantly and positively in all but three industries (6,
20, 38), the last one of which shows a strong positive aggregate output influence. Only
fifteen of the industries failed to demonstrate any technological change effects, although
there are problem industries (10, 11, 26, 36, and 39) for which the technological change
variables are (in sum) incorrectly signed. Other industries with a priori implausible
parameter estimates include 23, 26, and 31, in which an unexpected positive second
lagged dependent variable appears, and industry 25 which is unstable. Industry 20 also

13 For each industry the technological variable dt(λ), or dt for short, is computed using (8.2.3), with
the initial value given by (8.4.1) and the decay parameter, λ = 0.10.
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remains problematic: the differenced form reported in the PPK paper could not be
improved upon, and this equation is retained here.

The histograms in figure 8.1–8.3 illustrate the long-run elasticities of employment with
respect to industrial output, wages, and technological change as obtained from the results
in Table 8.2. Figure 8.1 shows the long-run output elasticities for thirty-eight industries,
omitting industries 20 and 25; the two industries with incorrectly signed output effects
show to the left of the vertical axis, while industry 21 demonstrates an implausibly
high positive output elasticity (the equation for this industry has a coefficient on the
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Figure 8.1: Long-run industry output elasticities from Table 8.2.

lagged dependent variable in excess of 0.9). The output elasticities for the bulk of the
industries, however, lie within the interval (0, 1.5) and the mean long-run output elasticity
is 0.97. The histogram in figure 8.1 provides a clear illustration of the variability in the
responsiveness of employment to output changes across industries, and this is confirmed
by a standard deviation around the mean of 0.86. Similar observations can be made on
the long-run real wage and technological change elasticities, which have means (standard
deviations in brackets), −0.68(0.66), and −0.41(0.81) respectively.

The preferred equations set out in Table 8.2 show the technological change variable
dt to be an adequate replacement for the time trend in some industries, but not all. Of
the twenty-four industrial equations in which a significant time trend was found in PPK,
fifteen are improved upon, in terms of the equation standard errors, by their equivalent
estimate in Table 8.2, while nine fit less well in the absence of the time trend. Moreover,
there are a further eleven equations which did not previously involve a time trend whose
standard error is lower in Table 8.2 than that in PPK, demonstrating the extra explana-
tory power of the additional lagged output and technological change variables. Since we
prefer to replace a time trend with a variable with a more satisfactory theoretical basis,
and given that the fit of this new set of equations is generally higher, these results, taken
as a whole, can be seen as an improvement over those obtained previously.
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Figure 8.2: Long-run industry real wage elasticities from Table 8.2.



142Table 8.1: Unrestricted industrial labour demand equations

inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1 R
2

σ̂
(LLF)

1 Agriculture,etc. −8.3291 0.3996 0.3135 −0.2215 0.5188 0.0008 −0.5179 0.0399 −0.1477 −0.1409 0.4305 0.3869 0.9982 0.0141
(101.8650) (0.1641) (0.1996) (0.1442) (0.2661) (0.1542) 0.1006 0.1531 (0.1740) (0.1714) (0.4127) (0.3553) (90.1369)

2 Coal mining −99.6098 0.3380 −0.5043 0.1258 1.3944 −0.3702 −0.2331 −0.0772 0.0075 0.1290 −0.4265 0.3679 0.9986 0.0160
(66.1970) (0.0499) (0.0953) (0.1254) (0.2044) (0.2355) (0.0369) (0.0777) (0.1254) (0.1402) (0.2022) (0.2374) (86.5871)

3 Coke −426.9027 0.4256 0.2996 0.1716 0.0496 0.1848 −0.6430 0.0465 0.2449 0.1604 −1.3583 1.8793 09710 0.0906
(183.1692) (0.1479) (0.2329) (0.2395) (0.2288) (0.1285) (0.1066) (0.1225) (0.3889) (0.4312) (0.4749) (0.5582) (53.1491)

4 Mineral oil and
natural gas

5 Petroleum 69.7436 0.7333 −0.0163 0.0576 0.6440 −0.0224 −0.4099 0.0223 11.1563 −1.0622 0.5526 −0.6812 0.8841 0.0672
products (233.7634) (0.4544) (0.4349) (0.2395) (0.2651) (0.2815) (0.1412) (0.1804) (0.8680) (0.8383) (0.3451) (0.3579) (44.8866)

6 Electricity, etc. −26.1434 0.0030 0.3339 −0.2057 0.8984 −0.3624 −0.1186 −0.1291 0.0347 0.3182 0.6020 −0.7048 0.9917 0.0155
(51.5244) (0.1887) (0.2605) (0.1605) (0.2033) (0.1964) (0.0768) (0.0845) (01893) (0.2049) (0.2725) (0.2477) (87.3926)

7 Public gas 184.9195 −0.1753 0.6582 −0.6325 0.5349 0.0739 −0.3584 0.2904 −0.2904 0.1382 0.2513 −0.1382 0.9779 0.0286
supply (131.9965) (0.2299) (0.2748) (0.2016) (0.1630) (0.2029) (0.0857) (0.0858) (0.2853) (0.2625) (0.1922) (0.2368) (69.6787)

8 Water supply −187.1010 1.0830 0.2506 −0.4169 0.5300 00286 −0.4472 0.3289 −0.0699 0.1324 −2.8566 2.0447 0.9594 0.0309
(93.4028) (0.4370) (0.5354) (0.4807) (0.1454) ((1.1480) (01069) (0.1258) (0.3251) (0.2887) ((1.7126) (0.5450) (67.4242)

9 Minerals and 79.1062 0.2078 −0.0659 −0.1183 0.5591 0.2587 −0.1445 0.0580 −0.5481 0.4380 −02124 0.1637 0.9706 0.11351
ores n.e.s. (171.5604) (0.1627) (0.1775) (0.1319) (0.2462) (0.1974) (0.0952) (0.1142) (0.4423) (0.6235) (0.3888) (0.4321) (63.71109)

10 Iron and steel −114.7884 0.3066 0.2143 −0.1191 0.5330 0.1296 −0.1959 −0.0661 0.2340 −0.2408 0.4557 −0.2938 0.9923 0.0284
(76.2388) (0.1046) (0.1108) (0.1014) (0.2617) (0.1655) (0.1471) (0.1674) (0.3665) (0.3609) (0.1928) (0.2185) (69.8891)

11 Non-ferrous −31.6300 0.2543 −0.1371 −0.0952 1.0529 −0.2393 −0.1006 −0.0500 0.6953 −0.6961 0.2762 −0.0547 0.9906 0.0208
metals (33.2585) (0.1174) (0.1294) (0.1154) (0.1748) (0.1712) (0.0465) (0.0576) (0.2225) (0.1985) (0.1125) (0.1306) (78.8431)

12 Non-metallic −412.1530 0.3213 0.0723 −0.1101 0.4784 0.4562 −0.3170 −0.1929 0.5393 0.2921 −0.0472 −0.2831 0.9932 0.0181
mineral products (163.0320) (0.1825) (0.1916) (0.1668) (02423) (0.2947) (0.1253) (0.1451) (0.3488) (0.4147) (0.4862) (0.4049) (82.9853)

13 Chemicals and −185.8193 0.0643 0.0698 −0.0238 0.0445 0.4134 −0.3640 −0.0953 0.3115 0.2586 0.4584 −0.3184 0.9819 0.0146
mm fibres (45.5295) (0.1694) (0.1161) (0.0925) (0.2309) (0.1742) (0.0978) (0.1229) (0.30118) (0.2523) (0.2036) (0.2028) (89.0752)

14 Metal goods 54.6916 0.2179 0.0515 −0.1951 0.5656 0.1800 −02192 0.0742 0.1296 −0.2402 1.1805 −1.0864 09893 0.01794
n.e.s. (125.6380) (0.1241) (0.1540) (01097) (0.2116) (0.1728) (0.1143) (0.1190) (0.3236) (0.3611) (0.6468) (0.4716) (832485)

15 Mech. −61.0479 0.4429 −0.2544 0.0449 0.4550 −0.0847 −0.1735 −0.3027 −0.1211 0.4252 0.6855 −0.5910 0.9917 0.0140
engineering (69.0331) (0.1756) (0.1849) (0.1384) (0.2231) (0.2248) (0.1317) (0.1531) (0.1878) (0.2083) (0.4794) (0.5108) (90.3325)

16 Office −469.2709 0.3130 −0.1861 0.2028 1.0064 0.1025 −0.6552 −0.0961 0.4731 0.2497 −0.7454 0.3020 0.9331 0.0272
machinery, etc. (238.0055) (0.1262) (0.1643) (01074) (0.2490) (0.2770) (0.2125) (0.2181) (0.3203) (0.3034) (1.1230) (1.1174) (71.1734)

17 Elect. 116.3987 0.3691 −0.0526 0.0530 0.1906 0.1288 −0.2311 0.0905 −0.0759 0.5089 0.5176 −1.3098 0.9894 0.0102
engineering (26.1750) (0.0762) (0.1130) (0.0950) (0.1719) (0.1140) (0.0838) (00842) (0.1322) (0.1589) (0.2558) (0.2954) (99.4433)

18 Motor vehicles −26.1567 0.5670 −0.2497 −0.0747 0.8065 0.0150 0.1033 −0.2076 0.2030 −0.0142 −0.0786 −0.2601 0.9868 0.0191
(88.6237) (0.0721) (0.1452) (0.1808) (0.1991) (0.2676) (0.1286) (0.1413) (0.2125) (0.2216) (0.3168) (0.3650) (81.3391)

19 Aerospace 222.3672 0.0106 0.0719 −0.0980 0.8612 −0.3314 −0.0477 −0.1448 −0.2439 02592 −0.0317 −0.6019 0.9837 0.0310
equipment (112.9182) (0.0956) (0.0983) (0.0900) (0.2301) (0.2567) (0.1001) (0.1029) (0.2800) (0.2864) (0.5831) (0.4519) (67.3423)

20 Ships and −234.0763 0.5828 −0.1889 −0.3240 1.0843 0.1554 0.0276 0.0009 0.8235 −0.4509 −0.8088 0.8595 0.9881 0.0261
other vessels (75.5925) (0.1078) (0.1700) (0.1530) (0.1868) (02188) (0.0654) (0.0839) (0.2530) (0.2490) (0.5227) (0.3407) (72.3533)

21 Other vehicles −168.3526 0.2968 0.1114 −0.0248 1.0604 −0.1252 −0.1545 0.1153 0.2878 −0.1187 0.9568 −0.8510 0.9968 0.0262
(135.2829) (0.1062) (0.1206) (0.1278) (0.2377) (0.2950) (0.0741) (0.0652) (0.2332) (0.2443) (0.4453) (0.3900) (72.1643)

(continued)
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Table 8.1: Unrestricted industrial labour demand equations (contd.)

inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1 R
2

σ̂
(LLF)

22 Instr. 467.8993 0.0551 0.1219 0.3384 0.2943 −0.2474 −0.1954 0.2810 −0.0956 0.1420 0.9770 −2.4352 0.9727 0.0155
engineering (122.7449) (0.1390) (0.1263) (0.1302) (0.1752) (0.1310) (0.0850) (0.0897) (0.2179) (0.2458) (0.4345) (0.5578) (87.4193)

23 Manufactured −96.1864 0.7245 −0.3829 0.1395 0.4446 0.2049 −0.1728 −0.0398 −0.0032 0.2371 0.6892 −1.0381 0.9862 0.0151
food (138.7636) (0.3199) (0.2337) (0.2045) (0.1915) (0.1648) (0.0757) (0.1034) (0.1593) (0.1614) (0.4081) (0.3510) (88.2687)

24 Alcoholic −106.2884 0.4993 0.0207 −0.3969 1.0974 −0.1643 −0.1113 0.0734 0.0755 0.2879 −0.5152 0.2831 0.9033 0.0301
drinks, etc. (190.7833) (0.5409) (0.5076) (0.5117) (0.2355) (0.3246) (0.1279) (0.1178) (0.6244) (0.4363) (0.6288) (0.5310) (68.1601)

25 Tobacco 150.5910 1.3370 −0.4851 −0.5259 0.6519 1.0220 0.0061 −0.1805 −2.0127 0.0303 1.6853 −0.6736 0.8996 0.0454
(238.0243) (0.4483) (04499) (0.4688) (0.2606) (0.3253) (0.0687) (0.0846) (0.5811) (0.5378) (0.9638) (0.7384) (56.2608)

26 Textiles −163.5445 0.4008 0.0199 −0.3391 0.3040 0.1939 −0.4269 −0.1452 0.2241 0.1107 −0.1934 0.5008 0.9984 0.0160
(110.9788) (0.1809) (0.1746) (0.1335) (0.2162) (0.1579) (0.0869) (0.1585) (0.2388) (0.3882) (0.3831) (0.3380) (86.4858)

27 Clothing and −50.6793 0.5050 0.0437 −0.0218 0.5797 −0.0361 −0.4216 0.0527 −0.1067 −0.0706 −0.0193 0.1237 0.9980 0.0123
footwear (62.0796) (0.1060) (0.1899) (0.1111) (0.2890) (0.1783) (0.0871) (0.1505) (0.1944) (0.1993) (0.3359) (0.2419) (94.1785)

28 Timber and 57.3350 0.2824 0.0633 0.0163 0.3392 0.0730 −0.2734 0.0580 0.0904 −0.0689 0.3085 −0.4176 0.9851 0.0145
furniture (83.7562) (0.1185) (0.1490) (0.1127) (0.2469) (0.1428) (0.0935) (0.0981) (0.2622) (0.3858) (0.3788) (0.3563) (89.4445)

29 Paper and 92.5460 0.1240 0.1082 0.0645 0.3571 0.3316 −0.1795 0.1637 0.4807 0.1567 0.1453 −1.5894 0.9942 00171
board (49.1811) (0.2041) (0.1692) (0.7207) (0.2419) (0.1362) (0.0769) (0.1279) (03626) (0.3013) (0.4445) (0.4768) (84.5039)

30 Books, etc. 116.8745 0.2547 0.0013 −0.0353 0.8079 −0.2086 −0.0864 −0.0626 −0.1167 −0.2457 0.7865 −0.5611 0.9427 0.0112
(38.6891) (0.1161) (0.1355) (0.0777) (0.2747) (0.2297) (0.0590) (0.0617) (0.1828) (0.1840) (0.3149) (0.2934) (96.8764)

31 Rubber and −114.0693 0.3664 −0.0228 −0.3178 0.4959 0.3564 −0.2941 0.0733 0.0953 0.0950 0.1452 0.0405 0.9795 0.0183
plastic pr. (68.7654) (0.2515) (0.2248) (0.1387) (0.2956) (0.2238) (0.2183) (0.1284) (0.4141) (0.4318) (0.7177) (06053) (82.5569)

32 Other 157.9064 0.3169 0.0061 0.0167 0.6974 −0.0339 −0.1025 0.0520 0.1378 −0.6710 0.5953 −0.4945 0.9918 0.0136
manufactures (71.7964) (0.0739) (0.1356) (0.1194) ((0.1986) (0.2011) (0.0938) (0.0909) (0.2044) (0.2084) (0.2537) (0.1999) (91.1621)

33 Construction 0.1708 03346 −0.4336 0.16s0 1.1032 −0.2506 −0.3106 0.4361 0.3935 0.0579 −0.4806 0.1353 0.9804 0.0142
(72.0577) (0.1097) (0.1464) (0.0958) (0.1785) (0.1212) (0.0893) (0.1073) (0.1970) (0.1980) (0.3877) (0.3364) (89.9104)

34 Distribution. etc. 165.8094 −0.0730 0.6536 −0.1662 0.7386 −0.2110 −0.1118 −0.0537 −0.0828 −0.5416 0.6452 −0.4648 0.9548 0.0148
(89.2530) (0.2295) (0.3158) (0.1553) (0.2320) (0.1739) (0.1285) (0.1296) (0.1893) (0.2338) (0.5798) (0.4992) (88.7516)

35 Hotels and 42.4162 0.3120 0.3603 −0.2291 0.5370 0.0360 −0.3282 0.1610 −0.0757 −0.1791 −0.1462 0.2173 0.8996 0.0218
catering (100.6322) (0.2517) (0.4124) (0.3271) (0.3275) (0.2834) (0.1593) (0.1738) (0.2217) (0.2135) (0.3011) (0.2850) (77.6065)

36 Rail transport 120.7537 0.3027 0.4311 −0.0013 0.4013 −0.1819 −0.1381 0.0703 −0.1976 −0.3762 1.1548 −0.7263 0.9979 0.0170
(103.6322) (0.1210) (0.1312) (0.1354) (0.1979) (0.1413) (0.1133) (0.1043) (0.2297) (0.2246) (0.2405) (0.1962) (84.8173)

37 Other land 191.4749 −0.0685 0.2417 −0.2581 0.9714 −0.3262 0.0266 0.0380 0.0908 −0.0147 0.3518 −0.4643 0.9740 0.0165
transport (77.5060) (0.1657) (0.1952) (0.1712) (0.2405) (0.2238) (0.0591) (0.0650) (0.1671) (0.1733) (0.2886) (0.2605) (85.5580)

38 Sea, air and other 63.4575 0.2006 −0.5254 −0.1053 1.1557 −0.5003 −0.2569 0.2130 −0.0463 0.6873 −0.3834 0.3880 0.9196 0.0224
(132.3929) (0.1897) (0.2355) (0.1519) (0.2143) (0.2906) (0.1420) (0.1521) (0.2573) (0.3391) (0.4332) (0.3686) (76.7924)

39 Communications 259.2154 0.5147 −0.4403 −0.2152 0.6941 −0.3138 −0.1371 0.1954 −0.1709 0.1549 0.7280 −0.5472 0.9416 0.0174
(52.3347) (0.2695) (0.4696) (0.3093) (0.2071) (0.2094) (0.1147) (01024) (0.2188) (0.1711) ((0.3443) (0.2974) (84.0346)

40 Business services 354.3580 0.0441 0.1689 −0.1074 0.3361 −0.1646 0.0769 −0.1400 −0.0283 −0.2971 0.9987 −0.7970 0.9942 0.0125
(95.7801) ((0.1496) (0.1514) (0.1404) (0.2678) (0.2481) (0.0859) (0.0039) (0.1137) (0.1173) (0.3955) (0.3127) (93.5970)

41 Miscell. services −248.5543 0.4159 −0.2700 0.2990 1.0218 0.0167 −0.2817 01537 0.0955 0.1960 −0.1665 −0.1150 0.9483 0.0229
(145.5570) ((0.1826) (0.1973) (0.1843) (0.2370) (0.2849) (0.1605) (0.1468) (0.2302) (0.2065) (0.4956) (0.4013) (76.1713)

Notes : σ̂ is equation standard error. LLF is the maximized value of log-likelihood function. Standard errors in brackets,

R
2

= is adjusted multiple correlation coefficient. n.e.s. - not elsewhere specified

Source: For source of data see the Appendix.
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inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1

1 Agriculture, etc. 5.9025 0.4080 0.3215 −0.1981 0.4782 −0.5134 −0.3886
(57.5851) (0.0338) (0.1440) (0.1169) (0.0669) (0.0836) (0.0480)

2 Coal mining −24.6379 0.2845 −0.4268 1.3624 −0.4332 −0.2194 −0.1226
(10.1993) (0.0499) (0.0716)) (0.0957) (0.1359) (0.1680) (0.0297) (0.0326)

3 Coke −81.9147 0.3733 0.5137 0.1876 −0.4294 −0.1354 −14606 1.4606
(66.9629) (0.1351) (0.2122) (0.1151) (0.0790) (0.1158) (0.4225) (0.4225)

4 Mineral oil and nat. gas

5 Petroleum products −92.6973 0.3475 0.7915 −0.2882 0.3281 −0.5234
(88.2755) (0.1847) (0.1253) (0.1086) (0.2698) (0.2702)

6 Electricity, etc. 42.7381 0.5112 −0.3648 1.1202 −0.4619 −0.1490 0.2793 −0.3007
(26.8282) (0.1342) (0.1475) (0.1862) (0.1803) (0.0746) (0.2408) (0.2702)

7 Public gas supply 112.7709 0.4662 −0.5338 0.6934 −0.2975 0.2300
(44.4602) (0.1803) (0.1653) (0.1060) (0.0681) (0.0774)

8 Water supply −167.9418 1.4846 0.4752 −0.4094 0.1846 −3.0775 2.4681
(62.5607) (0.3476) (0.1039) (0.0976) (0.1085) (0.6623) (0.5508)

9 Minerals and ores nes 172.9158 0.2655 0.6931 −0.1494 −0.5337
(79.1246) (0.1265) (0.0790) (0.0622) (0.2560)

10 Iron and steel −155.7089 0.3796 0.1997 0.5533 −0.3402 0.1489
(20.5070) (0.0562) (0.0711) (0.0854) (0.0596) (0.0636)

11 Non-ferrous metals −21.3448 0.2912 −0.1825 1.0929 −0.3288 −0.1061 −0.0520 0.6320 −0.7019 0.2278
(27.8342) (0.1040) (0.1138) (0.1544) (0.1229) (0.0439) (0.0496) (0.2043) (0.1920) (0.0572)

12 Non-metallic min. pr. −236.8126 0.3842 0.8437 −0.2505 −0.1262 0.3674 −0.2609
(65.3042) (0.1125) (0.0450) (0.1029) (0.1188) (0.2118) (0.1336)

13 Chemicals and mm fibres −99.1032 0.5831 −0.2735 0.5764 0.2720 −0.2720
(28.1020) (0.0710) (0.0329) (0.0769) (0.1678) (0.1678)

14 Metal goods nes −51.0504 0.2663 0.6006 −0.2335 0.2716 0.4410 −0.6038
(67.1158) (0.1006) (0.0653) (0.0763) (0.2663) (0.3831) (0.3240)

15 Mech. engineering −101.2153 0.4909 −0.3408 0.1184 0.5996 −0.2925 −0.1979 −0.3348 0.4802
(51.8451) (0.0750) (0.1484) (0.0960) (0.2087) (0.1792) (0.1133) (0.1163) (0.1746)

16 Office machinery etc. −67.1178 0.2278 0.8571 −0.2389 0.2548 1.0366 −1.5206
(75.6691) (0.0600) (0.0721) (0.1049) (0.1399) (0.5489) (0.5314)

17 Elect. engineering 106.1219 0.3463 0.3886 −0.2592 0.1351 0.3684 0.2694 −0.9762
(25.5818) (0.0462) (0.0646) (0.0771) (0.0637) (0.1099) (0.1979) (0.2051)

18 Motor vehicles −74.0164 0.5451 −0.2618 0.8395 −0.1165 −0.2102 0.2625 −0.2471
(48.8105) (0.0470) (0.1197) (0.1614) (0.0909) (0.0666) (0.1099) (0.0892)

19 Aerospace equipment 246.9802 1.1388 −0.6421 −0.1737 −0.6598
(75.2084) (0.1495) (0.1727) (0.0720) (0.2197)

20 Ships and other vessels −0.7667 0.4809 −0.4809 1.4717 −0.4717 0.5103 −0.5103
(0.3086) (0.1171) (0.1171) (0.1543) (0.1543) (0.2000) (0.2000)

21 Other vehicles −165.4705 0.3896 0.9154 −0.1680 0.1064 0.2078 0.7687 −0.7687
(58.7346) (0.0706) (0.0419) (0.0552) (0.0564) (0.1235) (0.3109) (0.3109)

(continued)
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Table 8.2: Restricted industrial labour demand equations (contd.)

inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1

22 Instr. engineering 423.2630 0.2115 0.3539 0.3177 −0.2486 −0.2377 0.2377 1.2396 −2.6097
(55.7285) (0.0825) (0.0987) (0.1267) (0.1064) (0.0581) (0.0581) (0.3043) (0.3537)

23 Manufactured food −172.9101 0.5982 0.4844 0.3037 −0.2337 0.6483 −0.8005
(63.0103) (0.1660) (0.1266) (0.1327) (0.0498) (0.3462) (0.3177)

24 Alcoholic drinks, etc. −96.0446 1.1312 −0.3072 −0.0956 0.4479 −0.1047
(69.2247) (0.1750) (0.2359) (0.0705) (0.1457) (0.0868)

25 Tobacco 155.5488 1.3459 −0.4827 −0.5240 0.6473 1.0209 −0.1781 −2.0136 1.7244 −0.6987
(182.3643) (0.4049) (0.4058) (0.3982) (0.2205) (0.2796) (0.0668) (0.5337) (0.6965) (0.6201)

26 Textiles −69.3333 0.3637 −0.2759 0.5652 −0.4337 0.0882 0.2960
(39.2933) (0.0675) (0.0871) (0.0657) (0.0753) (0.1207) (0.1265)

27 Clothing and footware −68.9489 0.4514 0.5364 −0.3756
(11.9600) (0.0372) (0.0411) (0.0284)

28 Timber and furniture 27.5732 0.3925 0.5144 −0.2885 0.1108 −0.1174
(13.7004) (0.0352) (0.0572) (0.0595) (0.0681) (0.0282)

29 Paper and board 39.4291 0.4375 0.1880 0.4661 −0.2130 −0.5252
(31.8083) (0.0640) (0.0929) (0.0659) (0.0477) (0.1523)

30 Books, etc. 96.1742 0.4094 −0.2040 1.3273 −0.6121 −0.0578 −0.2125
(32.3071) (0.0946) (0.0681) (0.1955) (0.1602) (0.0477) (0.1434)

31 Rubber and plastic pr. −81.7005 0.4581 −0.2463 0.5365 0.3160 −0.2692
(16.8687) (0.0427) (0.0729) (0.1198) (0.1195) (0.0700)

32 Other manufactures 56.9103 0.2992 0.7367 −0.0805 0.4048 −0.6459
(51.0746) (0.0602) (0.0902) (0.0810) (0.1692) (0.1125)

33 Construction 3.3516 0.3475 −0.3710 0.1345 0.9814 −0.2355 −0.3435 0.3435 0.3916 −0.2830
(27.4087) (0.0858) (0.1167) (0.0835) (0.0957) (0.0955) (0.0704) (0.0704) (0.1500) (0.0705)

34 Distribution. etc. 141.2744 0.7842 −0.2726 0.6360 −0.0409 −0.5717
(41.2202) (0.1615) (0.1207) (0.0917) (0.0356) (0.1527)

35 Hotels and catering −58.7494 0.3544 0.7096 −0.3876 0.1959
(44.4425) (0.1150) (0.1022) (0.1191) (0.1094)

36 Rail transport −50.9886 0.1307 0.3372 0.5187 −0.2545 0.8608 −0.6958
(25.3141) (0.0894) (0.1055) (0.0978) (0.0718) (0.2211) (0.1953)

37 Other land transport 118.4359 0.2123 −0.2016 1.003 −0.2638 0.4509 −0.5162
(34.6439) (0.1302) (0.1434) (0.1803) (0.1884) (0.2304) (0.1937)

38 Sea, air and other 67.2451 0.1608 −0.3506 1.2952 −0.6002 −0.2432 0.1835 0.3148
(92.1103) (0.1269) (0.1263) (0.1460) (0.1863) (0.1204) (0.1255) (0.1521)

39 Communications 309.7212 0.5777 −0.4744 −0.0937 0.0860 1.0539 −0.9139
(57.1105) (0.1677) (0.1616) (0.0631) (0.0664) (0.2010) (0.1745)

40 Business services 209.6513 0.3108 0.6781 −0.3104 −0.1633
(49.1545) (0.0718) (0.1759) (0.1680) (0.0486)

41 Miscell. services −39.9043 0.2123 0.8264 −0.1408
(33.3057) (0.0790) (0.0970) (0.0747)

Notes : See notes to Table 8.1.
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Table 8.3: Summary and diagnostic statistics for the restricted employment equations
of Table 8.2

Industry R
2

χ2
r σ̂ χ2

SC(1) χ2
FF (1) χ2

N(2) χ2
H(1)

1 Agriculture, etc. 0.9983 5.00 (5) 0.0136 0.08 5.96 0.02 0.06
2 Coal mining 0.9987 4.02 (4) 0.0155 0.00 0.25 1.18 0.32
3 Coke 0.9656 10.10 (5) 0.0551 0.00 13.82 0.50 2.96
4 Mineral oil and nat. gas — — — — — — —
5 Petroleum products 0.8874 6.94 (6) 0.0663 0.00 1.89 1.93 0.33
6 Electricity, etc. 0.9909 7.59 (4) 0.0163 1.08 1.26 0.22 2.58
7 Public gas supply 0.9773 8.14 (6) 0.0290 4.60 1.11 4.12 5.42
8 Water supply 0.9520 10.06 (5) 0.0336 0.01 0.38 0.71 0.00
9 Minerals and ores nes 0.9760 3.84 (7) 0.0318 1.36 0.16 32.70 0.00

10 Iron and steel 0.9919 8.63 (6) 0.0291 0.20 4.59 2.08 0.77
11 Non-ferrous metals 0.9912 1.31 (2) 0.0202 4.25 2.19 2.75 0.05
12 Non-metallic min. pr. 0.9937 4.82 (5) 0.0174 1.82 4.70 2.09 4.48
13 Chemicals and mm fibres 0.9808 9.67 (7) 0.0151 4.76 3.53 1.65 1.29
14 Metal goods nes 0.9898 5.39 (5) 0.0174 0.21 5.96 1.69 4.74
15 Mech. engineering 0.9916 4.60 (3) 0.0141 0.17 0.21 0.02 1.09
16 Office machinery, etc. 0.9291 7.85 (5) 0.0280 0.38 1.10 0.76 4.48
17 Elect. engineering 0.9893 5.82 (4) 0.0103 1.79 0.01 0.41 1.12
18 Motor vehicles 0.9887 1.43 (4) 0.0176 4.16 0.88 1.55 1.58
19 Aerospace equipment 0.9847 7.20 (7) 0.0301 3.56 1.04 0.06 2.78
20 Ships and other vessels 0.9818 16.13 (8) 0.0323 0.45 0.61 0.40 4.46
21 Other vehicles 0.9972 2.85 (5) 0.0243 0.90 2.10 0.33 2.59
22 Instr. engineering 0.9759 2.44 (4) 0.0146 1.57 1.29 2.14 1.02
23 Manufactured food 0.9856 7.50 (5) 0.0154 0.43 0.48 6.76 2.46
24 Alcoholic drinks, etc. 0.9119 5.49 (6) 0.0288 0.10 1.43 0.71 3.57
25 Tobacco 0.9101 0.02 (2) 0.0430 4.95 16.07 0.09 0.04
26 Textiles 0.9985 5.09 (5) 0.0155 4.21 2.46 2.20 2.03
27 Clothing and footwear 0.9984 4.32 (8) 0.0110 0.36 1.92 0.62 0.03
28 Timber and furniture 0.9873 3.76 (6) 0.0133 0.08 3.73 0.91 0.85
29 Paper and board 0.9932 10.81 (6) 0.0186 5.30 0.14 1.73 6.16
30 Books, etc. 0.9341 9.52 (5) 0.0120 1.76 0.00 0.00 1.13
31 Rubber and plastic pr. 0.9834 2.51 (6) 0.0165 0.14 2.45 0.50 0.01
32 Other manufactures 0.9908 9.82 (6) 0.0144 0.22 0.37 1.11 0.02
33 Construction 0.9819 2.42 (3) 0.0137 0.02 0.10 0.73 0.27
34 Distribution, etc. 0.9603 4.63 (6) 0.0139 0.32 1.96 0.23 2.47
35 Hotels and catering 0.9169 4.17 (7) 0.0198 0.58 1.88 0.45 0.63
36 Rail transport 0.9975 9.84 (5) 0.0183 0.03 0.38 2.66 0.86
37 Other land transport 0.9766 4.12 (5) 0.0157 0.13 0.98 1.02 0.02
38 Sea, air and other 0.9278 2.87 (4) 0.0212 2.23 7.95 1.88 0.91
39 Communications 0.9388 7.59 (5) 0.0178 0.53 1.51 1.16 4.09
40 Business services 0.9940 9.26 (7) 0.0128 0.98 2.01 1.98 0.17
41 Miscell. services 0.9512 8.14 (8) 0.0222 0.06 0.47 0.39 191

Notes :

σ̂ is the equation standard error. R
2

is the adjusted multiple correlation
coefficient.

χ2
r is the chi-squared statistic for the test of r linear restrictions on the pa-

rameters of unrestricted employment equations (see Table 8.1). The value of
r is given in brackets after the statistic.

χ2
SC(1) is the first order LM test of residual serial correlation. χ2

N(2) is a test
of normality of the errors. χ2

FF (1) is Ramsey’s RESET test of order 1. χ2
H(1)

is a heteroscedasticity test of order 1.

The underlying regressions and the test statistics reported in this table are
computed in the Microfit package. For details of relevant algorithms and
references, see Pesaran and Pesaran (1987b).
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Table 8.4: Composite restricted industrial labour demand equations

inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1 Tt

1 Agriculture, etc. 5.9025 0.4080 0.3215 −0.1981 0.4782 −0.5134 −0.3886
(57.5851) (0.0338) (0.1440) (0.1169) (0.0669) (0.0836) (0.0480)

2 Coal mining −24.6379 0.2845 −0.4268 1.3624 −0.4332 −0.2194 −0.1226
(10.1993) (0.0499) (0.0716)) (0.0957) (0.1359) (0.1680) (0.0297) (0.0326)

3 Coke −351.5712 0.6330 −0.3005 1.0448 −1.3100
(44.6561) (0.1471) (0.0418) (0.1564) (0.1752)

4 Mineral oil and nat. gas

5 Petroleum products −70.7059 0.3640 0.5185 −0.3144 −0.5087
(71.7711) (0.1324) (0.1348) (0.0869) (0.1297)

6 Electricity, etc. 42.7381 0.5112 −0.3648 1.1202 −0.4619 −0.1490 0.2793 −0.3007
(26.8282) (0.1342) (0.1475) (0.1862) (0.1803) (0.0746) (0.2408) (0.2702)

7 Public gas supply −47.7381 0.0611 0.4191 −0.1507 0.5379 −0.6014
(97.2188) (0.0659) (0.1524) (0.0496) (0.1827) (0.1995)

8 Water supply −167.9418 1.4846 0.4752 −0.4094 0.1846 −3.0775 2.4681
(62.5607) (0.3476) (0.1039) (0.0976) (0.1085) (0.6623) (0.5508)

9 Minerals and ores nes 172.9158 0.2655 0.6931 −0.1494 −0.5337
(79.1246) (0.1265) (0.0790) (0.0622) (0.2560)

10 Iron and steel −349.9558 0.1083 0.4978 −0.3873 1.1803 −0.9045
(58.8686) (0.0893) (0.0832) (0.0777) (0.2928) (0.2732)

11 Non-ferrous metals −84.8257 0.1817 −0.3091 1.2461 −0.4796 −0.0756 0.0756 0.5854 −0.5749
(30.7245) (0.1286) (0.1273) (0.1458) (0.1229) (0.0481) (0.0481) (0.1789) (0.1517)

12 Non-metallic min. pr. −280.5702 0.3101 0.6919 −0.2356 −0.2214 0.5170 −0.3729
(60.6439) (0.1511) (0.0877) (0.1075) (0.0959) (0.2901) (0.2148)

13 Chemicals and mm fibres −125.0557 0.6205 −0.2810 0.6049
(23.8339) (0.0693) (0.0337) (0.0773)

14 Metal goods nes −32.2448 0.4365 0.5798 −0.1671 −0.1231
(25.5280) (0.0444) (0.0542) (0.0817) (0.0976)

15 Mech. engineering −101.2153 0.4909 −0.3408 0.1184 0.5996 −0.2925 −0.1979 −0.3348 0.4802
(51.8451) (0.0750) (0.1484) (0.0960) (0.2087) (0.1792) (0.1133) (0.1163) (0.1746)

16 Office machinery etc. −67.1178 0.2278 0.8571 −0.2389 0.2548 1.0366 −1.5206
(75.6691) (0.0600) (0.0721) (0.1049) (0.1399) (0.5489) (0.5314)

17 Elect. engineering 106.1219 0.3463 0.3886 −0.2592 0.1351 0.3684 0.2694 −0.9762
(25.5818) (0.0462) (0.0646) (0.0771) (0.0637) (0.1099) (0.1979) (0.2051)

18 Motor vehicles −74.0164 0.5451 −0.2618 0.8395 −0.1165 −0.2102 0.2625 −0.2471
(48.8105) (0.0470) (0.1197) (0.1614) (0.0909) (0.0666) (0.1099) (0.0892)

19 Aerospace equipment 200.3920 0.0732 0.7560 −0.4659 −0.1252 −0.6788
(53.1219) (0.0654) (0.1659) (0.1440) (0.0674) (0.1586)

20 Ships and other vessels −0.7667 0.4809 −0.4809 1.4717 −0.4717 0.5103 −0.5103
(0.3086) (0.1171) (0.1171) (0.1543) (0.1543) (0.2000) (0.2000)

21 Other vehicles −165.4705 0.3896 0.9154 −0.1680 0.1064 0.2078 0.7687 −0.7687
(58.7346) (0.0706) (0.0419) (0.0552) (0.0564) (0.1235) (0.3109) (0.3109)

(continued)
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inpt/40 yt yt−1 yt−2 ht−1 ht−2 wt wt−1 yta y(t−1)a dt dt−1 Tt

22 Instr. engineering 423.2630 0.2115 0.3539 0.3177 −0.2486 −0.2377 0.2377 1.2396 −2.6097
(55.7285) (0.0825) (0.0987) (0.1267) (0.1064) (0.0581) (0.0581) (0.3043) (0.3537)

23 Manufactured food −172.1572 0.6697 0.3177 0.2237 −0.1962 0.1157 −0.4510
(76.0517) (0.1734) (0.1742) (0.1560) (0.0645) (0.1233) (0.1973)

24 Alcoholic drinks, etc. −15.1802 0.2933 0.7283 −0.0945 0.0591 −0.4844
(73.4889) (0.1167) (0.1239) (0.0919) (0.0882) (0.1411)

25 Tobacco −213.3698 0.7424 0.7367 0.2633 −0.3959
(80.8449) (0.2840) (0.2225) (0.2225) (0.1161)

26 Textiles −69.3333 0.3637 −0.2759 0.5652 −0.4337 0.0882 0.2960
(39.2933) (0.0675) (0.0871) (0.0657) (0.0753) (0.1207) (0.1265)

27 Clothing and footware −68.9489 0.4514 0.5364 −0.3756
(11.9600) (0.0372) (0.0411) (0.0284)

28 Timber and furniture 27.5732 0.3925 0.5144 −0.2885 0.1108 −0.1174
(13.7004) (0.0352) (0.0572) (0.0595) (0.0681) (0.0282)

29 Paper and board −44.7394 0.4680 0.1585 0.3644 −0.2503 −0.3259
(13.2869) (0.0652) (0.0925) (0.0842) (0.0433) (0.1040)

30 Books, etc. 96.1742 0.4094 −0.2040 1.3273 −0.6121 −0.0578 −0.2125
(32.3071) (0.0946) (0.0681) (0.1955) (0.1602) (0.0477) (0.1434)

31 Rubber and plastic pr. −64.4432 0.5998 −0.1401 0.6844 −0.1820 −0.3192
(14.2846) (0.0588) (0.0963) (0.0818) (0.1007) (0.1872)

32 Other manufactures 60.3555 0.2345 0.6028 0.4274 −0.4274 −0.3233
(20.0274) (0.0435) (0.0933) (0.1287) (0.1287) (0.0653)

33 Construction 3.3516 0.3475 −0.3710 0.1345 0.9814 −0.2355 −0.3435 0.3435 0.3916 −0.2830
(27.4087) (0.0858) (0.1167) (0.0835) (0.0957) (0.0955) (0.0704) (0.0704) (0.1500) (0.0705)

34 Distribution. etc. 141.2744 0.7842 −0.2726 0.6360 −0.0409 −0.5717
(41.2202) (0.1615) (0.1207) (0.0917) (0.0356) (0.1527)

35 Hotels and catering −58.7494 0.3544 0.7096 −0.3876 0.1959
(44.4425) (0.1150) (0.1022) (0.1191) (0.1094)

36 Rail transport −50.9886 0.1307 0.3372 0.5187 −0.2545 0.8608 −0.6958
(25.3141) (0.0894) (0.1055) (0.0978) (0.0718) (0.2211) (0.1953)

37 Other land transport 118.4359 0.2123 −0.2016 1.003 −0.2638 0.4509 −0.5162
(34.6439) (0.1302) (0.1434) (0.1803) (0.1884) (0.2304) (0.1937)

38 Sea, air and other 67.2451 0.1608 −0.3506 1.2952 −0.6002 −0.2432 0.1835 0.3148
(92.1103) (0.1269) (0.1263) (0.1460) (0.1863) (0.1204) (0.1255) (0.1521)

39 Communications 14.3221 0.9014 −0.4533 0.8261 −0.2785 −0.1686 0.1565 −0.6566
(41.3966) (0.1808) (0.1966) (0.1727) (0.1579) (0.0822) (0.0807) (0.2354)

40 Business services 209.6513 0.3108 0.6781 −0.3104 −0.1633
(49.1545) (0.0718) (0.1759) (0.1680) (0.0486)

41 Miscell. services −39.9043 0.2123 0.8264 −0.1408
(33.3057) (0.0790) (0.0970) (0.0747)

Notes : See notes to Table 8.1.
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Having made these points, however, closer comparison of the results in Tables 8.2 and
8.3 with those in PPK reveals that in some cases the diagnostic test statistics on the
new set of equations are less reasonable than those previously found, and in all sixteen
industries have a preferable specification in the PPK paper. The superiority of the orig-
inal equations in so many industries cannot of course be ignored, and for this reason we
present a third set of industrial equations in Tables 8.4 and 8.5 which are an amalgama-
tion of the results in Table 8.2 and those in PPK. (The PPK results are labelled ∗.) These
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Figure 8.3: Long-run industry productivity elasticities from Table 8.2.

results represent the most satisfactory set of equations that we have been able to obtain
for explaining employment at the industrial level in the UK. As before, the long-run coef-
ficients are represented diagrammatically in the histograms of figures 8.4–8.6. Estimated
coefficients are once again largely of the expected sign, and of a reasonable magnitude.
The mean and standard deviation (in brackets) of the plotted long-run elasticities are
0.86(0.88), −0.54(0.58), and −0.27(0.72) for output, wages, and technological change
respectively, confirming the considerable variability of long-run estimates across the in-
dustries and providing a reasonable a priori case for the use of disaggregated analysis.

8.4.4 Comparison with the aggregate relations

The following unrestricted and restricted aggregate employment equations, corresponding
to the results discussed above, were also estimated:
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Table 8.5: Summary and diagnostic statistics for the restricted employment equations
of Table 8.4

Industry R
2

χ2
r σ̂ χ2

SC(1) χ2
FF (1) χ2

N(2) χ2
H(1)

1 Agriculture, etc. 0.9983 5.21 (6) 0.0136 0.08 5.96 0.02 0.06
2 Coal mining 0.9987 6.84 (5) 0.0155 0.00 0.25 1.18 0.32
3 Coke (*) 0.9771 10.15 (8) 0.0449 0.24 0.67 0.27 1.87
4 Mineral oil and nat. gas — — — — — — —
5 Petroleum products (*) 0.9178 13.40 (8) 0.0566 0.48 0.01 1.83 0.85
6 Electricity, etc. 0.9909 14.25 (5) 0.0163 1.08 1.26 0.22 2.58
7 Public gas supply (*) 0.9719 23.36 (7) 0.0322 1.29 0.00 4.86 1.42
8 Water supply 0.9520 10.18 (6) 0.0336 0.01 0.38 0.71 0.00
9 Minerals and ores nes 0.9760 3.90 (8) 0.0318 1.36 0.16 32.70 0.00

10 Iron and steel (*) 0.9933 12.88 (7) 0.0265 0.08 0.19 1.42 0.43
11 Non-ferrous metals (*) 0.9864 13.33 (5) 0.0250 0.01 3.47 0.20 1.89
12 Non-metallic min. pr. (*) 0.9935 12.21 (6) 0.0177 1.11 0.23 0.76 3.15
13 Chemicals and mm fibres (*) 0.9795 11.78 (9) 0.0156 3.51 1.80 0.96 1.14
14 Metal goods nes (*) 0.9877 12.31 (8) 0.0192 0.09 0.27 0.38 1.00
15 Mech. engineering 0.9916 4.63 (4) 0.0141 0.17 0.21 0.02 1.09
16 Office machinery, etc. 0.9291 9.49 (6) 0.0280 0.38 1.10 0.76 4.48
17 Elect. engineering 0.9893 11.58 (5) 0.0103 1.79 0.01 0.41 1.12
18 Motor vehicles 0.9887 4.82 (5) 0.0176 4.16 0.88 1.55 1.58
19 Aerospace equipment (*) 0.9878 6.31 (7) 0.0268 0.90 0.30 1.81 1.30
20 Ships and other vessels 0.9818 16.91 (9) 0.0323 0.45 0.61 0.40 4.46
21 Other vehicles 0.9972 12.07 (6) 0.0243 0.90 2.10 0.33 2.59
22 Instr. engineering 0.9759 2.46 (5) 0.0146 1.57 1.29 2.14 1.02
23 Manufactured food (*) 0.9837 13.89 (6) 0.0164 1.69 2.78 1.33 4.38
24 Alcoholic drinks, etc. 0.9232 15.42 (7) 0.0269 1.32 0.02 0.94 2.06
25 Tobacco (*) 0.8796 16.63 (9) 0.0497 0.25 8.22 0.65 7.62
26 Textiles 0.9985 5.59 (6) 0.0155 4.21 2.46 2.20 2.03
27 Clothing and footwear 0.9984 4.37 (9) 0.0110 0.36 1.92 0.62 0.03
28 Timber and furniture 0.9873 6.05 (7) 0.0133 0.08 3.73 0.91 0.85
29 Paper and board (*) 0.9927 12.00 (7) 0.0192 1.09 1.33 1.74 4.41
30 Books, etc. 0.9341 9.55 (6) 0.0120 1.76 0.00 0.00 1.13
31 Rubber and plastic pr. (*) 0.9818 8.01 (7) 0.0173 0.21 1.59 0.96 1.03
32 Other manufactures (*) 0.9917 13.49 (8) 0.0137 0.37 0.21 1.12 0.00
33 Construction 0.9819 2.58 (4) 0.0137 0.02 0.10 0.73 0.27
34 Distribution, etc. 0.9603 13.35 (7) 0.0139 0.32 1.96 0.23 2.47
35 Hotels and catering 0.9169 5.59 (8) 0.0198 0.58 1.88 0.45 0.63
36 Rail transport 0.9975 11.38 (6) 0.0183 0.03 0.38 2.66 0.86
37 Other land transport 0.9766 8.48 (6) 0.0157 0.13 0.98 1.02 0.02
38 Sea, air and other 0.9278 6.26 (5) 0.0212 2.23 7.95 1.88 0.91
39 Communications (*) 0.9351 8.03 (5) 0.0184 1.56 0.48 0.14 1.81
40 Business services 0.9940 9.33 (8) 0.0128 0.98 2.01 1.98 0.17
41 Miscell. services 0.9512 8.20 (9) 0.0222 0.06 0.47 0.39 191

Notes : See notes to Table 8.3.
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Figure 8.4: Long-run industry output elasticities from Table 8.3.
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Figure 8.5: Long-run industry real wage elasticities from Table 8.3.
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Figure 8.6: Long-run industry productivity elasticities from Table 8.3.

Unrestricted aggregate equation

hta = −137.45 + 0.49689 yta + 0.19565 y(t−1)a + 0.11375 y(t−2)a

(3.77) (6.39) (1.32) (1.03)

+ 0.33110h(t−1)a + 0.18986h(t−2)a − 0.34110wta

(1.48) (1.17) (−5.13)

− 0.087043w(t−1)a − 0.046365 dta − 0.23405 d(t−1)a (8.4.3)

(−1.00) (−0.13) (−0.82)

R
2

= 0.998, σ̂ = 0.3316, n = 29 (1956–1984)

χ2
SC(1) = 3.23, χ2

FF (1) = 1.27, χ2
N(1) = 0.67, χ2

H(1) = 3.51.

The figures in brackets are t-ratios, σ̂ is the standard error of the regression, R
2

is the
adjustedR2, n is the number of observations. χ2

SC(1), χ2
FF (1), χ2

N(2), χ2
H(1) are diagnostic

statistics distributed approximately as chi-squared variates (with degrees of freedom in
parentheses), for tests of residual serial correlation, functional form misspecification, non-
normal errors, and heteroscedasticity, respectively. (For more details about these test
statistics and their computations see Pesaran and Pesaran (1987b).)
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Restricted aggregate equation

hta =− 99.28 + 0.49854 yta + 0.67897h(t−1)a

(−4.84) (11.06) (17.37)

− 0.31216wta − 0.12049 d(t−1)a (8.4.4)

(−7.53) (−2.33)

R
2

= 0.997, σ̂ = 0.3209, n = 29 (1956–1984)

χ2
SC(1) = 1.83, χ2

FF (1) = 2.46, χ2
N(1) = 1.68, χ2

H(1) = 5.29.

LM test on exclusion of (y(t−1)a, y(t−2)a, h(t−2)a, w(t−1)a, dta) = 4.47, cf χ2(5)

LM test on exclusion of (y(t−1)a, y(t−2)a, h(t−2)a, w(t−1)a, dta, Tt) = 5.90, cf χ2(6)

where hta, wta, and dta are the aggregate measures of employment, wages, and technolog-
ical change derived from the industrial figures, and Tt, is a linear time trend (T1980 = 0).

To check for the possible effect of the simultaneous determination of output, employ-
ment, and real wages on the OLS estimates, we also estimated the restricted aggregate
equations using the instrumental variable method. With zt = {1, h(t−1)a, h(t−2)a, y(t−1)a,
y(t−2)a, w(t−1)a, w(t−2)a, d(t−1)a} as instruments, we obtained

hta =− 86.86 + 0.4708 yta + 0.702h(t−1)a

(−3.36) (7.11) (13.48)

− 0.2783wta − 0.1365 d(t−1)a (8.4.5)

(−4.69) (−2.21)

R
2

= 0.997, σ̂ = 0.3258

Sargan’s misspecification statistic = 4.40 cf χ2(3)

χ2
SC(1) = 1.53, χ2

FF (1) = 0.48, χ2
N(1) = 3.83, χ2

H(1) = 5.23.

These clearly differ only marginally from the OLS results in (8.4.4).
The parameter estimates in (8.4.3) and (8.4.4) imply long-run elasticities with respect

to aggregate output, real wages, and technological change of (1.68, −0.89, −0.59) for the
unrestricted equation and (1.55, −0.97, −0.38) for the restricted equation.

8.4.5 Predictive performance and aggregation bias

Table 8.6 presents the prediction criteria developed in PPK for the aggregate equations
(8.4.3) and (8.4.4) and the disaggregate equations of Tables 8.1, 8.2, and 8.4. In each case
the disaggregate model outperforms the aggregate equation. The superiority (in terms
of predictive performance) of the specifications in Table 8.4 over those in Table 8.2 can
also be seen in the estimates presented in Table 8.6. The computation of the statistic
for the test of perfect aggregation also provides evidence in favour of the disaggregate
model. In the case of the unrestricted version the value of the test statistic is 89.6 which is
approximately distributed as χ2(29). This strongly rejects the null hypothesis of perfect
aggregation.

Bearing this finding in mind, we applied the tests of aggregation bias discussed in
section 8.3 to the aggregate and disaggregate employment equations. The results obtained
are summarised in Table 8.7. The first row of this table shows the statistics, q∗1, for testing
the hypothesis that the average of the long-run wage elasticities across industries is equal
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Table 8.6: Relative predictive performance of the aggregate and
the disaggregate employment functions∗

Unrestricted Restricted specifications
specifications

(Table 8.1) (Table 8.2) (Table 8.4)
Disaggregate criterion 0.1007 0.0856 0.0737
Aggregate criterion 0.1100a 0.1030b 0.1030b

Notes : ∗Results exclude industry 4 (Mineral oil and Natural gas).
aCorresponds to the unrestricted aggregate equation (8.4.3).
bCorresponds to the restricted aggregate equation (8.4.4).

to−1. As discussed in the introduction, much policy debate has centred around the extent
to which aggregate employment in the UK is influenced by real wage levels. The unit
long-run wage elasticity has emerged as the consensus view from this debate and it is for
this reason that we use this a priori value in our test. The average of the estimated long-
run wage elasticities obtained on the basis of the disaggregate results in the three Tables
8.1, 8.2, and 8.4 is −0.66, −0.68, and −0.54 respectively, and these were each compared

Table 8.7: Tests of aggregation bias†

Unrestricted Restricted specifications
specifications

(Table 8.1)a (Table 8.2)b (Table 8.4)b

q∗1(1) [wages] 0.63 5.13 17.20
q∗2(1) [wages] 0.32 2.46 5.18
q∗2(1) [output] 0.00 1.68 1.66
q∗2(1) [technology] 0.07 0.05 0.34

Notes : †Square brackets indicate variables over which restrictions are imposed;
figures in round brackets show the number of restrictions imposed, s.

Test statistics are compared to χ2(s). The q∗1and q∗2 statistics are
computed using the results (8.3.5) and (8.3.6), respectively.

aResults compared to unrestricted aggregate equation (8.4.3).
bResults compared to restricted aggregate equation (8.4.4).

to the consensus value of −1. As is clear, the hypothesised unit elasticity is accepted in
the case of the unrestricted specifications, but when a more precisely determined set of
results are considered, as in Tables 8.2 and 8.4, the hypothesis is firmly rejected.

Since the q∗1 statistic does not take account of the sampling variation in the consensus
estimate that it uses, a more appropriate test of aggregation bias is that based on the q∗2
statistic (see LPP and section 8.3). This test is based on a pseudo true aggregate elastic-
ity obtained through estimation of the aggregate relation, and has the advantage that the
same data and the same general specification are used in estimating the aggregate and
the disaggregate elasticities. Row 2 of Table 8.7 presents the results of this test for the
specifications in Tables 8.1, 8.2, and 8.4. The average wage elasticity across industries
in Table 8.1 is compared to −0.89 (the estimated long-run wage elasticity of equation
(8.4.3)), while the averages from Tables 8.2 and 8.4 are compared to −0.97 (obtained
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from the restricted aggregate equation (8.4.4)). Once again, the poorly determined set
of equations in Table 8.1 provide no evidence of aggregation bias. A similar conclusion
is also obtained from the results of Table 8.2. However, the hypothesis of no aggregation
bias based on the more satisfactory estimates in Table 8.4 is firmly rejected at the 5 per
cent level, providing strong evidence in support of the claim that the aggregate relation
overstates the responsiveness of employment to changes in wages. Similar tests on aggre-
gation bias are reported in rows 3 and 4, for the long-run output and technological change
elasticities in turn. Here, average output elasticities of 1.63, 1.23, and 1.24 are obtained
from Tables 8.1, 8.2, and 8.4 respectively, while the corresponding average estimates for
the technological change elasticity were −0.46, −0.41, and −0.27. These estimates are
compared to long-run output and technological change elasticities of 1.68 and −0.59 from
the unrestricted equation (8.4.3), and of 1.55 and −0.38 from the restricted aggregate
equation (8.4.4). In none of these tests is there any evidence of aggregation bias in the
estimated coefficients.

Finally, to check the robustness of the above tests to the specification of the disag-
gregate model, we computed the Durbin-Hausman misspecification test statistic, q3, as
developed in LPP. For the set of unrestricted disaggregated results of Table 8.1 and the
unrestricted aggregate equation (8.4.3) we obtained a value of 48.56 which is distributed
as a χ2(7)) since there are three regressors common to the aggregate and the disaggre-
gate specifications (namely the intercept term, yta and y(t−1)a). This result implies strong
rejection of the orthogonality of the disaggregate residuals to the aggregate variables and
sheds some doubt on the results of the aggregation bias tests. The misspecification of
the disaggregate model might be due to the omission of industry-specific variables, mea-
surement errors, functional form, or dynamic misspecification. It is therefore important
that further research is carried out on the specification of the disaggregate employment
equations and on the importance of aggregation bias in estimating long-run wage and
output elasticities for the economy as a whole.

8.5 Concluding remarks

The application of the statistical methods recently developed by the authors to the study
of employment equations in the UK provides some important insights for academics and
policy makers alike. The estimated industrial employment equations show that there is
a wide diversity in the responsiveness of labour demand to different influences across in-
dustries, illustrated most clearly by the histograms discussed in the previous section. In
itself, this provides strong support for employing disaggregated analysis rather than ag-
gregate analysis, since the latter cannot capture the structural detail that clearly exists.14

The result of the test for perfect aggregation confirms that this detail is important even
if we are interested only in the prediction of aggregate employment levels, discounting
the possibility that errors in disaggregate relations might be offsetting ones. Further, the
results of the aggregation bias tests show that the emphasis of policy makers on the im-
portance of wage restraint in attempts to reduce unemployment may be misplaced. These
tests confirm the view put forward in PPK that labour demand equations estimated at
the aggregate level significantly overstate the extra employment that might be achieved

14 Indeed, the relatively poor diagnostic statistics obtained in the case of some of the industrial
equations indicate that there is likely to be scope for further structural detail in the form of industry-
specific variables, and the use of different functional forms across industries.
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through wage reductions, however these are achieved. In fact, a wage elasticity of around
−0.6 is suggested by the disaggregate results, considerably less than the unit elasticity
that has become the consensus view in the UK and which is supported by our own aggre-
gate estimates.15 The results do not, however, provide any evidence of aggregation bias
in the long-run estimates of output and technological change elasticities. Taken together,
therefore, these results provide an illustration of the gains to be made from disaggregate
analysis, and of the dangers involved in aggregation.

.1 Appendix

With the exception of data on industrial investment, the data used in this study are
the same as those employed in PPK, and are taken from the Cambridge Growth Project
(CGP) Databank. For the sources of the data and the classifications of industry groups
see the data appendix and table A in PPK. For convenience, table A is reproduced in
this Appendix (Table A1).

Data on industrial investment in vehicles, in plant and machinery, and in buildings
are available separately for the period 1954–84, from which total gross investment is
constructed. There is not a one-to-one correspondence between the Blue Book (BB) in-
dustrial classifications for which the data are published and our own, however. Where the
BB data are more disaggregated, this causes no problem, since we simply amalgamate the
appropriate industries. There remain six areas in which the BB data are more aggregated
than our own. These are listed in Table A2.

In these cases, we have made the simplifying assumption that the investment reported
by BB classification can be divided equally over the (more disaggregate) CGP industrial
groups. This procedure is satisfactory if the CGP industry groups within the BB classi-
fications show similar investment growths over the 1954–84 period. This is likely to be
the case for the Coal and Coke Industries, but is less likely to hold in the case of the BB
industry classifications 13 and 17.

15 Of course, estimated wage elasticities obtained in unconditional labour demand equations would be
somewhat higher as reduced wage inflation helps encourage higher output levels.
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Table A1: Classification of industry groups (in terms of the 1980
standard industrial classification)

Industry groups (CGP classification) Division, class, or group

1 Agriculture, forestry, and farming 0
2 Coal mining 1113, 1114
3 Coke 1115, 1200
4 Mineral oil and natural gas 1300
5 Petroleum products 140
6 Electricity, etc. 1520, 1610, 1630
7 Public gas supply 1620
8 Water supply 1700
9 Minerals and ores nes 21,23

10 Iron and steel 2210, 2220, 223
11 Non-ferrous metals 224
12 Non-metallic mineral products 24
13 Chemicals and man-made fibres 25,26
14 Metal goods nes 31
15 Mechanical engineering 32
16 Office machinery, etc. 33
17 Electrical engineering 34
18 Motor vehicles 35
19 Aerospace equipment 3640
20 Ships and other vessels 3610
21 Other vehicles 3620, 363, 3650
22 Instrument engineering 37
23 Manufactured food 41, 4200, 421, 422, 4239
24 Alcoholic drinks, etc. 4240, 4267, 4270, 4283
25 Tobacco 4290
26 Textiles 43
27 Clothing and footwear 45
28 Timber and furniture 46
29 Paper and board 4710, 472
30 Books, etc. 475
31 Rubber and plastic products 48
32 Other manufactures 44, 49
33 Construction 5
34 Distribution, etc. 61, 62, 63, 64, 65, 67
35 Hotels and catering 66
36 Rail transport 71
37 Other land transport 72
38 Sea, air, and other 74, 75, 76, 77
39 Communications 79
40 Business services 81, 82, 83, 84, 85
41 Miscellaneous services 94, 98, 923, 95, 96, 97
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Table A2: Blue Book and Cambridge Growth Project industrial classifications

CCP classification BB classification

2 Coal 2 Coal and coke
3 Coke

9 Minerals and ores nes 8 Metals
10 Iron and steel 9 Other minerals
11 Non-ferrous metals
12 Non-metallic mineral products

16 Office machinery 13 Electrical and instrument
17 Electrical engineering engineering
22 Instrument engineering

19 Aerospace equipment 15 Transport, other than motor
20 Ships vehicles
21 Other vehicles
24 Drink 17 Drink and tobacco
25 Tobacco

29 Paper and board 21 Paper, printing, and publishing
30 Books



Chapter 9

Persistence of Shocks and their
Sources in a Multisectoral Model of

UK Output Growth

The extent to which the effects of shocks to the economy persist over time has been the
subject of extensive investigation over the past few years. Following the seminal paper by
Nelson and Plosser (1982), it has now become a widely held view that aggregate output
is best represented by a first-difference stationary process, rather than by a stationary
process around a deterministic trend. This has the important implication that macroeco-
nomic shocks can have effects on output levels which continue into the indefinite future;
an isolated recessionary shock may cause output growth to be only temporarily lower
than usual, but this would be reflected by a time path for the level of output which is
permanently lower than what it would have been in the absence of the shock. The size
of the long run response of output to a unit shock, known as the persistence of shocks to
output, is an empirical issue, and several studies have now been conducted to estimate
the persistence measure for the real gross national product in the United States and
elsewhere.1 The evidence presented in these papers is mixed and inconclusive however,
largely reflecting the difficulties involved in determining the long run properties of the
output series from the relatively short data set available over the post war period. In a
recent paper, Pesaran et al. (1991) (PPL), we advocated the use of sectoral output data
in order to bring extra information to bear on the analysis of persistence at the aggre-
gate level. In that paper, we noted that the information contained in the relationships
between sectoral growth rates, and in the correlations that exist between innovations in
output growths of different sectors can be fruitfully utilised to obtain a more reliable
estimate of the persistence measure for aggregate output using a multisectoral model of
output growths than can be obtained through a univariate model. We presented empiri-

0 Published in Economic Journal (1992), Vol. 102, pp. 342–356. Co-authors K. C. Lee and M. H.
Pesaran. An earlier version of this paper was presented at the RES Conference in Warwick, 8-11 April,
1991. We are grateful to Simon Potter and two anonymous referees for helpful comments and suggestions.
Financial support from the ESRC and the Isaac Newton Trust of Trinity College, Cambridge, is also
gratefully acknowledged.

1See, for example, Campbell and Mankiw (1987a, 1989), Harvey (1985), Clark (1987a), Watson
(1986), Cochrane (1988), Christiano and Eichenbaum (1989), Shapiro and Watson (1988), Evans (1989),
Blanchard and Quah (1989), Demery and Duck (1990), and Mills (1991).
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cal support for this approach by analysing output growth in the United States using data
disaggregated according to a ten sector classification. The point estimate of the aggregate
persistence measure based on this disaggregated model was 0.67, with a standard error
of 0.072. This estimate is somewhat lower, and is considerably more precisely estimated,
than the estimate based on the aggregate univariate models.

The proposed disaggregated framework of PPL also allows us to decompose the per-
sistence of shocks to aggregate or sectoral outputs into those generated by particular
’macro’ shocks and those generated by ’other’, possibly sector- specific, shocks. In the
PPL paper, we focused on the persistence effect of ’monetary’ shocks, finding these to be
statistically significant although relatively unimportant in their contribution to the over-
all persistence measure.2 In fact, under certain identifying assumptions, this advantage of
the disaggregated model could be further exploited, so that the contribution to aggregate
persistence of various sources of shocks can be identified and assessed. Of course, ’macro’
shocks of different kinds are unlikely to be independent of each other, as innovations in
one sphere engender unanticipated changes elsewhere (e.g. governments may react to an
unexpected rise in oil prices, say, by engaging in an unexpectedly expansionary monetary
policy). In such a case we might wish to measure both the direct long run effect of a
shock to a particular macro variable, obtained in the absence of any shocks occurring else-
where, and the overall long run effect of the shock on the economy, taking into account
the feedbacks that have been present historically amongst the different types of shocks
in the economy. In this paper, we aim to develop the multisectoral framework set out in
PPL further, focusing in particular on the relative contribution of shocks generated from
different sources to the overall measure of persistence. In Section 9.1, we develop a mul-
tisectoral model in which the effects of different shocks to output in different sectors can
be analysed explicitly, and discuss the measurement of persistence effects of the different
types of shocks in such a model. In Section 9.2, this framework is applied in an analysis of
output growth in the UK economy disaggregated by eight industrial sectors. Estimates
of persistence of shocks in each sector and for the economy as a whole are presented,
using quarterly data covering the period 1960q1-1989q4. Four types of macro shocks are
considered; innovations in money supply growth, in stock returns, in exchange rates, and
in oil prices. This is by no means a comprehensive list of all possible sources of macro
shocks relevant to the United Kingdom, but represents some of the more interesting ones.
Moreover, this provides a first step in the direction away from the univariate approach of
Campbell and Mankiw (i987, I989) towards a more behavioural approach to time series
modelling of the persistence of shocks in macroeconomics. In so doing, the empirical work
suggests which of the shocks are the more important sources of cyclical fluctuations in-
sectoral and aggregate outputs, and this may be of practical relevance to policymakers.3

2 The factor analysis of sectoral output growths carried out in Long and Plosser (1987) gives results
for the United States which are in line with those in PPL. However, Long and Plosser do not consider
the decomposition of macro shocks into its various components.

3 In view of the difficulties involved in obtaining precise measures of the long run properties of a
series on the basis of relatively short data sets, throughout the present work, we give estimates of the
standard errors for the various persistence measures, which should serve as an indicator of the degree of
uncertainty that surrounds the interpretation of the results.
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9.1 Measuring the persistence effects of different types

of shocks in a multisectoral model

Let yt be an m x 1 vector of sectoral outputs, and suppose that yt can be represented by
a first-difference stationary linear process. Then a general multisectoral model of output
growths may be written as:

∆yt = α+ D(L)νt + A(L)εt, (9.1.1)

where α is an m x 1 vector of constants representing sector-specific mean growth rates,
νt is a p x 1 vector of innovations in macroeconomic variables xt, and εt is an m x 1
vector of sector-specific innovations with mean zero and the covariance matrix Σ = (σij).
A(L) and D(L) are matrix polynomials of the form

A(L) =
∞∑
i=0

AiL
i, D(L) =

∞∑
i=0

DiL
i (9.1.1b)

where the Ai’s and Di’s are m x m and m x p matrices of fixed coefficients, A0 = Im,
and the (i, j)th element of A(L) is denoted by the lag polynomials aij(L). The vector of
innovations νt are defined by

xt = Γzt + νt

where Γ is a p x k matrix of fixed coefficients, and zt is a k x 1 vector of predetermined
variables. This formulation is fairly general and includes the vector autoregressive spec-
ification as a special case. The innovations νt are assumed to be white noise processes
with mean zero and the constant covariance matrix Ψ = (ψij). These innovations corre-
spond to macroeconomic shocks such as unexpected changes in oil prices, money supply
or exchange rates. The sector-specific innovations, εt, represent the residual variability
in ∆yt not associated with the p identified macroeconomic shocks, νt. In order to ensure
that the equation system (9.1.1) is identified we assume that νt and εt are uncorrelated.4

The system described by (9.1.1) provides time series representations of output growth
over m sectors, where each sector is subject to p identified ’macro’ shocks and a residual,
possibly sector-specific, shock. The aggregate level of output, Yt, is defined by

Yt = w′yt (9.1.2)

where w = (w1, · · · , wm)′ is an m x 1 vector of fixed positive weights.5 Under the
multisectoral model, (9.1.1), aggregate output growth can be written as

∆Yt = w′α+ w′D(L)νt + w′A(L)εt. (9.1.3)

Notice that even for simple specifications of univariate sectoral output growths, (9.1.3) can
have a very high order ARMA representation. This in itself provides a priori rationale for
the use of disaggregated data in the analysis of aggregate persistence, since with relatively
short time series available, the estimation of high order ARMA processes for aggregate

4 On this, see section 3.3 in PPL.
5 In the empirical analysis, we set w = (1, 1, · · · , 1)′, and hence use the sum of the logs of the sectoral

outputs as the measure of ’aggregate output’. This measure differs from the log of the sum of sectoral
outputs used in the literature, but in our work we find that the two measures follow each other very
closely and have very similar autocorrelation functions.
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output growth may not be desirable or even feasible (see PPL for further discussion).
Various statistics have been suggested in the literature as measures of persistence in
univariate models, although, as is shown in PPL, all of these alternative measures are
based on the spectral density function of ∆Yt, evaluated at zero frequency, f∆Y (0), and
differ only in the way they are scaled. The persistence measure for aggregate output, PY ,
in the multisectoral model, (1a), is based on the spectral density of ∆Yt = w′yt at zero
frequency scaled by the conditional variance of ∆Yt as follows:

P 2
Y =

2πf∆Y (0)

V(∆Yt|Ωt−1)
=

w′D(1)ΨD(1)′w + w′A(1)ΣA(1)′w

V(∆Yt|Ωt−1)
, (9.1.4)

where V(∆Yt|Ωt−1) = w′D(0)ΨD(0)′w +w′Σw.6 This measure can be decomposed into
a component due to the identified macroeconomic shocks, PS, and a component due to
’other shocks’, PO, as follows:

P 2
Y = λP 2

S + (1− λ)P 2
O (9.1.5)

where

P 2
S =

w′D(1)ΨD(1)′w

w′D(0)ΨD(0)′w
, P 2

O =
w′A(1)ΣA(1)′w

w′A(0)ΣA(0)′w
, λ =

w′D(0)ΨD(0)′w

w′D(0)ΨD(0)′w + w′A(0)ΣA(0)′w
.

Moreover, the component due to the macroeconomic shocks can be further decomposed:

P 2
S =

p∑
j=1

µ2
j(P

2
Sj + PSXj) (9.1.6)

where

P 2
Sj =

w′dj(1)ψjjdj(1)′w

w′dj(0)ψjjdj(0)′w
, PSXj =

∑p
k=1,k 6=j w′dj(1)ψjkdk(1)′w

w′dj(0)ψjjdj(0)′w
, µ2

j =
w′dj(0)ψjjdj(0)′w

w′D(0)ΨD(0)′w
.

In the above expressions, dj(L) denotes the jth column of the matrix D(L); dj(0) mea-
sures the immediate impacts of the jth shock on the m sectoral output growths, while
dj(1) measures its long run effects. The components PSj, j = 1, · · · , p provide p measures
of persistence due to the direct effects of shocks to each of the p identified macroeconomic
variables assuming all the other shocks are set to zero, and their contribution to PS is de-
termined by the relative size of the shocks, as represented by the weights µj. The overall
long run impact of the jth shock on Yt go beyond the direct effects, and include also the
interaction terms, PSXj These terms capture the effect of correlations that exist between
different shocks on the overall persistence measure. For any macroeconomic shock, com-
parison of the direct persistence measure, PSj, and the overall measure, (PSj + PSXj),
provides an indication of the extent to which the persistence effects of the jth shock, νjt,
are offset or compounded by associated shocks in other macroeconomic variables.

6 In the univariate case where the sources of shocks are not explicitly identified, we can write ∆Yt =
α+ a(L)ut, where α is a scalar constant, a(L) is a polynomial in the lag operator, and ut are mean zero,
serially uncorrelated shocks with common variance σ2

u. Here, (9.1.4) collapses to

P 2
Y =

2πf∆Y (0)

V(∆Yt|Ωt−1)
=
σ2
ua

2(1)

σ2
u

= a2(1)

which is the measure of persistence popularised by Campbell and Mankiw (1987a).
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If we are interested not only in persistence of shocks at the aggregate level, but also
in the long term effects of shocks on output of a particular sector, then in place of (9.1.4),
we can consider the matrix of cross-sectoral persistence measures, P, with its (i, j)th
element given by

Pij =
e′iD(1)ΨD(1)′ej + e′iA(1)ΣA(1)′ej

e′jD(0)ΨD(0)′ej + e′jΣej
(9.1.7)

and ei is a selection vector with unity on its ith element and zeros elsewhere. These
provide measures of the long-term effects of shocks in sector j on the level of output
in sector i. Sector-specific measures of persistence can be obtained from the diagonal
elements of P, and these can be decomposed as in (9.1.5) and (9.1.6), replacing w with
ei for sector i. The relationship between the cross-sectoral persistence measures and the
aggregate persistence measure, Py, is in general a complicated one, and is affected by the
cointegrating properties of the sectoral output series (see PPL for more details).

9.2 Empirical results; an analysis of sectoral output

growth in the UK economy

In this section we apply the multisectoral framework developed above to an analysis
of output growths across eight industrial sectors of the UK economy using quarterly
data over the period 1960q1-1989q2. The eight sectors cover the whole of UK industrial
production, and correspond closely to the main divisions of the 1980 Standard Industrial
Classification. The macroeconomic shocks that we investigate explicitly in the analysis
include unexpected changes in (nominal) oil prices, in stock returns, in exchange rates,
and in the money stock (detailed definitions of the measurement of these series, and
further information on the sectoral classification employed, are provided in the Data
Appendix of Lee et al. (1991). Of course, other macroeconomic aggregates could be
included, but we believe these four types of shock represent some of the more interesting
ones in the case of the United Kingdom.

The first stage in the analysis is to obtain an overview of the time series properties
of the sectoral output data. Augmented Dickey-Fuller (ADF) statistics for a variety of
different lag lengths computed over the sample period do not provide statistically sig-
nificant evidence in favour of rejecting the unit root hypothesis for the sectoral output
series,7 and this remains true even if we allow for a different trend growth path before
and after the first oil shock in 1973q4.8 Using the ADF procedure, we also tested the
hypothesis of a unit root in sectoral output growth rates and found that it was rejected
in the case of all the eight sectors. These test results suggest that it is reasonable to
proceed with the assumption that sectoral output growth rates are stationary.9 We also
applied the maximum likelihood procedure of Johansen (1988, 1989) to investigate the
cointegrating properties of the eight sectoral output series, and found evidence of either

7 The ADF statistics are based on regressions including an intercept, and lags of various lengths in
sectoral and aggregate output growths. The inclusion of the lagged values of aggregate output growth
in the ADF regressions for the sectoral output growths does not alter the asymptotic properties of the
ADF test, but can improve efficiency by reducing the residual serial correlation which may arise because
of the inter-relationships of the output growths in different sectors.

8This is the ’changing growth’ model of Perron (I989).
9 A more complete description of the ADF tests carried out, together with the relevant tables sum-

marising the ADF statistics, are given in Lee et al. (1991).
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one or two cointegrating vectors, depending on whether we used ’trace’ or ’maximal eigen-
value’ statistics.10 The relatively small number of cointegrating vectors found indicates
that there are a relatively large number of independent sources of shocks to output, thus
providing some evidence of the importance of sector-specific shocks in generating cyclical
fluctuations.

The ADF results presented above indicate that the multisectoral model described in
(9.1.1) is an appropriate framework with which to analyse persistence in the UK economy.
As a preliminary exercise in obtaining estimates of the persistence measures, however,
we consider a simplified version of ((9.1.1) in which the macroeconomic shocks are not
explicitly identified. Persistence measures are still provided by (9.1.5), setting λ = 0,
and interpreting PO as the overall measure of persistence. In the empirical analysis, we
consider the following simplified versions of (9.1.1):

M1 : ∆yit = ai +
r∑
s=1

cs,ii∆yi,t−s +
r∑

j=1,j 6=i

r∑
s=1

cs,ij∆yj,t−s + uit, i = 1, · · · ,m

M2 : ∆yit = ai +
r∑
s=1

cs,ii∆yi,t−s +
r∑
s=1

bs,i∆y−i,t−s + uit, i = 1, · · · ,m

M3 : a restricted version of M2, where variables with coefficients having a

t-ratio less than unity (in absolute terms) are excluded from the model

M4 : ∆yit = ai + i+ uit, i = 1, · · · ,m.

Model M1 is an unrestricted VAR, and explains output growth in sector i, ∆yit, in terms
of lagged output growth in all sectors, including sector i, lagged by up to r quarters.
M2 imposes rm(m − 2) restrictions on M1, and explains ∆yit in terms of lagged output
growths in sector i and lags in aggregate output growth in the rest of the economy
(denoted by ∆y−i,t, =

∑m
j=1,j 6=i ∆yj,t,. Model M3 imposes further restrictions on M2 to

exclude insignificant variables, and M4 represents the most simple model considered in
which (log) output in each sector is described by a random walk with drift.

The four models were estimated for our eight sectors of the UK economy including up
to five lags in sectoral and aggregate output growth, using the Full Information Maximum
Likelihood (FIML) method over the period 1961q4- 1989q2. Withm = 8 and r = 5, model
M1 contains 328 parameters, not counting the parameters of the variance covariance
matrix. This model is clearly overparameterised and is entertained here as a benchmark.
Imposing the 240 restrictions that underlie model M2 reduces the number of parameters
to be estimated to 88. The likelihood ratio statistic for the test of these restrictions
is given by 126.03 (277.1) which is well below its 95% critical value given in brackets.
The imposition of a further 50 restrictions on model M2, setting coefficients equal to
zero where t-ratios are less than unity in absolute value, cannot be rejected either, since
the likelihood ratio statistic for this test is 23.80 (67.50). However, model M4 is readily
rejected against model M3 as the relevant likelihood ratio statistic is equal to 217.58
(43.77).

10 Test statistics based on the maximal eigenvalue of the stochastic matrix suggest that there is
precisely one cointegrating vector, while those based on the trace of the stochastic matrix suggest that
there are two. These findings were robust to the choice of the specification of the underlying model:
similar test results were obtained on the basis of VAR models of order 2, 3, and 4, either allowing for or
excluding the possibility of a time trend in, the underlying data generation process. The computation of
the Johansen test statistics are carried out on Microfit 3-0. See Pesaran and Pesaran (1991a).
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Table 9.1: Sectoral and Aggregate Persistence Measures

Models

Sectors Ml M2 M3

1. Agriculture 2.53 1.75 1.58
(1.24) (0.14) (0.05)

2. Construction 1.23 0.93 0.96
(0.43) (0.04) (0.01)

3. Durables 2.01 1.28 1.24
(0.99) (0.08) (0.01)

4. Non-durables 1.59 1.16 .22
(0.59) (0.06) (0.01)

5. Transport 1.28 1.06 0.97
(0.50) (0.06) (0.01)

6. Energy 1.45 1.01 0.91
(0.82) (0.07) (0.01)

7. Distribution 1.60 0.97 1.10
(0.60) (0.05) (0.01)

8. Services 1.17 0.93 1.15
(0.59) (0.06) (0.06)

Aggregate output 1.33 1.11 1.07
(0.42) (0.29) (0.11)

Notes : Sectoral persistence measures, Pi, are estimated using (9.1.5) setting
λ = 0, and using the selection vector ei in place of w. The aggregate persis-
tence measure, Py, uses w. Bracketed figures are asymptotic standard errors.
These are calculated using analytic derivatives. The formulae used are given
in Appendix B of PPL.

Estimates of sectoral and aggregate persistence measures based on models M1, M2

and M3 are provided in Table 9.1. As is to be expected, persistence measures based
on the more parsimonious models M2 and M3 are much more precisely determined than
the estimates based on the unrestricted model M1. The aggregate persistence measure
obtained from model M3 is estimated to be 1.07 (0.11), with the standard error of the
estimate given in brackets, which is somewhat lower than that obtained using models M1

or M2. The persistence measures obtained from model M3 show considerable variability
across sectors; persistence measures in the Agriculture and Manufacturing sectors (1, 3
and 4) are well in excess of unity, and are also rather larger than those obtained for the
Construction and Service sectors (2, 5 to 8).

It is of interest to compare the results obtained from the multisectoral models M1,
M2 and M3 with those obtained from a univariate model, and we therefore also calcu-
lated persistence measures for aggregate output estimated on the basis of various ARMA
models fitted to aggregate output growth over the same sample period. The most general
specification considered for the aggregate series was an ARMA(5,4) model, although the
maximised values of the log likelihood function obtained for this model and for lower
order ARMA processes were very close, indicating that the process for aggregate output
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may be adequately characterised by a random walk with drift (for which the persistence
measure is equal to unity). We have already noted that model M4, in which output in
each sector follows a random walk with drift, is rejected by the data, so that the univari-
ate result is consistent with the multisectoral findings only under particular restrictions
on the size of the ARMA coefficients in the sectoral equations and on the correlations
between sectoral shocks. There are, however, no a priori reasons for the validity of such
aggregation restrictions, and consequently, these results raise the possibility of aggrega-
tion bias in models estimated at the economy-wide level, suggesting that caution should
be exercised in the use of aggregate data.11 It is noted that the unit measure of per-
sistence associated with the univariate model is lower than that obtained for aggregate
output based on the multisectoral model M3. However, given the estimated standard
errors, there is no inconsistency in these results, which are in line with those provided in
the literature on persistence of shocks to aggregate output in the United Kingdom.12

We now turn our attention to the primary concern of this paper, which is to iden-
tify the contribution of different types of shocks to the total persistence measure. The
following version of the complete multisectoral model, (9.1.1), is therefore considered:

M̃2 : ∆yit = ai+
r∑
s=1

cs,ii∆yi,t−s+
r∑
s=1

bs,i∆y−i,t−s+

p∑
j=1

r∑
s=0

γi,jsνj,t−s+uit, i = 1, · · · , 8.

The model contains up to four lags of sectoral and aggregate output growth rates, as
well as current and four lagged values of the macroeconomic shocks. Model M̃2 to be
completed with equations for the p types of macroeconomic shocks, νjt(j = i, · · · , p).
Here, we consider four types of shocks; namely, (i) unexpected changes in the money sup-
ply (’money shocks’), (ii) unexpected changes in excess returns on stocks (’stock market
shocks’), (iii) unexpected changes in Sterling exchange rate (’foreign exchange shocks’),
and (iv) unexpected changes in nominal oil prices (’oil price shocks’). The specification
of the four equations that are used to determine these shocks are shown in Table 9.2. For
each of the four equations, the most general specification that was considered included
among the explanatory variables values of the four dependent variables lagged by up to
four periods. For the first two of the macro equations, these were further supplemented
by (lagged) measures of growth in Governmnent expenditure, and by an unemployment
variable U (for the money equation), and by measures of changes in interest rates, of
the dividend yield, and of the rate of price inflation for the excess returns equation.13

(Precise variable definitions are provided in the Data Appendix of Lee et al. (1991)). A
specification search was carried out on the OLS estimates of the equations to obtain the
specifications chosen in Table 9.2. This involved dropping those variables whose coeffi-
cients had t-values which were less than unity (in absolute value), ensuring that none of
the variables thus excluded were jointly significant. The results of Table 9.2 show that the
inclusion of the additional behavioural variables in the first two equations is an important
exercise, with the estimated coefficients of the additional variables showing significantly,

11 See Lee et al. (1990a,b) for a more complete discussion of the problems of aggregation bias in the
context of linear regression models.

12 Campbell and Mankiw (1989) report a (bias-corrected) estimate of 0.94 for a(i), based on 60
autocorrelation coefficients using data covering the period 1957q1-1986q2; and Mills (1991) reports a
value of unity based on annual data over the post-war period.

13 These specifications therefore incorporate more behavioural content. The choice of the additional
variables included in the money equation is justified in Barro (1977) and Pesaran (1991b), while those
in the stock returns equation are discussed in Pesaran and Timmerman (1990).
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and taking their expected signs.14 The results also indicate that simple AR representa-
tions cannot be improved upon for the exchange rate and the oil price variables. Given
that the residuals from these equations are to be employed as expectational errors, it is
important that they do not contain a systematic element, and we note that we could not
reject the hypothesis of no serial correlation in any of the four equations.

Having established the form of the macro equations to be used to identify macroe-
conomic shocks, the system of equations M2, with eight equations explaining sectoral
output growth plus four equations identifying the different macroeconomic shocks, was
estimated jointly by the FIML method.15 Table 9.3 provides Wald statistics for tests of
two null hypotheses, H1 and H2:

H1 : γi,j0 = γi,j1 = γi,j2 = γi,j3 = γi,j4 = 0, j = 1, · · · , 4, i = 1, · · · , 8

H2 :
4∑
s=0

γi,js = 0, j = 1, · · · , 4, i = 1, · · · , 8.

Under H1, the macro shocks have no effect on output growths (whether short- run
or long-run), while under H2, macro shocks are allowed to have short run effects, but no
long run impact on output growths. Clearly H1 implies H2, but not vice versa. Both
hypotheses are rejected only in a small number of cases (5 out of 32), although the
more restrictive hypothesis, H1, is rejected in 11 cases. Imposing the restrictions H1

where they were not rejected,16 and excluding variables with t-values less than unity in
absolute terms, we obtained a new restricted model, M̃3.17 The sectoral and aggregate
persistence measures derived on the basis of this model are presented in Table 9.4. Total
sectoral and aggregate persistence measures are given in column (i) of this table, and the
decomposition of these totals into the component due to ’macro’ shocks and that due to
’other’ shocks is given in columns (3) and (2), respectively. The further decomposition
of the persistence measure due to the four ’macro’ shocks, as defined by equation (6), is
given in columns (4) to (8). In terms of the measures of the total persistence of shocks, the
results in column (i) of Table 4 are similar to those presented in Table i. Point estimates
of the persistence measures for the Agriculture, Services, and the Manufacturing sectors
are the largest obtained, although the first two of these are relatively poorly determined.
The point estimate of the total persistence measure for aggregate output is o-8833 (0-067
), which is lower than that obtained in Table I and is significantly less than unity.

In almost all sectors, the contribution of the ‘macro’ shocks to total persistence is
relatively small. This is clearly reflected in the similar estimates obtained for PY and
PO. This seems to be primarily due to the fact that ‘macro’ shocks over the period under

14 The insignificance of the interest rate variable in the equation explaining excess returns may be
because the variable used does not adequately reflect the most up-to-date information available in the
market. A more elaborate investigation of effects of using different interest measures might also be
worthwhile. Given the purpose of this paper, these possible further refinements will not be pursued here,
however.

15 The use of the FIML method enables us to avoid the generated regressor problem highlighted in
Pagan (1984). See also (Pesaran, 1987, ch. 7).

16 We did not impose the restriction in H2 even if the hypothesis was not rejected so as not to eliminate
the effects of macroeconomic shocks which may show significantly in a more parsimonious model in which
coefficient values are more precisely estimated.

17 The unrestricted model M̃2 contains 250 parameters. Model M̃3 is obtained through the imposition
of 168 restrictions, and the corresponding likelihood ratio statistic for the joint test of the validity of
these restrictions is equal to 160.12, cf. χ2(168).
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consideration have been small in size as compared with the ‘other’ shocks, and this is
reflected by the small weight given to the macro shocks in the total persistence mea-
sure in (9.1.5).18 The exceptions to this observation are the Durable and Non-durable
Manufacturing sectors, for which the component due to ‘macro’ shocks is relatively large
and significantly different from zero. Columns (4) to (8) of Table 9.4 consider the fur-
ther decomposition of the sectoral and aggregate persistence measures for macroeconomic
shocks, and for each type of macroeconomic shock give the contribution of the direct and
overall measures of persistence of shocks to PS, (i.e, µjPSj, (j = 1, · · · , 4),

∑4
j=1 µ

2
jPSXj

respectively, as in (9.1.6)). To a large extent, these measures reflect the results of Table
9.3, with only a small number of measures being significantly different from zero.19 How-
ever, the results indicate that among the four ’macro’ shocks, it is the foreign exchange
shocks which have the largest persistence effects on aggregate output, primarily exerted
through their effect on the Durable and Non-Durable Manufacturing sectors. The contri-
bution of oil price shocks and stock market shocks are smaller, although still significant,
while money shocks appear to be the least important in contributing to the persistence
measure due to ’macro’ shocks.20

In every case where more than one type of macroeconomic shock is included in the
output equation, the contribution of

∑4
j=1 µ

2
jPSXj is negative, indicating that in general

an unanticipated change in one of the macroeconomic variables is associated with offset-
ting unanticipated changes in the other macro variables such that the overall impact of
the shock on the persistence measure is much reduced. As an illustration of this phe-
nomenon, consider the direct and the overall impact of oil price shocks on UK output
growth. In practice, it is reasonable to assume that oil price shocks are exogenous to the
UK economy, but we cannot rule out the possibility that oil price shocks generate unan-
ticipated movements in other macro variables, namely money supply, exchange rates, etc.
In fact, we find the direct long run effects of oil price shocks on aggregate output, denoted
by P 2

S1 in (9.1.6), takes the value of 0. 8812 (0.2487), while the overall measure, given
by (P 2

S1 + PSX1) takes the value of 0.7374 (0.4306). This can be interpreted as providing
evidence that the responses of the monetary authorities and the foreign exchange and
stock markets serve partially to offset the long run impact of oil price shocks.

The results described above provide some justification for the use of sectoral data
not only in the analysis of the persistence of shocks to sectoral output levels, but also
in the analysis of aggregate persistence. As is the case with the results presented in
PPL for the United States, the estimate of the aggregate persistence measure based on
the multisectoral model is lower than that obtained from a univariate model, raising the
question of whether there is an element of aggregation bias introduced in the aggregate
model.21 However, although the measure of persistence of shocks to aggregate output in

18 We should recall here that the measures of persistence due to ‘other’ shocks include the effects of
all macroeconomic shocks which are independent of those explicitly accommodated within the analysis,
as well as purely sector-specific shocks.

19 The presence of non-zero persistence measures in Table 9.4 which have turned out to be not sig-
nificantly different from zero are generally due to the indirect effect of shocks in other sectors operating
through the lagged aggregate output terms included in the model.

20 In contrast to the United Kingdom, we did find a significant persistence effect due to money shocks
in the United States (see PPL). However, it would be interesting to check the robustness of the US results
to the explicit inclusion of more macro shocks in the model. This is particularly important in the light
of the evidence provided in Hamilton (I983) on the effects of oil price shocks on the US economy.

21 It would be interesting to investigate whether the relatively high estimated persistence measures
obtained in many countries by Campbell and Mankiw (1989) using univariate models for aggregate output
are similarly affected by such aggregation bias, and if so, whether the large variability in measures found
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the UK based on the multisectoral model is less than the unit value obtained using the
univariate models, it is clear that the measure is substantially larger than zero, so that
output levels seem to be permanently affected by shocks.

The results also suggest that sectoral analysis is a useful exercise in its own right.
Certainly, there are some sectors in which shocks have larger long term effects than in
others, and it is clear that certain types of shocks are more significant in some sectors
than in others. Moreover, subject to the qualifications elaborated above, the results can
be interpreted as providing evidence that sector-specific shocks have a more permanent
impact on sectoral and aggregate output than macroeconomic shocks. A partial explana-
tion for the relative unimportance of macro shocks is that a macro shock of one type may
result in offsetting macro shocks of another type, and indeed, we found evidence that
the persistence effects of an oil price shock are partially offset by the (unanticipated)
reactions of the monetary authorities, foreign exchange market, and stock market. How-
ever, a large element of the total persistence of shocks was identified to be due to ’other’
shocks. The cointegration test results reported in the paper also suggest that there are
a relatively large number of independent sources of shocks in the UK economy, and one
interpretation of this result is that shocks which are most important in generating per-
sistence effects are the sector-specific ones. This is an important conclusion and deserves
further investigation. The sensitivity of the results to the inclusion of other types of
macro shocks, the choice of sample period, lag lengths and the level of disaggregation
need to be further studied. It would also be interesting to see whether results obtained
for the United Kingdom can be replicated for other countries.

across the countries would be reduced by the use of sectoral data.
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Table 9.2: Estimates of the Equations used in the Derivation of Macro Shocks

Money supply growth equation
DLM = 0.0246 +0.1108 DLM(−1) +0.11858 DLM(−2) +0.1858 DLM(−3) +0.4879 DLM(−4)

(2 747) (1.1335) (2.220) (2-279) (5 967)
+0.0194 DLG(−1) +0.1252 DLG(−2)+0.1009 DLG(−3)+0.0040 U(−1) +ν̂1t

(0 302) (2-022) (1.1548) (2 036)
R2 = 0.4650, S.E. equation = 0.01382, LLF = 328.5408, SC = 4.7343

Excess returns equation
ST = -0.1804 -0.0078 DI(−1) +0.0388 DIV Y (−1) -1.6704 PI(−1) +ν̂2t

(4 705) (1.196) (4.388) (2 504)
R2 = 0.1678, S.E. equation = 0.09119, LLF = 110.3585 SC = 4.7743

Exchange rate equation
DER = -0.4465-0.1866 DER(−1) + ν̂3t

( 1.288)(1.977)
R2 = 0.0346, S.E. equation = 3.6174, LLF = -299.2134, SC = 3.4339

Oil price equation
DLP = 0.0154 + 0.4544 DLP (−1) -0.2036 DLP (−2) + ν̂4t

(1.290) (4.818) (2.127)
R2 = 0.1776, S.E. equation = 0.1242, LLF = 75.5793, SC = 3.7554

Notes : The estimates presented in this table are computed using the OLS
method. However, the estimates of the persistence measures reported in Ta-
bles 9.3 and 9.4 are computed by the joint estimation of the sectoral output
growth equations and the macro equations by the FIML method.

DLM refers to changes in the (log) money stock, DLG refers to changes in
the (log) real Government final consumption, U refers to the unemployment
variable used in Barro (I977), ST refers to excess returns on stocks, DI refers
to the change in the rate of interest on 91 day Treasury Bills, DIV Y refers
to the dividend yield (%), PI refers to the rate of price inflation, DER refers
to changes in the logarithm of the Sterling exchange rate, and DLP refers to
the changes in the (log) nominal oil prices (See Data Appendix of Lee et al.
(1991) for further details).

‘(-i)’ indicates that the variable is lagged i periods. Figures in brackets are
(absolute) t-ratios. LLF is the maximised log likelihood, SC is the Lagrange
Multiplier statistic for testing residual serial correlation (cf. χ2(4)).
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Table 9.3: Wald Test Statistics on the Coefficients of the Macroeconomic Shocks

Foreign Exchange Stock Market
Oil price shocks Money shocks shocks shocks

H1 H2 H1 H2 H1 H2 H1 H2

1. Agriculture 5.33 0.21 10.69* 0.04 2.31 0.98 3.12 2.01
2. Construction 15.39* 13.46* 3.00 0.27 1.54 0.03 4.80 0.11
3. Durable Manufacturing 12.49* 2.89 6.12 0.59 12.44* 6.60* 16.37* 2.38
4. Non-Durable Manufacturing 8.24 2.74 6.55 0.94 13.64* 10.23* 13.35* 7.36*
5. Transport 1.53 0.63 0.72 0.10 0.05 0.00 3.23 1.46
6. Energy 16.29* 1.83 5.89 2.19 12.60* 3.78 2.42 0.09
7. Distribution 11.89* 10.50* 4.02 0.45 3.65 0.25 9.21 1.46
8. Services 8.21 1.56 4.85 0.02 18.64* 1.01 4.38 0.78

Notes : Results relate to model R3 described in the text. For each of the
sectors and macroeconomic shock, Wald statistics are computed for the test
of the hypotheses:

H1 : γi,j0 = γi,j1 = γi,j2 = γi,j3 = γi,j4 = 0, (j = 1, · · · , 4)

H2 :
4∑
s=0

γi,js = 0, (j = 1, · · · , 4).

Wald statistics for test of H1, (H2) are to be compared with the critical
values of the chi-squared distribution with five (one) degree(s) of freedom. ‘*’
indicates that the statistic is significant at the 5% level.
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Table 9.4: Decomposition of Sectoral and Aggregate Persistence Measures for
Macroeconomic Shocks

(FIML estimates, 1961q4-1989q2)

(1) (2) (3) (4) (5) (6) (7) (8)
Total Other Macro DLP DLM DER ST Interaction

Sectors PY PO PS µ1PS1 µ2PS2 µ3PS3 µ4PS4

∑4
j=1 µ

2
jPSXj

1. Agriculture 1.6107 1.6176 1.1472 0.0000 1.1472 0.0000 0.0000 0.0000
(0.2453) (0.2442) (1.7964) (1.7964)

2. Construction 0.9010 0.8097 4.0146 4.0146 0.0000 0.0000 0.0000 0.0000
(0.0854) (0.0581) (3.1310) (3.1310)

3. Durables 1.2156 1.0751 3.1429 0.0000 0.0000 2.9701 1.0868 -0.1248
(0.1353) (0.1151) (1.1280) (1.0021) (0.8700)

4. Non-Durables 1.0731 0.8312 4.1267 0.0000 0.0000 3.1920 2.6779 -0.3306
(0.0943) (0.0526) (1.6133) (1.3099) (1.2566)

5. Transport 0.8392 0.8392 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0788) (0.0788)

6. Energy 0.8464 0.8586 0.7713 0.4055 0.0172 0.6786 0.1051 -0.0416
(0.0802) (0.0671) (0.4163) (0.2494) (0.0347) (0.4781) (0.0587)

7. Distribution 0.7893 0.7916 0.6331 0.3050 0.0276 0.5420 0.1697 -0.0156
(0.0656) (0.0641) (0.4238) (0.2186) (0.0569) (0.3738) (0.1254)

8. Services 1.2195 1.2662 0.3663 0.1323 0.0120 0.3411 0.0736 -0.0052
(0.2644) (0.2762) (0.5122) (0.1054) (0.0250) (0.5615) (0.0576)

Aggregate 0.8833 0.8062 1.8538 0.8930 0.0808 1.5873 0.4969 -0.1337
output (0.0671) (0.0566) (0.5254) (0.2530) (0.1599) (0.5741) (0.1988)

Notes : Results relate to model M̃3 described in the text. The number of
estimated coefficients, N, is 82. The maximised log-likelihood value, LLF, is
2627.72. Sectoral persistence measures, Pii, are estimated using (9.1.7) in the
text. The aggregate persistence measure, PY , is estimated using (9.1.4) in the
text. The decomposition of total persistence into PS and PO, ie persistence
due to ‘Macroeconomic’ and ‘Other’ shocks, is described by (9.1.5) in the text.
The table also shows for each type of macroeconomic shock the contribution
of the direct and overall measures of persistence of shocks to PS as described
by (9.1.6) in the text, using w = (1, · · · , 1)′ to obtain the aggregate output
persistence measures, and using the selection vector ei in place of w to obtain
sectoral persistence measures. Definitions of DLP , DLM , DER and ST are
provided in the Notes to Table 9.2.

Bracketed figures are asymptotic standard errors. These are calculated using
analytic derivatives. The formulae used are given in Appendix B of PPL.



Chapter 10

Persistence, cointegration, and
aggregation: a disaggregated

analysis of output fluctuations in the
U.S. economy

A framework is developed for measuring the persistence of shocks to aggregate output
in the context of a multisectoral model. It is argued that persistence coefficients can
be estimated more precisely using a disaggregated model of output growths rather than
univariate representations. The effect of cointegration among sectoral output series on
the persistence measure is also analysed, and a decomposition of the persistent effect
of output innovations into ‘monetary’ and ‘other’ shocks provided. The framework is
applied to U.S. data, and although ‘money’ shocks are shown to be statistically significant,
their contribution to the total persistence of output fluctuations is found to be relatively
unimportant.

10.1 Introduction

Whether the effect of supply or demand shocks on output is temporary or long lasting
is an issue of utmost importance in macroeconomics which has attracted a great deal
of attention over the past few years. The traditional view of business cycle decomposes
the variations in aggregate output into a deterministic trend and a stationary cyclic
component, so that the effect of innovations in output are transitory, having no influence
on output levels in the long run. But following the influential work of Nelson and Plosser
(1982), many economists have come to view the variations in aggregate output in terms
of first-difference stationary processes, thus arguing that shocks have a permanent effect

0 Published in Journal of Econometrics (1993), Vol. 56, pp. 57–88. Co-authors M. H. Pesaran and
K. C. Lee. Partial support from the ESRC and the Isaac Newton Trust of Trinity College, Cambridge
is gratefully acknowledged. We would like to thank Steven Durlauf, two anonymous referees of this
Journal and the workshop participants at the ESRC Econometric Study Group Conference, Warwick, the
European University Institute, and the University of Alberta for constructive com- ments and suggestions
on an earlier draft of the paper. Correspondence to: M. H. Pesaran, Trinity College, Cambridge CB2
ITQ, United Kingdom.

173



174

on the level of output. One important issue in this literature is the sire of the long-run
response of aggregate output to a unit shock, commonly referred to as the persistence of
shocks to output.

Several studies have provided estimates of the persistence measure for the real gross
national product (GNP) in the United States. These estimates vary considerably de-
pending on the data set used and the estimation procedure adopted. On the basis of
low-order ARIMA models estimated on the quarterly U.S. data over the period 1947-85.
Campbell and Mankiw (1987a) conclude that ‘a 1 percent innovation to real GNP should
change one’s forecast of GNP over a long horizon by over 1 percent’. Harvey (1985) ob-
tains a similar result using an unobserved component model applied to annual data over
the period 1948-70. However, Clark (1987a) and Watson (1986) have obtained substan-
tially lower estimates of persistence using an unobserved component model estimated on
a quarterly data set comparable to that employed by Campbell and Mankiw. In these
studies a 1 percent shock would lead to around a 0.6 percent change in output in the
long run, Cochrane (1988), using a nonparametric procedure also finds little evidence of
persistence in GNP. The evidence on the persistence of aggregate output fluctuations in
the U.S. is mixed and inconclusive, and as argued in Christiano and Eichenbaum (1989)
the issue of whether real GNP is trend or difference-stationary may be very difficult to
resolve on the basis of the available post-war quarterly data.

The situation is not, however, as hopeless as it may appear at first. All the studies
cited above and reviewed in Christiano and Eichenbaum (1989) base the estimation of the
persistence measure on univariate representations of real GNP, and therefore ignore the
information contained in other variables such as aggregate consumption and investment
in the estimation of the persistence of output fluctuations. A number of recent studies
have followed this line of argument and have used multivariate models, containing vari-
ables in addition to the real GNP, to obtain a more reliable estimate of the size of the
random walk component in GNP. These include the studies by Campbell and Mankiw
(1987b), Clark (1987b), Shapiro and Watson (1988), Evans (1989) and Blanchard and
Quah (1989). Evans (1989), for example, argues that due to the presence of feedback
between output growth and unemployment and the strong negative contemporaneous
correlation between output growth and unemployment innovations, the unemployment
data contain important information for the analysis of output persistence. A similar
argument is also made in King et al. (1987) with respect to consumption and investment.

In this paper we consider using a different type of additional information, namely sec-
toral output growth rates, in the analysis of output persistence at the aggregate level. We
develop a suitable framework for the measurement of persistence of shocks to aggregate
output in the context of a multisectoral model of output growths. We will be arguing
that the information contained in the relations between sectoral growth rates, and the
correlations that exist between innovations in output growth of different sectors, enables
us to obtain a more precise estimate of the persistence of shocks to aggregate output via
the disaggregated model than can be obtained through a direct analysis of the aggregate
series.

The disaggregated framework also allows us to decompose the persistence effect of
output innovations into ‘macro’ and ‘other’ possibly sector-specific shocks, under the
identifying assumption that the two types of shocks are contemporaneously uncorrelated.
The same assumption is also made by Blanchard and Quah (1989). However, unlike
Blanchard and Quah’s analysis which imposes the additional restriction of a zero long-
run impact of ‘demand’ shocks on output, our approach does not require any further
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identifying restrictions.
The plan of the paper is as follows: Section 10.2 presents a brief overview of the lit-

erature on measurement of persistence in univariate models. This material prepares the
ground for our multisectoral generalization in section 10.3, where we propose a general
measure of persistence based on the spectra1 density of first differences, evaluated at zero
frequency. We investigate the effect of cointegration among the sectoral outputs on the
sectoral and cross-sectoral persistence measures (section 10.3.1) and consider the effect
that aggregation may have on persistence (section 10.3.2). Section 10.3.3 of the paper is
concerned with the measurement of persistence in multisectoral models with macroeco-
nomic shocks. Finally, section 10.4 applies the disaggregated framework developed in the
paper to the analysis of output growth in the U.S. economy, using data disaggregated by
ten industrial sectors, and provides estimates of persistence for each sector and for the
economy as a whole. We also present separate estimates of the persistence measures for
the ‘monetary’ and ‘other’ shocks, under the identifying restriction that these two types
of shocks are uncorrelated. The results show that the estimate of the aggregate persis-
tence measure based on the multisectoral model is appreciably below that obtained from
the aggregate series directly, thus providing further evidence on the upward bias of the
estimates of persistence measures obtained on the basis of low order univariate ARIMA
specifications. We also present results on the statistical significance of the short-term and
the long-term effect of unanticipated monetary growth of sectoral outputs, and show that
in five out of the ten sectors studied ‘money’ shocks are statistically significant and their
effects do not die out in the long term. Despite this, due to the relatively unimportant
nature of ‘money’ shocks as compared to the other shocks affecting the economy over
the period 1955–87, the contribution of ‘money’ shocks to the total persistence of output
fluctuations in the economy turned out to be rather small.

10.2 Persistence measures in univariate models

In this section we give a brief overview of the different approaches taken to analyze the
problem of persistence in univariate models. The aim here is to prepare the ground for
our multisectoral generalization of the persistence concept and its measurement in the
next section.1

Suppose that yt follows the genera1 first-difference linear stationary process:

∆yt = µ+ a(L)εt. (10.2.1)

where ∆ is the first difference operator,

a(L) = a0 + a1L+ a2L
2 + · · · (10.2.2)

is a polynomial in the lag operator L, and µ is a scalar constant. The εt are mean zero,
serially uncorrelated shocks with common variance σ2

ε . The trend-stationary process

yt = γt+ b(L)εt (10.2.3)

is a limiting case of (10.2.1) and arises if µ = γ, and the lag polynomial in (10.2.1)
has a unit root, namely if a(1) = 0. In general, the extent to which the first-difference

1 Useful surveys of the persistence literature are already available in Diebold. and Nerlove (1989),
Stock and Watson (1988) and Christiano and Eichenbaum (1989).
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process (10.2.1) deviates from the trend-stationary process (10.2.3) is clearly related to
the magnitude of a(1). A natural measure of the size of the random walk, or the unit
root component of (10.2.1), is therefore given by a(1), and this is in fact that measure
proposed by Campbell and Mankiw (1987a).

The importance of the stochastic trend can also be measured directly in terms of the
size of the stochastic variability of the trend component of yt. Using the Beveridge and
Nelson (1981) decomposition, yt = τt + zt, whereτt is the stochastic trend and zt is the
cyclical component, the magnitude of the random walk component can be measured by

V(τt|Ωt−1) = σ2
εa

2(1). (10.2.4)

Alternatively, Cochrane (1988) has proposed using the variance of the long differences of
yt, V = lims→∞(Vs), as a measure of persistence, where

Vs = V(yt − yt−s)/sV(∆yt),

V(·) denotes the variance operator, and V(yt− yt−s) is the variance of s-differences of yt.
The relationships between a(1), V(τ |Ωt−1), V as measures of persistence can be motivated
by noting that all the three measures represent different methods of scaling the spectral
density of ∆yt at zero frequency. Let f∆y(ω) be the spectral density function of ∆yt.
Then under (10.2.1),

2πf∆y(ω) = σ2
εa(eiω)a(e−iω), −π ≤ ω < π,

and it is easily seen that

a2(1) = 2πf∆y(0)/σ2
ε , (10.2.5)

V = 2πf∆y(0)/σ2
∆y, (10.2.6)

where σ2
ε = V(yt|Ωt−1) is the conditional variance of ∆yt and σ2

∆y = V(∆yt) is the
unconditional variance of ∆yt. Therefore, the problem of measurement and estimation of
persistence of fluctuations in yt reduces to the problem of estimating the spectral density
of ∆yt at zero frequency.2 This estimate can then be deflated by the conditional or the
unconditional variance of ∆yt to obtain scale-free measures of persistence.

10.3 Measurement of persistence in a multisectoral

model

Consider the following multivariate generalization of (10.2.1):

∆yt = µ+ A(L)εt, (10.3.1)

where ∆yt denotes ther m × 1 vector of output growths {∆yit, µ is an m × 1 vector of
constants representing sector-specific mean growth rates, and εt is an m × 1 vector of

2 Some authors, notably Durlauf (1989, 1990) have argued that it is more appropriate to base the
analysis of persistence or testing for unit roots on the spectral density (or the spectral distribution
function) of first differences at all frequencies rather than only at the zero frequency. This seems a useful
extension of the spectral density approach to the analysis of persistence, but will not be followed in this
paper.
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white noise innovations with mean zero and covariance matrix Σ = {σij}. The matrix
polynomial

A(L) =
∞∑
i=0

AiL
i

is assumed to be absolutely summable. The Ai’s are m×m matrices of fixed parameters
and A0 = Im (the m×m identity matrix). We denote the (i, j) element of A(L) by the
lag polynomials aij(L).

Almost all the multivariate models analysed in the persistence literature are nested
within (10.3.1). The bivariate models of Evans (1989) and Blanchard and Quah (1989)
and the equilibrium real-business-cycle model discussed in Long and Plosser (1987) can be
readily cast in the form of (10.3.1). Although the model is specified in the first-difference-
stationary form, it allows for one or more of the variables in yt to be trend-stationary.3

In the above multisectoral model, shocks originating from sector j can influence the
long-run level of output in sector i both directly through the lag filter aij(L)εjt and
indirectly through their correlations with shocks in the other sectors. In computing
the persistence measures, it is therefore important that the effect of output fluctuations
through both of these channels are taken into account. With this in mind, consider the
blind application of the Campbell and Mankiw procedure to (10.3.1). This yields

lim
s→∞
{∂ E(yt+s|Ωt)/∂εt} = A(1),

which clearly ignores the effects of cross-correlations that may exist between shocks in
different sectors and is appropriate only in the orthogonal case where σij = 0 for i 6= j.
In an attempt to render the Campbell and Mankiw approach generally applicable to
multivariate systems, one can make use of the Choleski decomposition Σ = T−1DT′−1,
where T is lower triangular with unit diagonal elements and D is a diagonal matrix.
Then (10.3.1) can also be written as

∆yt = µ+ [A(L)T−1]ut, (10.3.1′)

where ut = Tεt. In this representation the uit’s (the elements of ut) are contemporane-
ously uncorrelated, and it may therefore seem appropriate to measure the persistence of
shocks by the following multivariate generalization of the Campbell and Mankiw mea-
sure.4

lim
s→∞
{∂ E(yt+s|Ωt)/∂ut} = A(1)T−1. (10.3.2)

This measure is, however, subject to two main criticisms. Firstly, the Choleski decomposi-
tion is not unique and there exist many other orthogonal transformations of εt. Secondly,
the (i, j) element of A(1)T−1 refers to the long-run response of yit to changes in ujt, which
is composed of a linear combination of all the sectoral innovations, εij, i = 1, 2, . . . ,m,
and does not necessarily correspond to the persistence effect of a shock originating in a
particular sector.5

3 The conditions for yit to be trend-stationary are given by aij(1) = 0, for j = 1, 2, . . . ,m.
4 This is in fact the persistence measure used by (Evans, 1989, p. 220) in his bivariate model of

output and unemployment.
5 In their bivariate model, Blanchard and Quah (1989) manage to avoid these difficulties by first

identifying ‘supply’ and ‘demand’ shocks with the composite disturbances such as those in ut, and
secondly by imposing the identifying restriction that only ‘supply’ shocks have a long-run impact on
output. This restriction allows them to uniquely determine the Choleski factor of Σ, defined by S =
T−1D1/2.
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The spectral density approach to the measurement of persistence is not, however,
subject to the above-mentioned shortcomings, and can be easily adapted to derive per-
sistence measures both at the level of individual sectors and at the aggregate level. The
(unscaled) sectoral measures of persistence are given by the spectral density of matrix
∆yt evaluated at zero frequency; namely,

2πf∆y(0) = A(1)ΣA(1)′. (10.3.3)

As in the univariate case, this result can also be rationalised directly as measuring the
size of the random walk components of the yt process. To see this, consider the following
multivariate version of the Beveridge-Nelson decomposition:

yt = τ t + zt,

τ t = µ+ τ t−1 + A(1)εt,

zt =
∞∑
i=0

Ciεt−i, Ci = −
∞∑

j=i+1

Aj,

where τ t is the m × 1 vector of the (stochastic) trend components and zt is the m × 1
vector of the transitory components. Therefore,

V(τ t|Ωt−1) = A(1)ΣA(1)′,

which is identical to the expression in (10.3.3). The (i, j) element in this matrix can
now be scaled either by the conditional variance of ∆yjt, V(∆yjt|Ωt−1) = σjj, or by its
unconditional variance, V(∆jt), to obtain scale-free measures of persistence of output fluc-
tuations in sector i caused by a unit shock in sector j. The former method of scaling yields
a multisectoral generalisation of Campbell and Mankiw’s univariate measure (a(1)|), and
the latter gives a generalisation of the Cochrane measure (V ). While in principle there
is little to choose between the two scaling methods, in practice most researchers have
focussed on the Campbell and Mankiw type measure which in the univariate case can be
interpreted as the long-run response of yt to shocks. In what follows we shall also contine
our analysis to persistence measures scaled by the conditional variance of first differences.

Let et be a selection vector which has unity on its ith element and zeros elsewhere.
Then the cross-sectoral persistence measures, being the long-term effects of shocks in
sector j on the level of output in sector i, can be written as

Pij = e′iA(1)ΣA(1)′ej/eiΣej, i, j = 1, 2, . . . ,m. (10.3.4)

The sector-specific measures of persistence, which we denote by Pi ( > 0), can be obtained
from (10.3.4) and are given by Pi =

√
Pii. It is clear that in a univariate model Pi reduces

to A(1), which is the familiar Campbell and Mankiw measure. Also, in the case where
yit is trend-stationary, it easily follows that Pi = 0, as it should.6

6 When yit is trend-stationary, all the elements in the ith row and in the ith column of matrix
A(1)ΣA(1)′ will be identically equal to zero (see footnote 3).
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10.3.1 Cointegration and persistence

In this section we briefly consider the effect that cointegration among the elements of
yt may have for the cross-sectoral measures of persistence. Here we assume that all
components of yt are first-difference-stationary, and that there exists an m× r matrix a
of rank r(< m), such that a′yt is stationary.7 The matrix α is called the cointegrating
matrix and its columns the cointegrating vectors of yt. The necessary and sufficient
conditions for cointegration are given by [see, for example, Engle and Granger (1987)] :8

α′A(1) = 0 and α′µ = 0. (10.3.5)

The condition α′A(1) = 0, which plays a central role in the analysis of cointegrated
systems, also implies that A(1)ΣA(1)′ is singular and there will therefore be some ex-
act linear relationships between the cross-sectoral persistence measures, Pij defined in
(10.3.4). These relationships are given by α′P = 0, where P = {Pij} is the matrix of
cross-sectoral persistence measures. The conditions α′P = 0 and α′A(1) = 0 are in
fact mathematically equivalent. Also, α′P = 0 implies that the matrix of persistence
measures, P, has rank m − r, and there are, therefore, only m − r independent sources
of random variations that can have persistence effects on the level of sectoral outputs.
This is in line with the Stock and Watson (1988) characterisation of cointegrated systems
in terms of common trends and represents an alternative formalization of the cointegra-
tion property in terms of independent sources of random variations that have persistence
effects.

10.3.2 Aggregation and persistence

Suppose now we are interested in measuring the persistence effect of shocks at the level
of aggregate output, Yt, defined by

Yt =
m∑
i=1

wiyit = w′yt, (10.3.6)

where w′ = (w1, w|2, . . . , wm), is an m × 1 vector of positive fixed weights. Under the
multisectoral model (10.3.1) we have

∆Yt = w′µ+ w′A(L)εt. (10.3.7)

This specification is directly comparable to the univariate ARIMA models used in the
literature for the measurement of persistence at the aggregate level. The main advantage
of using (10.3.7) over the univariate aggregate models lies in the fact that by exploiting
even very simple univariate time series specifications at the disaggregate level, we are
still able to arrive at very-high-order ARIMA specification for the aggregate output, Yt.
For example, it is possible to obtain an ARIMA(m,m− 1) specification for Yt, even if the
sectoral output growths are specified to follow independent AR(1) processes.9 Thus, given

7 To ensure that a′yt has bounded variance we also assume that A(L) is I-summable, namely that∑∞
i=1 i|Ai| < ∞. This condition is satisfied when A(L) is the lag polynomial matrix in the Wold

representation of a vector ARMA specification of ∆yt.
8 We are assuming that the variance matrix of the innovations, Σ, is nonsingular.
9 See, for example, Granger and Morris (1976) and the review of small scale aggregation in Granger

(1990).
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the difficulties involved in obtaining accurate estimates of high-order ARIMA processes
using available aggregate time series, one possible way out would be to base the estimation
of the aggregate persistence measure on (10.3.7) instead of relying on low-order ARIMA
specifications of the aggregate output directly.10

Let Py be the persistence measure of aggregate output obtained on the basis of the
disaggregate specification (10.3.1). Applying the spectral density approach to (10.3.7)
and using the conditional variance of ∆Yt as the scaling factor, we have

P 2
y = w′A(1)ΣA(1)′w/w′Σw. (10.3.8)

This measure is directly comparable to the Campbell and Mankiw measure a(1), derived
using a univariate time series specification of aggregate output.11

It is important to note that the ‘aggregate persistence measure’, Py, is valid irre-
spective of whether one or more of the sectoral outputs in yt are trend- stationary. For
example, in the case where output of all sectors except the output of sector i are trend-
stationary we have

Py = {σiiw2
i /w

′Σw}1/2Pi,

where Pi is the persistence measure of sector i.
Clearly, Py = 0 if Pi = 0, i = 1, 2, . . . , n. The reverse is not, however, true. In

principle we could have Pi = 0, even if none of the sectoral persistence measures is equal
to zero. This arises when yt is cointegrated and the aggregating w is proportional to
one of the cointegrating vectors in α.12 In general, however, the effect of cointegration
among the sectoral outputs on Py is complex and involves all the cross-sectoral persistence
measures, Pij. Using (10.3.4) and (10.3.8), we have

(w′Σw)P 2
y =

m∑
i,j=1

wiwjσjjPij, (10.3.9)

where Pij are related through α′P = 0 where yt is cointegrated with the cointegrating
matrix α.

An interesting specialisation of (10.3.9) arises when sectoral outputs are pairwise
cointegrated. Consider first the simple case where m = 2, and let α = (α1, α2)′ be the
cointegrating vector. Then using the result in Proposition 1 and noting that σ22P12 =
σ11P21, we have

P21 = (−α1/α2)P11,

P11/P22 = (α2/α1)2(σ22/σ11).

Substituting these results in (10.3.9), it is now easily seen that13

(w′Σw)1/2Py = |w1σ
1/2
11 P1 − w2σ

1/2
22 | if α1/α2 > 0,

= w1σ
1/2
11 P1 + w2σ

1/2
22 P2, if α1/α2 < 0,

10 The use of low-order ARIMA processes in the estimation of persistence at the aggregate levels has
been crittcized by Cochrane (1988) and Christiano and Eichenbaum (1989).

11 The counterpart of Cochrane’s measure V , based on the disaggregated model, is given by

Vd = {w′A(1)ΣA(1)′w/V(∆Yt)}.

12 This follows immediately from (10.3.5) and (10.3.8).
13 Notice that in the present case w = (w1, w2)′, and Σ is the variance matrix of (ε1t, ε2t)

′.
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where Pi =
√
Pii > 0. Therefore, the value of the aggregate persistence measure crucially

depends on whether in large samples the sectoral outputs are correlated positively (i.e.,
α1/α2 < 0) or negatively (i.e., α1/α2 > 0). Under the more likely case where α1/α2 < 0,
Py can be written as the weighted sum of the two sectoral persistence measures, namely,

Py = λ1P1 + λ2P2, (10.3.10)

where λi = (w2
i σii/w

′Σw)1/2, i = 1, 2. This result readily extends to the m-sector case.

Proposition 3. Let Pi be the sectoral persistence measures, Py the aggregate persistence
measure, and suppose thut the sectoral output levels yit, i = 1, 2, . . . ,m, are pairwise
cointegrated. Then, assuming that sectoral outputs are correlated positively, we have

Py =
m∑
i=1

λiPi, (10.3.11)

where λi = (w2
i σii/w

′Σw)1/2, i = 1, 2, . . . ,m. (See appendix ?? for a proof.)

The above result can also be written as

f
1/2
∆y (0) =

m∑
i=1

wif
1/2
∆yi

(0), (10.3.12)

which provides a decomposition of the spectral density of the aggregate growth rate at
zero frequency, f∆y(0), in terms of the spectral densities of the sectoral growth rates also
evaluated at the zero frequency, f∆yi(0).

10.3.3 Measurement of persistence in models with macroeco-
nomic shocks

Consider now the model

∆yt = µ+ (.L)vt + A(L)εt, (10.3.13)

where vt represents a scalar white-noise process with mean zero and constant variance
σ2
t , and (.L) is an m× 1 vector of lag polynomials,

d(L) = d0 + d1L+ d2L
2 + · · · ,

∞∑
i=1

i|di| <∞.

This model provides a generalisation of (10.3.1) and allows for the effect of a common
shock, vt, on sectoral output growths in addition to the sector-specific shocks, εit. We
refer to vt as the ‘macro’ shock and in this paper identify it with the unexpected growth
of money supply.14 We use the following specification for the money growth equation:

∆mt = β′zt + vt, (10.3.14)

14 Other types of macroeconomic shocks, such as unexpected changes in oil prices or exchange rates,
may also be considered. Indeed, the inclusion of more than one type of shock can be easily accomodated
within this framework, subject to identifying restrictions similar to that discussed below [see Lee et al.
(1992)].
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where zt is a vector of predetermined variables to be specified more fully in the next
section. To ensure that the parameters of the equation systems (10.3.13) and (10.3.14)
are identified, we assume that vt and εt are uncorrelated.

The identifying nature of the restriction Cov(εt, vt) = Σεv = 0 can be easily shown in
the case of normally distributed shocks. Suppose Σεv 6= 0. Then, under the normality
assumption we may write

εt = (σ−2
v Σεv)vt + ut,

where vt and ut are now uncorrelated. Using this result in (10.3.13) gives

∆yt = µ+ [d(L) + σ−2
v A(L)Σεv]vt + A(L)ut. (10.3.15)

The joint maximum likelihood (ML) estimation of (10.3.15) and (10.3.14) now yields
consistent estimates of A(L) and d∗(L) = d(L) + σ−2

v A(L)Σεv. However, it is not
possible to recover a consistent estimate of d(L), unless Σεv = 0.15

Under the above assumptions, it is now possible to decompose the persistence of
output fluctuations into the components due to ‘money’ and due to ‘other’ shocks. This
can be done both at the level of individual sectors and for the economy as a whole. Here
we focus on the decomposition of the aggregate persistence measure, Py. Using (10.3.13),
the spectral density of ∆Yt = w′∆yt at zero frequency is now given by

2πf∆y(0) = σ2
v [w

′d(1)]2 + w′A(1)ΣA(1)′w.

Scaling this by the conditional variance of ∆Yt,

V(∆Yt|Ωt−1) = σ2
v(w

′d0)2 + w′Σw,

yields the following decomposition of Py:

P 2
y = λP 2

m + (1− λ)P 2
O, (10.3.16)

where Pm is the component of the persistence measure due to ‘monetary’ shocks, PO is
the component due to ‘other’ shocks:

Pm = wd(1)/w′dO, (10.3.17)

PO = {w′A(1)ΣA(1)′w/w′Σw}1/2, (10.3.18)

and λ is the mixture coefficient defined by

λ = σ2
v(w

′dO)2/(σ2
v(w

′dO)2 + w′Σw). (10.3.19)

Similar decompositions can also be obtained at the sectoral levels. The formulae for the
decomposition of Pi, the sectoral persistence measures, can be obtained from (10.3.16)–
(10.3.19) by replacing w in these expressions with ei. Note that care must be taken in
interpreting the persistence measure due to ‘monetary’ shocks since misspecification in
(10.3.13) can result in biased estimates for d(L). In particular, the omission of other
important macroeconomic shocks which are negatively corre- lated to ‘money’ shocks
(through, for example, a feedback rule in which monetary policy aims to offset the effects
of the omitted shock) will result in downward bias in the measure of persistence due to
‘money’ shocks.

15 This results also highlights the general difficulty involved with the decomposition of output innova-
tions into ‘supply’ and ‘demand’ shocks, and shows that such a decomposition is only meaningful if one
is prepared to assume that the two types of shocks are contemporaneously uncorrelated. [ See Blanchard
and Quah (1989).]



M. H. Pesaran, R. G. Pierse, K. C. Lee / Persistence, cointegration and aggregation 183

10.4 Empirical results: Measures of sectoral and ag-

gregate persistence for the U.S. economy

The persistence effect of shocks to the U.S. real GNP has been extensively investigated at
the aggregate level. [See, for example, Campbell and Mankiw (1987a,b), Clark (1987a),
Cochrane (1988), Watson (1986), Haubrich and Lo (1989), and Durlauf (1989).] Here we
apply the methods discussed in the previous section and provide a disaggregated analysis
based on a multisectoral model composed of ten sectors16 The available data set covers
the 1947–87 period.

10.4.1 Testing for unit roots at the sectoral levels

Table 10.1: Augmented Dickey-Fuller statistics for tests of a unit roota

in U.S. sectoral outputs (in logs); 1952–1987.

Dickey-Fuller statisticsb

Sectors ADF(1) ADF(2) ADF(3) ADF(4)

1. Agriculture −1.58 −0.35 0.06 0.14
2. Mining −0.17 −0.10 −0.30 −0.52
3. Construction −2.14 −2.14 −2.15 −2.17
4. Dur. manuf. −2.99 −2.96 −2.67 −2.78
5. Nondur. manuf. −1.82 −0.93 −0.52 −0.38
6. Transport −2.95 −2.73 −2.65 −2.72
7. Utilities −0.51 −0.52 −0.50 −0.53
8. Trade −2.65 −2.31 −2.04 −1.54
9. Services −1.46 −1.22 −0.78 −0.62
10. Government −1.99 −1.11 −0.70 −0.60

aThe underlying augmented Dickey-Fuller regressions contain a simple linear
time trend and are based on the same number of observations.

bThe (asymptotic) 5% and 10% critical values are −3.54 and −3.20 respec-
tively.

The first stage in the analysis is to test for unit roots in sectoral outputs (measured
in logarithms).17 Table 10.1 gives the Augmented Dickey-Fuller (ADF) statistics for four
different lag lengths computed over the sample period 1952–87.18 [See Fuller (1976) and
Dickey and Fuller (1981).] All the underlying ADF regressions are estimated on the same
data set and include simple linear trends. The relevant 5% and 10% critical values for

16 The sources of the data and the detals of the sectoral classifications are given m appendix ??.
17 Although the aggregate persistence measure, PY , proposed in this paper is applicable even if (log)

outputs in one or more sectors arc trend-stationary (see section 3.2), nevertheless at the estimation stage
where finite-order AR or ARMA processes are fitted to the data, it is more appropriate to exclude sectors
with trend-stationary output processes from the analysis. Ambiguities, however, arise when we are not
sure whether the output of a particular sector is trend- stationary or not.

18 The choice of the sample period in the computation of the ADF statistics is governed by the available
data and the highest order chosen for the ADF text, namely 4.



184

the ADF statistics are equal to −3.54 and −3.20. respectively.19 None of the tests come
even close to rejecting the unit root hypothesis, and this is true of all the sectors. With
the exception of the durable manufacturing, this finding is in accordance with the results
reported in (Durlauf, 1989, table 6). The difference in the two results in the case of
the durable manufacturing seems to be primarily due to the different procedure used by
Durlauf to correct the simple DF statistic for the residual serial correlation.20 To check
the robustness of the unit root tests to the specification of the trend, following Perron
(1988, 1989a), we also computed ADF statistics assuming a different growth path before
and after the first oil shock in 1973 for each sector. This is the ‘changing growth’ model
in Perron (1989a). The results are summarized in table 10.2. Only in the case of the
‘government’ sector is there a clear cut case against the unit root hypothesis. For all
the other sectors the hypothesis is either not rejected, or if rejected, the rejection has
been confined to one out of the four ADF statistics that were computed for each sector.
With the exception of the ‘government’ sector, Perron’s alternative trend specification
does not significantly alter the conclusion reached earlier, namely that the hypothesis of
a unit root in sectoral outputs cannot be rejected.

Table 10.2: ADF statistics for tests of a unit root in sectoral outputs
under Perron’s ‘changing growth’ model;a 1952–1987.

Dickey-Fuller statisticsb

Sectors ADF(1) ADF(2) ADF(3) ADF(4)

1. Agriculture −4.21b −3.05 −2.73 −2.59
2. Mining −2.55 −2.39 −3.10 −4.74b

3. Construction −2.10 −1.61 −1.79 −1.75
4. Dur. manuf. −3.15 −3.24 −3.01 −3.21
5. Nondur. manuf. −4.39b −3.24 −2.77 −2.61
6. Transport −2.22 −1.99 −1.94 −2.19
7. Utilities −1.82 −1.75 −1.97 −1.94
8. Trade −3.45 −3.21 −3.01 −2.38
9. Services −3.40 −3.52 −3.06 −2.81
10. Government −6.62b −5.26b −4.65b −4.80b

aThe Augmented Dickey-Fuller (ADF) statistics are based on the OLS residu-
als computed over the period 1947–87 from the regressions of sectoral outputs
(in logs) on an intercept, a simple linear trend, t, and the broken trend line
defined as DT ∗t = t− Tβ if t > Tβ and 0 otherwise, where Tβ = 27 is the time
break in 1973 and t = 1 in 1947. See model B in Perron (1989a).

bStatistical significance at the 5% level. For relevant critical values, see table
V.B in Perron (1989a), with λ = Tβ/T = 0.65.

19 These critical values are obtained using the simulated response surfaces gven in (MacKinnon, 1990,
table I).

20 Durlauf (1989) employs the Phillips-Perron type correction instead of the augmentation of the simple
DF regression by lagged values of ∆yit. [See Phillips (1987a) and Phillips and Perron (1988).] But recent
Monte Carlo evidence by Schwert (1989) suggests that the ADF procedure tends to have better small
sample properties than the Phillips-Perron method.
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Finally, before we can utilize the multisectoral model (10.3.1), it is important to show
that output growths, ∆yit, are in fact stationary. Table 10.3 gives the ADF statistics for
the test of a unit root in sectoral growth rates. For most sectors (six out of ten) there
is a clear-cut rejection of the unit root hypothesis, and even for the sectors where the
evidence is mixed the hypothesis is still rejected on the basis of the simple DF and the
ADF(1) statistics. We therefore proceed with the presumption that sectoral growth rates
are stationary and that the multisectoral model is a suitable framework for the analysis
of persistence in the U.S. post-war economy.

Table 10.3: Augmented Dickey-Fuller statistics for tests of a unit root in U.S. sectoral
output growths,a

1952–1987.

Dickey-Fuller statisticsb

Sectors DF ADF(1) ADF(2) ADF(3)

1. Agriculture −6.73b −6.34b −4.56b −3.25b

2. Mining −5.15b −3.81b −2.11 −1.42
3. Construction −3.78b −4.43b −3.05b −2.70
4. Dur. manuf. −6.21b −4.95b −4.52b −3.67b

5. Nondur. manuf. −6.23b −6.26b −4.91b −3.76b

6. Transport −5.60b −4.69b −3.79b −2.52
7. Utilities −5.39b −3.25b −2.28 −2.16
8. Trade −5.18b −4.68b −4.22b −4.22b

9. Services −4.68b −3.91b −3.70b −3.00b

10. Government −10.46b −11.10b −10.43b −8.65b

aThe ADF regressions contain an intercept term but not a time trend.

bStatistical significance at the 5% level.

10.5 Estimates of the persistence measures

To obtain estimates of the persistence measures we need consistent estimates of A(L)
and Σ, the parameters of the multisectoral model (10.3.1). For this purpose we initially
considered two different versions of a second-order vector autoregressive, VAR(2), version
of (10.3.1): a fully unrestricted version.21

M1 : (Im −C1L−C2L
2)∆yt = C(L)∆yt = a + εt (10.5.1)

where C1 = {c1,ij} and C2 = {c2,ij} are m × m matrices and a is a vector of fixed
constants: and a version that restricts the coefficients of ∆yj,t−1 (and ∆yj,t−2 in the ith
output growth equation to be the same for all j(j 6= i). That is,

M2 : ∆yit = ai+c1,ii∆yi,t−1+c2,ii∆yi,t−2+b1i∆y−i,t−1+b2i∆−i,t−2+εit, i = 1, 2, . . . ,m,

21 Notice that given the available sample size, the highest order VAR that we can fit to the data is a
second-order one.
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where

∆y−i,t =
m∑

j=1,j 6=i

∆yjt.

Model M2 imposes 2m(m− 2) parametric restrictions on M1, and has the interpretation
that output growth in sector i is related to a simple aggregation of output growths in the
rest of the economy. In terms of the parameters of M1 these restrictions are

c1,ij = b1i, c2,ij = b2i, i, j = 1, 2, . . . ,m, j 6= i. (10.5.2)

With m = 10, M2 imposes 160 restrictions on M1. Despite these restrictions, this model
still allows for feedbacks from the rest of the economy to the ith sector. In addition
to M1 and M2 we also estimated a third model, M3, which imposed further parame-
ter restrictions on M2 by dropping regressors in M2 whose coefficients had a t-ratio (in
absolute value) less than unity. All the three models were estimated by the Full Informa-
tion Maximum Likelihood (FIML) method over the period 1955–87.22 Table 10.4 gives

Table 10.4: Maximised log-likelihood valuesa

Models LLF N

M1 897.99 210
M2 825.62 50
M3 819.87 31

aLLF is the maximised log-likelihood values and N is the number of estimated
regression coefficients.

the maximised log-likelihood values (LLF) and the number of regression coefficients es-
timated under each of the three models. The log-likelihood ratio statistic for the test of
M2 against M1 is equal to 144.74 and for the test of M3 against M2 it is equal to 11.50.
Both these statistics are well below the 95 percent critical values of the chi-squared dis-
tribution with 160 and 19 degrees of freedom, respectively.23 The nonrejection of M2

against M1 is particularly noteworthy, and has important consequences for the precision
with which persistence measures are estimated. The use of an overparameterised model
such as M1 will, in general, lead to poorly determined persistence measures, and this can
be seen clearly in the estimates of the aggregate persistence measures obtained for the
U.S. economy on the basis of models M1 to M3 (see the last row of table 10.5).24 The
highly overparameterised model M1 yields a large but extremely unreliable estimate of
the aggregate persistence measure, P̂y. Under M1, the (asymptotic) standard error of P̂y

22 Clearly, in the case of the unrestricted VAR(2) model, M1, the FIML and the OLS estimates
coincide. In the case of the restricted VAR models, M2 and M3, the FIML estimates are computed
by iterating on the Seemingly Unrelated Regression Equations (SURE) estimates, described in Zellner
(1962).

23 Notice that for degrees of freedom v > 100, we have√
2χ2

v −
√

(2v − 1)
a∼ N(0, 1).

24 The aggregate persistence measure, Py, relates to Yt =
∑m
i=1 yit, and is computed according to

(10.3.8) with w′ = (1, 1, . . . , 1), A(1) = Im −C1 −C2, and m = 10.
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Table 10.5: Sectoral and aggregate persistence measures.a

Modelsb

Sectors M1 M2 M3

1. Agriculture 2.75 0.84 0.89
(3.73) (0.01) (0.004)

2. Mining 2.61 1.77 1.38
(3.53) (0.51) (0.11)

3. Construction 4.01 3.45 3.64
(5.02) (1.46) (1.54)

4. Dur. manuf. 1.42 0.91 1.00
(0.72) (0.04) (0.02)

5. Nondur. manuf. 1.82 0.58 0.64
(2.31) (0.01) (0.003)

6. Transport 1.63 1.08 1.17
(0.93) (0.04) (0.01)

7. Utilities 5.22 1.77 1.76
(7.06) (0.28) (0.24)

8. Trade 1.43 0.66 0.73
(1.37) (0.01) (0.01)

9. Services 4.44 2.77 3.75
(6.00) (2.73) (6.93)

10. Government 4.69 2.45 2.65
(5.07) (0.20) (0.18)

Aggregate output 2.09 0.76 0.83
(2.67) (0.1473) (0.0849)

aThe sectoral persistence measures, Pi =
√
Pii, are estimated using (10.3.4).

The aggregate persistence measure Py, is estimated using (10.3.8) with
w′ = (1, 1, . . . , 1). The figures in parentheses are asymptotic standard er-
rors, computed according to the formulae given in appendix ??.

bM1 is an unrestricted VAR(2) specification of the multisectoral model, and
M2 and M3 are restricted versions of M1. See the text for further details.

is estimated to be equal to 2.67, which is well in excess of the value estimated for Py
itself!25 The situation, however, is very different when we consider the estimates of Py
based on the more parsimonious models M2 and M3. The best estimate of Py (in the
sense of having the least variance) is obtained under model M3.26 It is equal to 0.83 with
an (asymptotic) standard error of 0.0849. This estimate is well below unity and is more
in line with the estimates obtained by Watson (1986) and Clark (1987a) than the ones
obtained by Campbell and Mankiw (1987a).27

25 A derivation of the asymptotic variance of P̂y, together with the variance of other persistence
measures, can be found in appendix ??.

26 Also, recall that M3 could not be rejected against either M2 or M3 (see table 10.4).
27 Notice that our measure of aggregate output is based on the sum of the logarithms of sectoral

outputs, while the measure of aggregate output used in the literature is the logarithm of the sum of
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For a more direct comparison of the above estimate of the aggregate persistence
measure with an estimate based on a univariate model, we fitted a number of ARMA
specifications directly to the aggregate output growth defined by ∆Yt =

∑m
i=1 ∆yit.

28

The results for ARMA processes of orders (i, j), i, j = 1, 2, 3, 4, are summarised in tables
10.6a and 10.6b. The maximised values of the log-likelihood function given in table
10.6a are all close to one another and the only model which come close to rejecting the
ARMA (1,1) specification at the 5% level is ARMA(1,3). Overall, there is very little to
choose between the different ARMA processes. In view of this, in table 10.6b we give the
estimates of the aggregate persistence measures for all the ARMA specifications. These
estimates are all above unity and fall in the range 1.00–1.85, which are clearly compatible
with Campbell and Mankiw’s estimates, but not with our estimate of Py based on the
multisectoral model, M3. Turning now to the persistence of output fluctuations at the
sectoral levels, using (10.3.10) we also estimated sector-specific persistence measures, Pi,
under models M1 to M3. The results are summarised in table 10.5. In view of the highly
overparameterised nature of M1, we shall confine our attention to the estimates obtained
under the restricted models M2 and M3. These two sets of estimates give a similar
pattern of persistence across the sectors, with high values estim- ated for ‘construction’,
‘services’, and ‘government’ sectors, and low values estimated for ‘agriculture’, ‘trade’,
and ‘nondurable manufacturing’ sectors.

Table 10.6a: Maximised log-likelihood values for different ARMA models fitted to ∆Yt:
1955–1987

Order of AR

Order of MA 1 2 3 4

1 80.69 80.71 82.43 83.10
2 80.69 82.63 82.79 83.11
3 83.59 83.84 83.86 83.89
4 83.85 83.87 83.88 83.90

The relationship between the estimates of sectoral persistence measures, P̂y, given in
table 10.5 is complex and, as shown in section 3.1, depends on the pattern of cointegration
among the sectoral outputs. We first tested for the presence of cointegration among the
sectoral output series using Johansen (1988, 1989) maximum likelihood procedure29 and
found evidence of between five and eight cointegrating vectors, depending on whether we
use the trace or the maximum eigenvalue test criterion. These results indicate that there
are substantially fewer than ten independent sources of random variation that affect sec-
toral outputs, although they should be treated with caution, given the paucity of degrees

sectoral outputs. However, the two measures are very closely related. The correlation between the
output growth rates calculated using the two measures is equal to 0.97.

28 To estimate the ARMA models we used the exact ML algorithm proposed in Pesaran (1988a), which
allows for the possibility of obtaining ML estimates on the unit circle. This is an important consideration,
especially when the aim is the estimation of persistence measure. On this see also Campbell and Mankiw
(1987a).

29 We computed both of Johansen’s proposed test statlstlcs, namely the ‘trace’ and the ‘maximal
eigenvalue’ statistlcs, over the period 1955–87 on the basis of a VAR(2) model allowing for an intercept
term, a linear time trend, and a time trend in the underlyng data generatIon process. The computations
were carried out on Microfit 3.30 [Pesaran and Pesaran (1991a)].
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Table 10.6b: Aggregate persistence measures estimated on the basis of ARMA models
fitted to ∆Yt: 1955–1987

Order of AR

Order of MA 1 2 3 4

1 1.22 1.17 0.93 1.15
(0.0093) (0.228) (0.185) (0.352)

2 1.20 1.53 1.03 1.16
(0.393) (0.197) (0.238) (0.376)

3 1.00 1.07 1.06 1.07
(0.307) (0.316) (0.329) (0.382)

4 1.10 1.09 1.08 1.09
(0.357) (0.351) (0.361) (0.405)

of freedom. We then tested the hypothesis of pairwise cointegration of sectoral outputs.
Surprisingly, we found very little statistically significant evidence of pairwise cointegra-
tion. The hypothesis of pairwise cointegration was easily rejected for the ‘agriculture’,
‘mining’, and ‘utilities’ sectors. None of these sectors showed significant evidence (at the
5% level) of cointegration with the other sectors in the economy. We only found signifi-
cant evidence of pairwise cointeg- ration in the case of sectors (3,4), (3,5), (3,8), (5,10),
and (8,9).30 We therefore do not expect to find a simple relationship between the sectoral
and the aggregate persistence measures in the case of the U.S. economy.

10.5.1 Persistent effects of ‘monetary’ and ‘other’ shocks

In this section we provide evidence on the relative importance of ‘monetary’ and ‘other’
shocks for the long-run evolution of the U.S. output. In view of the highly overparame-
terised nature of M1, and since M2 could not be rejected against M1, we base our analysis
on model M2 and augment it with the current and the one-period-lagged values of the
unanticipated growth of money supply, vt. This augmented model, which we denote by
M̃2, may be written as

M̃2 : C(L)∆yt = a + (γ0 + γ1L)vt + εt (10.5.3)

where γ′j = (γj1, γj2, . . . , γjm), j = 0, 1. Recall that under M2 there are 2m(m − 2)
restrictions on the coefficients of C(L) and these are given by (10.5.2). For the money
supply growth equation we adopt the following specification:

∆mt = β0 + β1∆mt−1 + β2∆mt−2 + β3∆Gt−1 + β4UNt−1 + vt (10.5.4)

where ∆Gt is the rate of change of real federal government expenditure, UNt = log[RUt/(1−
RUt)], and RUt is the unemployment rate.31 This specification is a simplified version of
the money supply growth equation used in Pesaran (1991b) and avoids the complications

30 Notice that in this application Johansen’s test procedure does not satisfy the transitivity property of
pairwise cointegration. Given the evidence of cointegratton between sectors 4 and 3 and between sectors
3 and 5, we would expect, a priori, to find evidence of cointegration between sectors 4 and 5, but we do
not.

31 See appendix ?? for data sources.
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associated with the use of the Barro (1977) type money growth equation which includes
the contemporaneous effect of real federal government expenditure.32 The above output-
money equations can also be viewed as a multisectoral, stochastic trend version of the
‘New Classical’ model where money shocks can affect output levels in the short run. but
not in the long run. Under this interpretation M̃2 will also be subject to the following
further restrictions:

HNC : γ0 + γ1 = 0.

These restrictions impose zero persistence for money shocks in all sectors.
The consistent and efficient estimation of the parameters of the multivariate model,

(10.5.3) and (10.5.4), is discussed in detail in Pesaran (1991b).33 In order to obtain
efficient estimators and avoid some of the difficulties associated with the use of two-
step estimators we estimated the parameters of the output and money equations jointly
by the FIML method over the period 1955–87.34 Here we focus on the estimates of the
money supply shock coefficients and report these estimates together with their asymptotic
standard errors in table 10.7.35 In this table we also give Wald statistics for testing the
joint hypothesis of zero restrictions on the money supply shocks, γ0i = γ1i = 0, and for
testing the new classical hypothesis HNC , i.e., γ0i + γ1i = 0, for i = 1, 2, . . . ,m.

The results clearly show that the effect of money supply shocks on output is not
uniform across the sectors. Money shocks have no statistically significant long-term, or
even short-term, effects on outputs in the ‘agricultural’, ‘durable manufacturing’, and the
‘government’ sectors. In the case of ‘mining’ and ‘utilities’, money shocks have significant
short-term effects, but these effects tend to die out in the long run. For the five remaining
sectors, however, money shocks have statistically significant effects on output levels both
in the short run and in the long run. Overall, the evidence on the new classical hypothesis
is mixed. It is upheld for half of the sectors studied and rejected for the rest. There is
clearly a need for further empirical analysis of the possible short-run and long-run impact
of monetary shocks on sectoral outputs.

In view of the above results we base our estimates of the persistence measures and
their decomposition on a restricted version of M̃2, obtained in the following manner:

(i) In the case of sectors 1, 4, and 10, we imposed the zero restrictions γ0i = γ1i = 0.

(ii) In the case of sectors 2 and 7, we imposed the new classical restriction, γ0i+γ1i = 0.
As table 10.7 shows, none of these restrictions can be rejected at the 5% level. We
also dropped regressors whose coefficients were less than unity (in absolute value).

We refer to this further restricted model as M̃3.36

32 On this, see Pesaran (1982) for further details.
33 The problem of estimatlng univariate ‘surprise’ models is discussed in Pagan (1984, 1986) and

reviewed in (Pesaran, 1987, ch 7).
34 The use of two-step estimators, whereby rt is estimated first bv the application of the OLS method to

(10.5.4) and then used as regressors in (10.3.12), besides being subject to the familiar ‘generated regressor’
problem, is further complicated in the present multivariate application due to the contemporaneous
correlation across the output dlsturbances, εit.

35 The computation of the FIML estimators were carried out on GAUSS by iterating on a multivariate
generalisation of the double-length regression proposed in Pagan (1986). Also see (Pesaran, 1987, pp.
I77–179). The details of the algorithm and the associated computer codes can be obtained from the
authors on request.

36 ModelM̃3 imposes 32 restrictions on M̃2. To ensure that we have not inadvertently imposed an
invalid restriction on M̃2 we also tested the overall validity of the 32 restrictions by the likelihood ratio
procedure. The value of the log-likelihood ratio statistic turned out to be equal to 17.23, which is well
below the 95% critlcal value of the chi-squared distribution with 32 degrees of freedom.
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Table 10.7: FIML estimates of the coefficients of the money supply shocks.

Coefficient estimatesa Test statisticsb

Sectors γ̂0i γ̂1i γ0i = γ1i = 0 γ0i + γ1i = 0

1. Agriculture −1.10 −0.50 4.35 3.97
(−1.77) (−0.81)

2. Mining −0.16 1.22 6.56c 2.62
(−0.30) (2.56)

3. Construction 1.59 −0.06 14.05c 7.49c

(3.74) (−0.14)
4. Dur. manuf. 1.04 −0.00 1.34 0.81

(1.14) (−0.00) 1.34 0.81
5. Nondur. manuf. 1.19 0.26 12.11c 9.23c

(3.30) (0.74)
6. Transport 1.22 0.52 14.63c 13.06c

7. Utilities −0.32 0.89 7.01c 1.58
(−0.87) (2.61)

8. Trade 0.97 0.09 9.39c 6.24c

(2.99) (0.27)
9. Services 0.38 0.12 9.23c 7.65c

(2.76) (0.83)
10. Government 0.16 −0.01 1.39 0.77

(1.17) (−0.10)

aThe estimates γ̂01 and γ̂11 respectively refer to the FIML estimates of the
coefficients of the current and the one-period-lagged unanticipated money
growth variable, vt, in sector i. (The figures in parenthesees are asymptotic
t-ratios.)

bThe test statistics are the Wald statistics for tests of the hypotheses γ0i =
γ1i = 0 and γ0i + γ1i = 0, respectively.

cStatistical significance at the 5% level.

Using the parameter estimates obtained under the restricted model we com- puted the
estimates reported in table 10.8 for the persistence measures decomposed into ‘money’
and ‘other’ shocks.37 At the aggregate level, the persistence of ‘money’ shocks, Pm, is
estimated to be 1.85 with an (asymptotic) standard error of 0.55. The persistence effects
of ‘money’ shocks on aggregate output are, therefore, statistically significant, but the
estimate of Pm is subject to a wide margin of uncertainty. However, it is important to
note that despite the statistical significance of the long-term impact of money shocks on
output, the contribution of Pm to the total persistence measure is rather small. This is
true of all the sectors and can be seen clearly from a comparison of the last two columns

37 The relevant formulae for the decomposition of persistence measures are given at the end of section
3.3. Also see appendix ?? for the derivation of their asymptotic variances of the persistence measures
estimated by the FIML method.
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Table 10.8: Decomposition of sectoral and aggregate persistence measures by the type
of shocks.a

FIML estimates 1955–1987.

Sectors ‘Money’ shocks ‘Other’ shocks Total

1. Agriculture 0.00 0.76 0.76
(0.05) (0.05)

2. Mining 0.00 1.31 1.25
(0.25) (0.23)

3. Construction 0.50 4.93 4.37
(0.56) (1.88) (1.64)

4. Dur. manuf. 0.00 0.69 0.69
(0.04) (0.04)

5. Nondur. manuf. 0.55 0.58 0.58
(0.22) (0.04) (0.04)

6. Transport 1.57 0.87 0.98
(0.29) (0.04) (0.05)

7. Utilities 0.00 4.71 4.41
(2.79) (2.61)

8. Trade 0.67 0.58 0.60
(0.15) (0.05) (0.05)

9. Services 3.36 2.23 2.38
(1.57) (0.99) (1.03)

10. Government 0.00 2.00 2.00
(0.24) (0.24)

Aggregate output 1.83 0.62 0.67
(0.55) (0.0763) (0.0720)

aThe decomposition of aggregate and sectoral persistence measures are car-
ried out using the formulae (10.3.16)–(10.3.19) and their counterparts at the
sectoral levels. The figures are computed using the FIML estimates of model
M̃3 defined in the text. The figures in parentheses and asymptotic standard
errors, computed according to the formulae given in appendix ??.

of table 10.8. In the case of aggregate output the difference between the persistence
measure due to ‘other’ shocks and the total persistence measure is only 0.05. The reason
for this is primarily due to the fact that the size of money shocks (as measured by σ2

v)
compared to the size of the other shocks (as measured by w′Σw) has been very small
over the sample period [see relations (10.3.16) and (10.3.19)].

A comparison of the results in tables 10.8 and 10.5 also shows that by including
money shocks explicitly in the output growth equations it has in fact been possible to
obtain a more precisely determined estimate of the aggregate persis- tence measure, as
compared to the ‘best’ estimate obtained on the basis of model M3, i.e., the model
excluding the money shocks. The estimate of the aggregate persistence measure based on
model M̂3 is 0.67 (0.072) as compared to the estimate of 0.83 (0.085) based on model M3.
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Figures in brackets are asymptotic standard errors.38 In conclusion, while it is true that
estimating long-run effects from finite data sets is, in general, a hazardous undertaking,
the results reported in this paper show that by utilizing information on sectoral outputs or
other relevant information on variables other than the past history of the variable under
investigation, it is possible to reduce the margin of errors involved in the estimation of
the aggregate persistence measure. In this paper we have only analyzed the effect of
incorporating money shocks in the multisectoral model. Other possibilities would be to
try oil price shocks and shocks to the capital and foreign exchange markets.

0.A Proof of Proposition 1

We present a proof by induction. Suppose that the proposition holds for m = s. That is,

Py(s) =
s∑
i=1

λi(s)Pi, (0.A.1)

where Py(s) represents the aggregate persistence measure for the s-sector aggregate,
Yt(s) =

∑s
i=1wiyit, λi(s) = {w2

i σii/w
′
sΣs}1/2, i = 1, 2, . . . , s, w′s = (w1, w2, . . . , ws),

and Σs is the variance matrix of (ε1t, ε2t, . . . , εst)
′. Consider now adding a further sector

to the aggregate, Yt(s). Namely,

Yt(s+ 1) = Yt(s) + ws+1yt,s+1. (0.A.2)

Since the cointegration property is transitive it follows from the pairwise cointegration
condition that Yt(s) and yt,s+1 are also cointegrated. Moreover, since by assumption yt,s+1

and y1t, y2t, . . . , yst are all pairwise positively correlated, it follows that Yt(s) and yt,s+1

will also be positively correlated. Hence, the result (10.3.10) in the text obtained for the
case m = 2 is also applicable to the right-hand side components of (0.A.2) and we have

Py(s+ 1) = µ1Py(s) + µ2Ps+1, (0.A.3)

where the weights in this case are given by

µ1 = {w′Σsws/w
′
s+1Σs+1ws+1}1/2,

µ2 = {w′Σsws/w
′
s+1Σs+1ws+1}1/2,

Substituting from (0.A.2) in (0.A.3) and after some algebraic simplifications, we have

Py(s+ 1) =
s+1∑
i=1

λi(s+ 1)Pi,

which establishes that if the proposition holds for m = s it will also hold for m = s+ 1.
But we have already established that the proposition holds for m = 2 so it should hold
for any m. Q.E.D.

38 Given the asymptotic nature of our results, it may be worthwhile to consider the small properties of
the persistence measures using Monte Carlo techniques. This is beyond the scope of the present paper
however.
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0.B Derivation of the variance of the persistence mea-

sures

This appendix gives a derivation of the variance of persistence measures estimated on
the basis of the multisectoral model (10.5.3) that contains the money supply shocks vt.
Clearly the results are also applicable to the estimates of the persistence measures based
on the VAR model (10.5.1) which does not include the money shocks. Here the derivations
are given in terms of the aggregate persistence measures, but relevant variance expressions
for the sectoral persistence measures can be obtained by replacing w in the expressions
below by wiei, where ei is the m× 1 selection vector defined in the text.

Consider the following general version of (10.5.3) and (10.5.4):

C(L)∆yt = a + γ(L)vt + εt, (0.B.1)

xt = β′zt + vt, (0.B.2)

for t = 1, 2, . . . , T , where xt = ∆mt, β is a k × 1 vector of unknown parameters

C(L) = Im + C1L+ · · ·+ CpL
p,

γ(L) = γ0 + γ1L+ · · ·+ γqL
q (0.B.3)

and Im is an identity matrix of order m. Stacking all the observations using the notations

∆Y′ = [∆y1, . . . ,∆yT ], v′ = (v1, . . . , vt),

E′ = [ε1, . . . , εT ], x′ = (x1, . . . xT ).

Z′ = [z1, . . . , zT ], τ ′ = (1, . . . , 1), τ ′ is 1× T,

the model (0.B.1) and (0.B.2) can be written as

C(L)∆Y′ = aτ ′ + γ(L)v′ + E′, (0.B.4)

x = Zβ + v. (0.B.5)

Using (0.B.3) and casting the above system in vector forms, (0.B.4) now becomes

vec(∆Y) = (Im ⊗W)a + vec(E), (0.B.6)

where W = [τ ,∆Y0,V0], ∆Y0 = [∆Y−1, . . . ,∆Y−p], V0 = [v,v−1, . . . ,v−q],

and a = vec ([a,−C1, . . . ,−Cp, γ0, . . . , γq]
′) .

The parameters of the model (0.B.5) and (0.B.6) which we denote by θ are the unre-
stricted elements of

{β, a} = {β,µ, c∗,γ∗}. (0.B.7)

If no restrictions are imposed on {β, a} (as in the unrestricted VAR model), then the
dimension of θ is k +m+ pm2 + (q + 1)m. In general, a will be a function of θ.

The various persistence measures discussed in the paper are all scalar functions of
θ. We represent this functional relation by P (θ), and assume that P (θ) is evaluated at
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the Maximum Likelihood (ML) estimators of θ which we denote by θ̂. The asymptotic

variance of P (θ̂) is given by

Avar[P (θ̂)] = (∂P/∂θ′) Avar(θ̂)(∂P/∂θ). (0.B.8)

To derive Avar(θ̂) we first note that the joint log-likelihood function of (0.B.5) and (0.B.6)
is proportional to

L(θ) =
T

2
log σ2

v −
T

2
log |Σ| − 1

2σ2
v

v′v − 1

2
vec(E)′

(
Σ−1 ⊗ IT

)
vec(E), (0.B.9)

where IT is an identity matrix of order T . Other notations are defined in the text. Using
(0.B.9) and after some algebra, we have39

Avar[θ̂]−1 =

[ (
∂β
∂θ′

)(
∂a
∂θ′

) ]′ [ Z′0 (γ∗Σγ∗ ′ ⊗ I) Z0 + 1
σ2
v
Z′Z −

(
Σ−1γ∗ ′ ⊗W′)Z0

−Z′0
(
γ∗Σ−1 ⊗W

) (
Σ−1 ⊗W′W

) ] [ (
∂β
∂θ′

)(
∂a
∂θ′

) ] ,
(0.B.10)

where Z′0 = [Z′,Z−1
′, . . . ,Z−q

′]′.
It only remains to derive the first derivatives ∂P/∂θ′, for the various persistence

measures of interest. First consider the persistence measure P0 defined by (10.3.18) in
the text. It is relatively easy to show that

∂P0

∂θ′
=

1

P0

[
w′A(1)Σ

w′Σw

]
(w′A(1)⊗A(1)′Sp)

(
∂c∗

∂θ′

)
− 1

TP0

(w′A(1)⊗w′A(1)E′W)

w′Σw

(
∂a

∂θ′

)
+
P0

T

(w′ ×w′E′W)

w′Σw

(
∂a

∂θ′

)
, (0.B.11)

where Sp = [Im, Im, . . . , I(m] is an m ×mp matrix. Next for Pm defined by (10.3.17) in
the text, we have40

∂Pm
∂θ′

= γ(1)′
(w′A(1)⊗A(1)′Sp)

w′d(0)

(
∂c∗

∂θ′

)
+

(w′A(1)⊗ Sq)

w′d(0)

(
∂γ∗

∂θ′

)
− Pm

w′d(0)
w′
(
∂γ0

∂θ′

)
, (0.B.12)

where Sq = (1, 1, . . . , 1) is an 1× (q + 1) vector.
Finally, for the measure Py, defined by (10.3.16) in the text, we have

∂Py
∂θ′

= λ
Pm
Py

∂Pm
∂θ′

+
P 2
m

2Py

∂λ

∂θ′
+

(1− λ)P0

Py

∂P0

∂θ′
− P 2

0

2Py

∂λ

∂θ′
. (0.B.13)

λ is defined by (10.3.19) and has the following derivatives with respect to θ:

∂λ

∂θ′
=

2(λ− λ2)

w′d(0)
w′
(
∂γ0

∂θ′

)
+

(
2λ(w′ ⊗w′E′W)

T [σ2
v(w

′d(0))2 + w′Σw]

)(
∂a

∂θ′

)
2(λ− λ2)

σ2
v

(
v′Z

T

)(
∂β

∂θ′

)
. (0.B.14)

39 Also see Pesaran (1991b), where similar derivations can be found for a related class of multivariate
rational expectations models.

40 Notice that in (10.3.17) d(1) = A(1)γ(1) = C−1γ(1) and d(0) = d0 = γ0.



196

Consistent estimates of (0.B.9) may now be computed for any of the persistence measures
of interest using (0.B.11) and the relevant expressions for the derivatives of ∂P/∂θ′ given
above, all evaluated at the ML estimators.

0.C Data

Industrial output data series for the period 1947–87 were taken from the U.S. Depart-
ment of Commerce publications The National Income and Product Accounts of the United
States, 1929–1982, and the July 1986 and July 1988 issues of the Survey of Current Busi-
ness. Figures were taken from table 6.2, which provides annual data on Gross National
Product by Industry in constant prices (billions of 1982 dollars). The ten-sector clas-
sification used in the empirical work was obtained from the more disaggregated figures
provided in these publications as described in table 0.9 below.

For the sample period up to 1985, the data used in the estimation of the money supply
growth equation are the same as those employed by Rush and Waldo (1988) and Pesaran
(1988c). Data for RUt (the annual average unemployment rate in the total labor force,
including military personnel) and for FED, (real Federal Government expenditure) were
extended to 1987 using the Economic Report of the President (1989 edition), while Mt

(annual average M1) was extended using the Federal Reserve Bulletin (various issues).

Table 0.9

Survey of Current Business industry titles Abbreviated industry titles Line(s)

1. Agriculture, Forestry and Fisheries Agriculture 4
2. Mining Mining 8 + 9 + 10 + 11
3. Construction Construction 12
4. Durable Manufacturing Dur. manuf. 15− 25
5. Nondurable Manufacturing Nondur. manuf. 27− 36
6. Transportation and Communications Transport 38 + 46
7. Electric, Gas and Sanitary Services Utilities 49
8. Wholesale and Retail Trade Trade 50 + 51
9. Finance, Insurance, Real Estate and Services Services 52 + 60
10. Government and Government Enterprises Government 74



Chapter 11

Choice Between Disaggregate and
Aggregate Specifications Estimated
by Instrumental Variables Methods

A choice criterion is proposed for discriminating between disaggregate and aggregate
models estimated by the instrumental variables method. The criterion, based on pre-
diction errors, represents a generalisation of criteria developed in the context of classical
regression models. The article also derives general tests for aggregation bias in the in-
strumental variables context. The criterion and the tests are applied in an analysis of UK
employment demand. It is shown that a model disaggregated by 40 industries predicts
aggregate employment better than an aggregate model and that significant biases exist
in estimates of the long-run wage and output elasticities obtained from the aggregate
model.

Key Words: Aggregation; Instrumental variables; Labour demand; Model
selection.
JEL Classification: C12, C43, C52, J23.

The problem of aggregation over micro units has a long tradition in the econometrics
literature stretching back to Theil (1954). Two issues in particular have attracted atten-
tion. The first concerns the prediction problem of choice between alternative disaggregate
and aggregate specifications to predict aggregate variables. This issue was raised in the
literature by Grunfeld and Griliches (1960) and reconsidered in a more general context
by Pesaran et al. (1989b) (henceforth PPK). The second issue concerns the problem of
aggregation bias defined by the deviation of the macro parameters from the average of
the corresponding micro parameters. This was first discussed by Theil (1954) and an
indirect test proposed by Zellner (1962). Early empirical studies are reported by Boot

0 Published in Journal of Business & Economic Statistics (1994), Vol. 12, pp. 11–21. Co-authors M.
H. Pesaran and K. C. Lee. The authors would like to thank two anonymous referees and the editor of
this Journal for helpful and constructive comments. Financial support from the ESRC under grant nos.
B01250038 and R000233608 and from The Newton Trust of Trinity College is gratefully acknowledged.
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and de Wit (1960), Orcutt et al. (1968), and Gupta (1971), for example, whereas more
recent work includes that by Heckman and Sedlacek (1988), Keane et al. (1988), and
contributions in Barker and Pesaran (1990). In the work of Lee et al. (1990a,b) some
general direct tests were derived for the case where the subset of parameters of interest
may be a (possibly nonlinear) function of the full vector of parameters.

This article reconsiders both of these issues in the context of models in which the as-
sumption that model regressors and disturbances are uncorrelated cannot be maintained
and, to obtain consistent parameter estimates, instrumental variables (IV) methods are
used. This situation arises frequently in applied work either due to simultaneity or
because expectations are replaced by their realisations under the rational expectations
hypothesis in econometric equations. It also arises in models in which nonlinear relations
(such as Euler equations) are derived as first-order conditions to optimisation problems
at a microlevel (see for example Hansen (1982) and Hansen and Singleton (1982)). When
regressors and disturbances are correlated, the usual criterion for choosing between mod-
els, the sum of squared residuals, is no longer an appropriate statistic in the sense that its
use does not guarentee that the ‘true’ model will be chosen, even asymptotically. Since
the criteria proposed by Grunfeld and Griliches (1960) and by PPK for choosing between
alternative disaggregated and aggregated models are based on the sum of squared resid-
uals, these criteria are also inappropriate in these circumstances. Statistics based on the
prediction errors of alternative models that provide a valid model-selection criterion can
be derived, however. Moreover, since the equation residuals coincide with the prediction
errors in the least squares case, the criterion based on the prediction errors advanced in
this article represents a generalisation of the criteria that have been considered previously
in the literature.

In Section 11.1 of this article, new choice criteria are proposed for discriminating
between disaggregate and aggregate specifications estimated by IV methods, and their
validity in this context is established. In Section 11.2, the issue of aggregation bias is
considered in the IV context. Here tests are derived that allow a statistical comparison
to be made between different parameters of interest based on aggregate and disaggregate
models in which the models are estimated using IV methods. Finally, in Section 11.3
the statistical tools that have been developed are applied in an analysis of employment
demand for the UK economy. Labour-demand equations for 40 industrial sectors are
estimated using the IV method and compared with their aggregate counterpart. It is
established that the disaggregate model outperforms the aggregate model in terms of its
ability to predict aggregate employment demand. Furthermore, key long-run elasticities
of labour demand estimated by the aggregate and disaggregate models are shown to
be significantly different, with elasticities based on the aggregate model overstating the
extent of the responsiveness of labour demand to changes in wages and output when
compared to estimated elasticities based on the disaggregate model.

11.1 A Choice Criterion under IV Estimation

Suppose we have a disaggregated multisectoral model, denoted Hd, consisting of m sec-
toral equations, where the dependent variable in the ith equation is yi, an n×1 vector of
observations for the ith unit (i = 1, · · · ,m). We also have an aggregate model, denoted
Ha, given by a single equation, the dependent variable of which is ya =

∑
i yi. Clearly,

a disaggregate model can be used to address many questions that the aggregate model



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 199

cannot. In this section, however, we assume that the primary focus of the analysis is
the prediction of the aggregate variable ya and consider the derivation of an appropriate
selection criterion for choosing between the two models on this basis. This question was
first addressed in the literature by Grunfeld and Griliches (1960), and a more general
treatment was given by PPK. These works proposed selection criteria for choosing be-
tween disaggregate and aggregate models based on sums of squared residuals from the
two models. The use of these selection criteria is justified on the grounds that, on aver-
age, their use would lead to the choice of the disaggregated model under the assumption
that the micro equations are correctly specified. The use of the prediction criteria in the
context of choice between models also has implications for model misspecification. When
the disaggregate model fits worse than the aggregate model, this would indicate that
the disaggregated model is misspecified. This suggests using a Durbin-Hausman type of
misspecification test of the disaggregate model, and such a test is developed in the least
squares context by Lee et al. (1990b)). A misspecification test of this type, however,
serves a quite separate function to that served by the choice criterion. The way to think
of the choice criterion is in situations in which an investigator is faced with two models,
an aggregate and a disaggregate one, and must choose one of them for use in predicting
the aggregate variable. The issues of model misspecification and aggregation errors were
addressed in more detail by PPK, section 6.

The criteria proposed by Grunfeld and Griliches and by PPK are derived for models
in which it could be assumed that regressors and disturbances are uncorrelated. In
many instances, however, it is not reasonable to make this assumption, so ordinary least
squares (OLS) estimation is no longer appropriate, and the IV estimation method is
required to obtain consistent estimates. In these circumstances, the residual vectors
obtained from the estimated model depend on the sign and magnitudes of the correlations
between the dependent variable and the variables that are determined jointly with it. As
a consequence, measures of goodness of fit that are based on the IV residuals cannot
be guaranteed to choose a correct model even asymptotically, and the sum of squares of
residuals is no longer an appropriate basis for developing model-selection criteria. (See
Pesaran and Smith (1994) for further discussion of selection criteria appropriate for choice
between models estimated by the IV method.)

In this section we consider alternative statistics, s2
d and s2

a, relating to the disaggre-
gate and aggregate models estimated by the IV method. These statistics are based on
prediction errors, which are the appropriate measures for model comparison, and are not
subject to the difficulties described previously. Specifically, these statistics are shown to
have the property that

plim
n→∞

(s2
d|Hd) ≤ plim

n→∞
(s2
a|Hd),

where probability limits are taken under the hypothesis of the disaggregated model Hd,
so that they are valid statistics for use in a choice rule. To this end, consider the general
disaggregate model defined by

Hd : yi = Xiβi + ui i = 1, . . . ,m

Xi = ZiΠi + Vi (11.1.1)

where yi is the n× 1 vector of observations on the dependent variable for the ith sector,
Xi is the n × ki matrix of observations on the regressors in (11.1.1) for the ith sector,
assumed to have a full column rank, βi is the ki × 1 vector of the coefficients associated
with columns of Xi, and ui is the n × 1 vector of disturbances for the ith sector. Zi
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is a n × ri matrix of IV’s (where ri ≥ ki), Πi is an ri × ki matrix of parameters, and
Vi is an n × ki matrix of disturbances. The disturbances ui and Vi are assumed to
be serially uncorrelated within each sector but are contemporaneously correlated across
sectors. Formally, the following standard assumptions are made:

Assumption A1: For all i, j = 1, 2, ...,m, the probability limits of u′iuj/n, V′iVj/n,
and V′iuj/n exist and are given by σij, Σij, and δij, respectively.

Assumption A2 : For all i, j = 1, 2, ...,m, the instruments, Zi, are of full-column rank,
and are asymptotically uncorrelated with the disturbances uj and Vj.

Assumption A3 : For all i, j = 1, 2, ...,m, the matrices Z′iXi/n and Z′iZj/n have finite
probability limits, and the probability limits of X′iXi/n and Z′iZi/n exist and are non-
singular.

In general, the matrix Xi is correlated with ui and may include lagged values of the
dependent variable, yi, as well as current and lagged values of other endogenous vari-
ables. It is possible, however, that Xi includes some exogenous variables, in which case
we assume that these variables also appear in Zi, so Vi and consequently Σii will not be
of full rank.

The aggregate model is given by

Ha : ya = X∗β∗ + u∗ (11.1.2)

where ya =
∑m

i=1 yi and X∗ is a n× k∗ matrix of regressors, β∗ is a k∗ × 1 vector of the
coefficients associated with the columns of X∗ and u∗ is an n× 1 vector of disturbances.
It will also be assumed that:

Assumption A4 : There exists a set of “aggregate” instruments, Z∗, of full-column rank
that are asymptotically uncorrelated with the disturbances ui and Vi, and for which the
matrices Z′∗Xi/n and Z′∗Z∗/n have finite probability limits for i = 1, 2, ...,m.

No assumption is made in (11.1.2) about the relationship between X∗ and the Xi’s.
Model (11.1.2) is to be viewed here as a rival model to (11.1.1) for the purpose of predict-
ing ya and has not necessarily been derived from (11.1.1) through any formal aggregation
procedure. (See Section 11.2, however, on testing for aggregation bias.) Similarly, the
instruments of the aggregate model, Z∗, are not necessarily related to the disaggregated
instrument sets, Zi, except insofar as by Assumption A4 they would also be valid in-
struments under Hd. This condition would be satisfied, for example, when the Z∗’s are
restricted to include lagged variables only.

Now consider the statistics for the aggregate and disaggregate models, based on the
prediction errors, given by

s2
a = ê′aêa/n (11.1.3)

and
s2
d = ê′dêd/n, (11.1.4)

respectively, where

êd =
m∑
i=1

êi (11.1.5)
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and where êa = ya−X̂∗β̃∗, β̃∗ = (X′∗P∗X∗)
−1X′∗P∗ya, X̂∗ = P∗X∗, P∗ = Z∗(Z

′
∗Z∗)

−1Z′∗,

and êi = yi − X̂iX̂eβi, β̃i = (X′iPiXi)
−1X′iPiyi, X̂i = PiXi, Pi = Zi(Z

′
iZi)

−1Z′i. The

estimators β̃∗ and β̃i are the generalised IV estimators of the parameters of the aggregate
and disaggregate models, respectively. These are consistent IV estimators although for
the disaggregate model they are not fully efficient since they do not take into account the
contemporaneous covariances between sectors characterised by the nonzero off-diagonal
elements in σij in Assumption A1. Clearly, the prediction errors of the two models,

êa and êd, are different from the usual single-equation residuals, ea = ya − X∗β̃∗ and

ei = yi − Xiβ̃i because they account for the fact that the regressors X∗ and Xi are
stochastic variables, which, for prediction, must be replaced by their predicted values
X̂∗ and X̂i respectively. The two coincide only in a fixed regressor framework, where
Vi = 0 and where OLS is an appropriate estimator. From this perspective, (11.1.3)
and (11.1.4) can be viewed as an obvious generalisation of the sum of squared residuals
criterion proposed for OLS models by Grunfeld and Griliches (1960) and by PPK.

We now show that the statistics (11.1.3) and 11.1.4) have the desirable property that

plim
n→∞

(s2
d|Hd) ≤ plim

n→∞
(s2
a|Hd).

First note that

β̃i = (X̂′iX̂i)
−1X̂′iyi (11.1.6)

and

β̃∗ = (X̂′∗X̂∗)
−1X̂′∗ya. (11.1.7)

Then we can write êi = (I− Q̂i)yi, where Q̂i = X̂′i(X̂
′
iX̂i)

−1X̂′i. Hence, substituting from

(11.1.1), êi = (I − Q̂i)Xiβi + (I − Q̂i)ui, and, since X̂′iXi = X̂′iX̂i and Q̂iX̂i = X̂i, we
have

êi = (Xi − X̂i)βi + (I−Qi)ui. (11.1.8)

However,

Xi − X̂i = Xi − Zi(Z
′
iZi)

−1Z′iXi

= (I−Pi)Xi

= (I−Pi)(ZiΠi + Vi)

= (I−Pi)Vi.

Hence, (11.1.8) can be rewritten as

êi = (I−Pi)Viβi + (I− Q̂i)ui (11.1.9)

so that

êd =
∑
i

[(I−Pi)Viβi + (I− Q̂i)ui]
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and

ê′dêd =
∑
i,j

β′iV
′
i(I−Pi)(I−Pj)Vjβj

+
∑
i,j

u′i(I− Q̂i)(I− Q̂j)uj

+
∑
i,j

β′iV
′
i(I−Pi)(I− Q̂j)uj

+
∑
i,j

u′i(I− Q̂i)(I−Pj)Vjβj. (11.1.10)

But, under Assumptions A1–A3,

plim
n→∞

(
ê′dêd
n
|Hd

)
=
∑
i,j

β′iΣijβj +
∑
i,j

σij +
∑
i,j

β′iδij +
∑
i,j

δ′jiβj

= E

{[∑
i

(ui + Viβi)

]′ [∑
i

ui + Viβi

]}
= E(ξ′aξa) > 0, (11.1.11)

where ξa =
∑

i ξi is the vector of aggregate errors of the reduced form equations

yi = ZiΠiβi + Viβi + ui

= ZiΠiβi + ξi (11.1.12)

and ξi = Viβi + ui.

Consider now the aggregate prediction criterion. We have êa = ya−X̂∗β̃∗, and, under
Hd,

êa =
(
I− Q̂∗

)(∑
i

Xiβi + ui

)
, (11.1.13)

where

Q̂∗ = X̂∗(X̂
′
∗X̂∗)

−1X̂′∗
= P∗X∗(X

′
∗P∗X∗)

−1X′∗P∗.

Substituting from (11.1.12),

êa =
(
I− Q̂∗

)[∑
i

ZiΠiβi +
∑
i

(ui + Viβi)

]
=
(
I− Q̂∗

)
(fa + ξa)

so that, taking probability limits under Hd,

plim
n→∞

(
ê′aêa
n
|Hd

)
= plim

n→∞

(
f ′a[I− Q̂∗]fa

n

)
+ plim

n→∞

(
ξ′a[I− Q̂∗]ξa

n

)

+ 2 plim
n→∞

(
f ′a[I− Q̂∗]ξa

n

)
. (11.1.14)



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 203

But, since ui and Vi are asymptotically distributed independently of Z∗, by Assumption
A4, it follows that

plim
n→∞

(
ξ′a[I− b̂fQ∗]ξa

n

)
= plim

n→∞

(
ξ′aξa
n

)
= E(ξ′aξa)

and

plim
n→∞

(
f ′a[I− Q̂∗]ξa

n

)
= 0.

Hence,

plim
n→∞

(
ê′aêa
n
|Hd

)
= E(ξ′aξa) + plim

n→∞

(
f ′a[I− Q̂∗]fa

n

)
≥ E(ξ′aξa), (11.1.15)

where the inequality follows because the second term in (11.1.15), namely

plim
n→∞

(
f ′a[I− Q̂∗]fa

n

)
,

is a positive semidefinite quadratic form. Comparing (11.1.15) with (11.1.11) establishes
the result that

plim
n→∞

(
ê′dêd
n
|Hd

)
≤ plim

n→∞

(
ê′aêa
n
|Hd

)
. (11.1.16)

In general we have not made any assumptions about the relationship between the
disaggregate model Hd and the aggregate model Ha. It is interesting, however, to look at
the special case where the aggregate model has been derived from a formal aggregation
of the disaggregate model so that X∗ = Xa =

∑
i Xi and Z∗ = Za =

∑
i Zi. In this

case the best that the aggregate model can do is to predict as well as the disaggregate
model so that the two criteria coincide, and the conditions under which this will occur
are the conditions for perfect aggregation, discussed for the least squares case by PPK.
In the fixed regressor context of PPK, it is well known that sufficient conditions are
when either βi = β, for all i, i = 1, ...,m (the microhomogeneity hypothesis) or when
Xi = XaΛi for all i (the compositional-stability hypothesis) where Λi are square full-
rank matrices satisfying

∑
i Λi = I. (See also Lewbel (1992) for the application of a

stochastic version of the compositional-stability hypothesis in the context of aggregating
log-linear microequations.) In the present IV framework, however, where there is more
than one variable determined simultaneously, these two conditions are no longer sufficient
to achieve perfect aggregation, and an additional condition on the Zi’s is also needed.
One such condition is given by

Zi = ZaΓi (11.1.17)

for all i, i = 1, ...,m where Γi are square full-rank matrices of fixed coefficients. This
condition ensures that X̂i = PaXi, where Pa = Za(Z

′
aZa)

−1Z′a, and, together with either
the microhomogeneity hypothesis or the compositional-stability hypothesis, it is sufficient
to ensure that êd = êa so that disaggregate and aggregate criteria coincide. Condition
(11.1.17) is a compositional stability hypothesis for the IV’s of the disaggregate model.
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Clearly a special case is where Γi = I for all i which is where a common set of instruments
is used across all sectors.

The prediction criteria (11.1.3) and 11.1.4) can be modified to incorporate degrees-of-
freedom corrections. Clearly, such corrections will not affect the asymptotic properties
of the statistics but we conjecture that they might improve their performance in finite
samples. PPK derived corrections that ensured unbiasedness of the criteria in the least
squares context. While no formal proof can be given in the present context, by analogy, we
suggest using similar correction factors. This has the advantage of ensuring consistency
with the criteria of PPK in the limiting case where Xi ⊂ Zi and X∗ ⊂ Z∗ and the models
(11.1.3) and (11.1.4) collapse to the fixed regressor models considered by PPK. Hence,
the following modified criteria are suggested:

s2
a = ê′aêa/(n− k∗) (11.1.18)

and
s2
d =

∑
i

∑
j

ê′iêj/{n− ki − kj + tr(Q̂iQ̂j)}, (11.1.19)

where, as before, Q̂i = X̂i(X̂
′
iX̂i)

−1X̂′i.

11.2 Testing for Aggregation Bias under IV Estima-

tion

Another important aspect in the comparison of aggregate and disaggregate models is the
issue of aggregation bias. This concept was originally formalised by Theil (1954), who
defined aggregation bias as the deviations of the parameters of a macro equation from
the average of the corresponding parameters of the micro equations. Other definitions of
aggregation bias are also used in the literature. For example, in his analysis of aggregating
log-linear relations with fixed slope coefficients, Lewbel (1992) defined aggregation bias
as the percentage difference between the common slope coefficient of the micro relations
and the probability limit of the slope coefficient in the analogue aggregate equation and
showed that this bias depends on the extent of the dependence between the regressors
and the disturbances of the aggregate model. In the context of our application, where the
micro equations are linear but have different slope coefficients, an adaptation of Lewbel’s
condition for no aggregation bias requires the micro coefficients, βi, to be distributed with
a common mean, βa, such that βi − βa are distributed independently of the regressors
in all the micro equations. This condition yields the familiar random-coefficients model
discussed by Zellner (1969). The condition that βi − βa and the regressors of the micro
equations are independently distributed is not, however, likely to be satisfied if the micro
equations contain lagged dependent variables. (On this, see Pesaran and Smith (1992)).
In general, however, where the slope coefficients differ across the micro equations, Theil’s
definition will still be appropriate for dynamic models, and will therefore be adopted in
the rest of the article.

Here we generalise the tests for aggregation bias derived by Lee et al. (1990a,b) to
the case where the macro and micro models are estimated by the IV method. In the
application of the tests of aggregation bias, it is only meaningful to consider the case
where the macro model is defined to be an analogue of the micro relations (11.1.1), given
by

Ha : ya = Xaβa + u, (11.1.2´)
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where Xa =
∑m

i=1 Xi. Here, the coefficients βa can be interpreted as the ‘average’ coun-
terparts of βi. Such an interpretation of (11.1.2′) arises naturally in the case of random-
coefficients models mentioned previously. The familiar method of testing for aggregation
bias in the context of the micro relations (11.1.1) is to test directly the micro homogeneity
hypothesis—namely, Hβ : β1 = β2 = · · · = βm. An alternative approach, which is less
restrictive, would be to test the equality of βa from the macro equation with the average
of the coefficients of the micro equations—namely,

H0 : ηβ = βa −m−1

m∑
i=1

βi = 0. (11.2.1)

Clearly H0 implies Hβ, but not vice versa. In what follows, we focus on tests of H0 and
its generalisation (which was discussed in detail by Lee et al. (1990b)), when the micro
and macro equations are estimated by the IV method. The generalisation of H0 covers
situations in which the parameters of interest are (possibly nonlinear) functions of the
micro parameters and their macro counterparts. In this general case, the hypothesis of
no aggregation bias may be defined as

H0 : êtah = g(βa)− h(β1, . . . ,βm) = 0, (11.2.2)

where h and g are assumed to be continuous and differentiable vector functions of di-
mension s, and where g(βa) = h(βa, . . . ,βa). This formulation includes the hypothesis
expressed at (11.2.1) as a special case and also allows the possibility of defining bias as
the deviation of a function of the macro parameters from an average of the same function
of the micro parameters or from a function of the average of the micro parameters or
some other general form. In all cases, the null hypothesis that there is no aggregation
bias would not be rejected under the micro homogeneity hypothesis Hβ. On the other
hand, it would be possible that no evidence of aggregation bias is found even when mi-
cro homogeneity does not hold, so that testing H0 provides a less restrictive test for the
presence of aggregation bias than the familiar test of the micro homogeneity hypothesis
Hβ. (Clearly this approach to testing for the presence of aggregation errors is distinct
from that based on tests of mispecification in an aggregate model in which measures of
distributional effects, calculated across the micro units, are employed (e.g., see Stoker
(1986b)).)

Two test statistics are derived corresponding to two different assumptions about the
vector of macro parameters βa. First assume that βa is a vector of known parameters
given a priori from some ‘consensus’ view, for example. A test statistic can be constructed
based on the vector

η̃h = g(βa)− h(β̃1, . . . , β̃m). (11.2.3)

On the null hypothesis H0:

plim
n→∞

η̃h = ηh = 0, (11.2.4)

and

Âvar(η̃h) =
m∑
i=1

m∑
j=1

H̃iÂvar(β̃i, β̃j)H̃
′
j = Ω̃n, (11.2.5)

where H̃i = ∂h/∂β̃
′
i, and the variance-covariance matrix of βi in model (11.1.1) is es-

timated consistently by Âvar(β̃i, β̃j) = σ̃ij(X̂
′
iX̂i)

−1X̂′iX̂j(X̂
′
jX̂j)

−1, where σ̃ij is any
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consistent estimator of σij. Then the test statistic for the hypothesis (11.2.2) is given by

q∗1 = η̃′hΩ̃nη̃h, (11.2.6)

and on the null hypothesis, H0, q∗1
a∼ χ2

s.
Second, consider the case in which there is no consensus view on βa, so that, instead

of being given a priori, the parameter vector βa is estimated from the aggregate model
(11.1.2′). From Assumption A4,

plim
n→∞

(β̃a|Hd) =
m∑
i=1

Ciβi, (11.2.7)

where
Ci = plim

n→∞
{(X̂′aX̂a/n)−1(X̂′aXi/n)}.

In this case, a test of (11.2.2) can be based on the vector

η̃h = g(β̃a)− h(β̃1, . . . , β̃m). (11.2.8)

On the null hypothesis of no aggregation bias, H0,

plim
n→∞

(η̃h|Hd) = g

(
m∑
i=1

Ciβi

)
− h(β1, . . . ,βm) = 0. (11.2.9)

The test statistic for this case is given by

q∗2 = (g(β̃a)− h(β̃1, . . . , β̃m))′Φ̃
−1

n (g(β̃a)− h(β̃1, . . . , β̃m)), (11.2.10)

where

Φ̃n =
m∑
i=1

m∑
j=1

σ̂ijΨ̃iΨ̃
′
j, (11.2.11)

and the matrix Ψ̃i (which corresponds to equation (21) of Lee et al. (1990b)) is defined
by

Ψ̃i = G̃a(X̂
′
aX̂a)

−1X̂′a − H̃i(X̂
′
iX̂i)

−1X̂′i, (11.2.12)

where G̃a = ∂g/∂β̃
′
a. On the null hypothesis, H0, q∗2

a∼ χ2
s.

11.3 An Application to Sectoral Labour-Demand De-

termination

In this section, the statistics that have been developed are applied to aggregate and sec-
torally disaggregated labour demand functions for the UK economy. This is an area of
research that has received considerable attention recently as economists have attempted
to understand and explain the causes of the historically high unemployment levels expe-
rienced recently in the United Kindom and elsewhere (e.g., see Layard et al. (1991), and
the references therein). In particular, much applied research has focused on the respon-
siveness of labour demand to changes in real wages and in output levels in an effort to
evaluate the efficacy of different policies designed to reduce unemployment. Much of this
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analysis, however, has been carried out using aggregate data, and it is of some interest to
consider whether conclusions drawn on the basis of this work are affected by the choice
of the level of aggregation used in the analysis.

PPK and Lee et al. (1990b) investigated this question empirically, using annual data
for 40 industrial sectors over the period 1956-1984. The data cover the whole of the
private sector, excluding the mineral oil and natural gas sector (sector 4) for which data
are available only since 1971 when North Sea oil production started to come on line.
(Full details of sources and definitions can be found in the data appendix to PPK.) In
these works, the following general log-linear dynamic specifications for the sectoral labour
demand equations were adopted:

LEit = βi1/m+ βi2(Tt/m) + βi3LEi,t−1 + βi4LEi,t−2 + βi5LYit + βi6LYi,t−1 + βi7LWit

+ βi8LWi,t−1 + βi9LY at + βi10LY a,t−1 + uit,

i = 1, 2, 3, 5, 6, . . . , 41, t = 1956, . . . , 1984, (11.3.1)

where LEit = log of man-hours employed in sector i at time t, Tt = time trend (T1980 =
0), LYit = log of sector i output at time t, LWit = log of average product real wage rate
per man-hours employed in sector i at time t, LY at = average of LYit over the 40 sectors
and m = number of sectors, (m = 40). This specification can be justified theoretically
when employment decisions are made within an industry by cost minimising firms with
identical production functions and the same given demand and factor price expectations.
The inclusion of lagged employment variables can be justified on the grounds of inertia
in revision of expectations, adjustment costs involved in hiring and firing of workers,
or aggregation over different labour types (see, for example, Nickell (1984) and Pesaran
(1991a)). The variable LY at, which measures the level of aggregate output (in logs),
is a proxy measure intended to capture changes in demand expectations arising from
the perceived interdependence of demand in the economy by the firms in the industry.
The time trend is included in the specification in order to allow for the effect of neutral
technical progress on labour productivity.

OLS estimates of the disaggregated model in (11.3.1), and a restricted version of the
model (in which linear parameters restrictions are imposed as a means of avoiding over-
parameterisation), were presented in tables I and II of PPK. Using these, evidence is found
to suggest that a disaggregate model is superior to its aggregate counterpart in terms of
its ability to predict fluctuations in aggregate labour demand and that statistically signif-
icant differences exist between estimates of labour-demand elasticities obtained from the
estimated aggregate and disaggregated models. In many models of supply-side behaviour,
however, it is acknowledged that employment, wage, price, and output levels are deter-
mined simultaneously. Furthermore, in these circumstances, it is not clear how aggregate
output levels, themselves an aggregation of the outcomes of sectoral output decisions,
could be known with certainty prior to the time when sectoral employment decisions are
made. Consequently, it might be argued that all of the current-dated explanatory vari-
ables in (11.3.1) are potentially correlated with the uit, and that instruments for these
variables are required. It is important, therefore, that we establish whether the previous
findings are robust to the choice of estimation method, and to this end we have reesti-
mated both the aggregate and disaggregate models using the IV method, and employed
the techniques developed in the preceding sections to evaluate their relative performance.

As a first step in the empirical work of this paper, we estimated model (11.3.1) by
the generalised IV method using the instruments Zit = {1, Tt, LEi,t−1, LEi,t−2, LWi,t−1,
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LWi,t−2, LYi,t−1, LYi,t−2, LEa,t−1, LEa,t−2, LW a,t−1, LW a,t−2, LY a,t−1, LY a,t−2}. This
choice of instruments is a natural one given the preceding discussion; the simultaneity
of the employment-, price-, output-, and wage-setting decisions in each sector, and the
possibility of intersectoral interdependencies, exerted directly through product or labour-
market competition, or indirectly through the expectations-formation process, means
that lagged sectoral and aggregate variables are likely to provide valid instruments for
the current-valued explanatory variables in (11.3.1). Moreover, it is important to be
as comprehensive as possible in the choice of instruments for the sectoral regressions;
if for any sector i, the included instruments are only a subset of those variables that
determine Xi in model (11.1.1), then the assumed independence of the Zi and the Vj is
likely to be violated for i 6= j. Similar comments are likely to be true for the assumed
independence of the Z∗ and the Vi if the Z∗ include aggregated values of the Zi. The
second step in the empirical study was to calculate the Wu (1973) T2 statistic, also
known as the Wu-Hausman statistic, for each of the sectoral equations to test for the
exogeneity of the current-dated explanatory variables in (11.3.1), and to investigate the
relevence of the IV estimation method in this context. In those sectors in which the null
of exogeneity was not rejected, we reestimated the labour-demand equations by the OLS
method. Finally, for each sector, we undertook a specification search in which variables
with t ratios that were less than unity (in absolute terms) were dropped from the list of
explanatory variables to obtain a more parsimonious set of employment equations. At
each stage of the specification search, a joint test of the parameter restrictions and a test
of the exogeneity of the regressors were also carried out. In the case of industries where
the exogeneity hypothesis was not rejected, the employment equations were estimated by
OLS.

The estimates of the sectoral labour-demand equations obtained through this proce-
dure are given in Table 11.1 and Table 11.2 provides some of the associated summary
and diagnostic statistics. Included also in Table 11.2, in the columns headed χ2

MS(4)
and FWH(3, 16), are the Sargan (1964) general misspecification test statistics and Wu-
Hausman test statistics, respectively, carried out on the (unreported) unrestricted ver-
sions of the equations in (11.3.1). The Sargan test statistics serve as a general misspeci-
fication test of the joint validity of the model specification and the instruments, and are
below their 95% critical values in all sectors. Turning to the Wu-Hausman test results,
note that, conservatively working at the 10% level of significance, these statistics suggest
the rejection of the exogeneity hypothesis in 6 of the 40 industries—namely, mechan-
ical engineering (15), office goods (16), electrical engineering (17), rubber goods (31),
hotels and catering (35), and communications (39). Furthermore, in the course of the
specification search procedure, exogeneity of regressors in the restricted version of the
labour-demand equation for the office goods sector could not be rejected either. Con-
sequently, in all but five industries the parameter estimates reported in Table 11.1 are
obtained by OLS and are equivalent to those in table II of PPK (in which OLS meth-
ods were employed throughout). In these five industries, however, exogeneity cannot be
assumed to hold, and the IV estimation method has been employed; Wu-Hausman statis-
tics for the test of the exogeneity of regressors in the restricted regressions reported in
Table 11.1 for sectors 15, 17, 31, 35, and 39 were 3.14 (2,18), 11.87 (2,22), 3.39 (1,23),
8.83 (2,19), and 18.39 (2,21), respectively, where the relevent degrees of freedom of the
F distribution are given in parentheses.

The parameter estimates presented in Table 11.1 are generally of the expected sign
and, following the specification search, are generally well determined. In particular, it is
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Table 11.1: Disaggregate Labour-Demand Functions (restricted) 1956–1984

Industry c/40 T/40 LYit LYi,t−1 LEi,t−1 LEi,t−2 LWit LWi,t−1 LY at LY a,t−1

1. Agriculture 152.152 — .2687 .1752 .5312 — −.4312 — −.2437 −.1729
(64.95) (.14) (.11) (.06) (.08) (.10) (.11)

2. Mining 41.200 −.3502 .2734 4− .4181 1.1604 −.2848 −.2018 — — —
(14.34) (.07) (.04) (.06) (.09) (.08) (.03)

3. Coke −351.57 −1.3100 — .6330 — — −.3005 — 1.0448 —
(44.66) (.18) (.15) (.04) (16)

4. Oil — — — — — — — — — —
5. Petroleum Products −70.796 −.5087 .3640 — .5185 — −.3144 — — —

(71.77) (.13) (.13) (.13) (.09)
6. Electric 18.523 — .1614 — 1.2739 −.5958 −.1732 — — —

(14.70) (.08) (.17) (.16) (.07)
7. Gas −47.110 −.6014 — .0611 .4191 — −.1507 — .5379 —

(97.22) (.20) (.07) (.15) (.05) (.18)
8. Water 8.168 — .6536 −.6536 .8112 — −.4027 .4027 −.6415 .7906

(18.92) (.40) (.40) (.08) (.11) (.11) (.31) (.31)
9. Minerals 172.916 — .2655 — .6931 — −.1494 — −.5337 —

(79.12) (.13) (.08) (.06) (.26)
10. Iron −349.96 −.9045 .1083 — .4978 — −.3873 — 1.1803 — —

(58.87) (.27) (.09) (.08) (.08) (.29)
11. Other metals −84.826 −.5749 .1817 −.3091 1.2461 −.4796 −.0756 .0756 .5854 —

(30.72) (.15) (.13) (.13) (.15) (.12) (.05) (.05) (.18)
12. Mineral products −280.57 −.3729 .3101 — .6919 — −.2356 −.2214 .5170 —

(60.64) (.21) (.15) (.09) (.11) (.10) (.29)
13. Chemicals −125.06 — — — .6205 — −.2810 — .6049 —

(23.83) (.07) (.03) (.08)
14. Metal goods −32.245 −1231 .4365 .5798 — −.1671 — — —

(25.53) (.10) (.04) (.05) (.08)
15. Mechanical engineering� −140.40 .2775 .5872 −.2910 .5309 −.1529 −.3090 −.3407 — .3966

(63.92) (.15) (.10) (.11) (.22) (.16) (.15) (.13) (.21)
16. Office goods −3.4674 — .1694 −.1694 1.2748 −.3244 −.3884 .3123 — —

(22.75) (.09) (.09) (.20) (.18) (.14) (.13)
17. Electrical engineering� −64.345 — .4199 — .5345 — −.9220 .5053 — —

(29.12) (.09) (.09) (.18) (.17)
18. Motor vehicles −184.62 −.2365 .4908 −.3811 .9237 −.1783 — −.1843 .5856 —

(50.06) (.11) (.06) (.11) (.16) (.09) (.07) (.18)
19. Aerospace 200.392 −.6788 .0732 — .7560 −.4659 — −.1252 — —

(53.12) (.16) (.06) (.17) (.14) (.07)
20. Ships −.7667 — .4809 −.4809 1.4717 −.4717 — — .5103 −.5103

(.31) (.12) (.12) (.15) (.15) (.20) (.20)
21. Other vehicles −132.16 −.4754 .3130 — .7270 — −.1432 — — .2845

(54.39) (.17) (.07) (.09) (.05) (.11)
22. Instrument engineering −11.357 −.3580 .3611 — .5319 — −.2624 — — —

(47.49) (.14) (.10) (.13) (.11)
23. Food −172.16 −.4510 .6697 — .3177 .2237 −.1962 — — .1157

(76.05) (.20) (.17) (.17) (.16) (.06) (.12)
24. Drink −15.180 −.4844 .2933 — .7283 — −.0945 .0591 — —

(73.49) (.14) (.12) (.12) (.09) (.09)
25. Tobacco −213.37 −.3959 .7424 — .7367 .2633 — — — —

(80.84) (.12) (.28) (.22) (.22)
26. Textiles −68.150 — .5278 −.1236 .5880 — −.3428 — — —

(10.02) (.05) (.08) (.06) (.05)
27. Clothing −68.949 — .4514 — .5364 — −.3756 — — —

(11.96) (.04) (.04) (.03)
28. Timber 60.3106 −.3017 .3769 — .4312 — −.2460 .1493 — —

(20.95) (.08) (.04) (.06) (.07) (.07)
29. Paper −44.740 −.3259 .4680 .1585 .3644 — −.2503 — — —

(13.29) (.10) (.07) (.09) (.08) (.04)
30. Books 58.9249 — .2973 −.2575 1.4842 −.7029 −.0454 — — —

(20.82) (.06) (.06) (.17) (.15) (.05)

(continued)
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Table 11.1: (Continued)

Industry c/40 T/40 LYit LYi,t−1 LEi,t−1 LEi,t−2 LWit LWi,t−1 LY at LY a,t−1

31. Rubber� −54.009 −.6246 .6726 −.2123 .7116 — — — — —
(13.15) (.12) (.09) (.12) (.09)

32. Other manufacturing 60.3555 −.3233 .2345 — .6028 — — — .4274 −.4274
(20.03) (.07) (.04) (.09) (.13) (.13)

33. Construction 7.2409 — .5490 −.4527 1.0813 −.2453 −.4434 .3376 — —
(20.56) (.08) (.09) (.16) (.11) (.08) (.11)

34. Distribution 109.986 .3892 — .5034 .5641 — −.3036 — — −.5678
(43.33) (.21) (.20) (.09) (.12) (.17)

35. Hotels� 388.377 .4384 −.8857 1.6050 — −.4753 −.8499 .3938 — −.4509
(205.9) (.18) (.52) (.60) (.40) (.31) (.24) (.28)

36. Rail −65.107 — — .4077 .8047 — −.0729 — — —
(26.28) (.10) (.05) (.05)

37. Land transportation 146.432 −.4542 — .2451 .9023 −.4855 — — — —
(37.81) (.10) (.07) (.19) (.18)

38. Sea transportation 48.5901 −.1921 .1924 — 1.1919 −.5542 −.0853 — — —
(104.9) (.11) (.16) (.17) (.22) (.07)

39. Communications� 195.189 — −.2816 — .8450 −.3766 — .2841 .5211 —
(48.50) (.10) (.17) (.17) (.10) (.13)

40. Business 209.651 — .3108 — .6781 −.3104 — — — −.1633
(49.15) (.08) (.18) (.17) (.05)

41. Services −39.904 — .2123 — .8264 — −.1408 — — —
(33.31) (.08) (.10) (.07)

Note: Equations are estimated using the OLS method, except in the case of
industries denoted � (i.e. industries numbered 15, 17, 31, 35 and 39), in which
the IV method was employed. For these five sector, the following variables
were included in the instrument set for the ith industry: c/40, T/40, LYi,t−1,
LYi,t−2, LEi,t−1, LEi,t−2, LWi,t−1, LWi,t−2, LY a,t−1, LY a,t−2, LEa,t−1, LEa,t−2,
LW a,t−1, LW a,t−2. Variables definitions are provided in the text, and data
sources are provided in PPK. Values in parentheses are standard errors.

worth noting that a second lagged dependent variable is included in 17 of the 40 industrial
equations, and its coefficient takes a negative sign, as suggested by the theory, in all cases
in which the coefficient is statistically different from 0 (see Pesaran (1991a)). The need
to include a variable to capture the effects of changes in demand expectations arising
from interdependencies in the economy is confirmed by the presence of aggregate output
terms in 19 of the 40 sectors. And the signs of the coefficients on the wage and output
terms are generally as expected: the sum of the coefficients on current and lagged wage
terms is negative in 31 of the sectors (and is not significantly different from 0 in a further
8), but the sum of the coefficients on the sectoral output terms is positive in 33 sectors
(and is not significantly different from 0 in a further 4).

Table 11.2 reports the generalised R̄2 as measures of the ‘fit’ of the IV regressions
and also several diagnostic statistics, denoted χ2

SC(1), χ2
FF (1), χ2

N(2), and χ2
H(1), and

distributed approximately as chi-squared variates (with degrees of freedom in parenthe-
ses), for tests of residual serial correlation, functional form misspecification, nonnormal
errors, and heteroscedasticity, respectively. (For more details of the tests, see Pesaran
and Pesaran (1991b)). These statistics indicate that there is evidence of misspecification
in only a few cases. For example, there is evidence of residual serial correlation only
in the chemicals (13) and construction (33) industries, and this is weak in the former
case. The χ2

R(r) statistics reported in Table 11.2 for testing the restrictions imposed on
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Table 11.2: Summary and Diagnostic Test Statistics for Restricted Labour-Demand
Equations of Table 1

Industry GR
2

σ̂ χ2
R(r) χ2

SC(1) χ2
FF (1) χ2

N(2) χ2
H(1) FWH(3, 16) χ2

MS(4)

1. Agriculture .9983 .0137 .04(3) .00 7.40∗∗ .39 2.55 1.03 5.96
2. Mining .9986 .0158 3.72(3) .83 .91 .32 .05 .82 5.96
3. Coke .9771 .0449 5.20(5) .24 .67 .27 1.87 .02 4.66
4. Oil — — — — — — — — —
5. Petroleum Products .9178 .0566 4.89(5) .48 .01 1.83 .85 .78 6.68
6. Electric .9876 .0190 2.19(5) .17 1.26 .18 .12 .26 5.62
7. Gas .9719 .0322 3.97(4) 1.29 .00 4.88∗ 1.42 1.09 5.91
8. Water .9279 .0412 .73(4) 1.67 .00 .47 1.05 .36 4.94
9. Minerals .9760 .0318 2.40(5) 1.36 .16 32.7∗∗ .00 .39 4.21
10. Iron .9933 .0265 2.49(4) .08 .19 1.42 .43 1.07 6.88
11. Other metals .9864 .0250 2.63(2) .00 3.45∗ .20 1.89 1.29 5.63
12. Mineral products .9935 .0177 3.44(3) 1.11 .23 .76 3.15∗ .34 6.38
13. Chemicals .9795 .0156 6.27(6) 3.51∗ 1.49 .96 1.14 .44 8.96∗

14. Metal goods .9877 .0192 2.37(5) .09 .27 .38 1.00 .36 9.02∗

15. Mechanical engineering� .9918 .0148 .49(1) 1.21 6.21∗ .77 1.49 2.60∗ 5.85
16. Office goods .8922 .0345 10.5(4)∗∗ .05 2.49 7.24∗∗ 5.05∗∗ 3.00∗ 3.38
17. Electrical engineering� .9683 .0224 2.95(5) .00 7.90∗∗ .69 3.48∗ 5.40∗∗ 1.90
18. Motor vehicles .9874 .0186 1.29(2) 1.55 8.71∗∗ 3.89 .00 .92 5.92
19. Aerospace .9878 .0268 2.21(4) .90 .30 1.81 1.30 1.04 3.69
20. Ships .9818 .0323 9.70(6) .45 .43 .40 6.26∗∗ .67 2.58
21. Other vehicles .9973 .0241 1.69(4) .00 .81 .17 .04 .91 1.99
22. Instrument engineering .9250 .0257 7.92(5) .47 3.05∗ .00 .84 .29 6.88
23. Food .9837 .0164 .85(3) 1.69 1.76 1.33 4.38∗∗ .75 8.92
24. Drink .9232 .0269 2.56(4) 1.32 .02 .94 2.06 .80 6.79
25. Tobacco .8796 .0497 7.09(6) .25 .70 .65 6.33∗∗ 1.66 4.36
26. Textiles .9981 .0175 3.18(5) .05 4.44∗∗ .74 5.09∗∗ .70 5.62
27. Clothing .9984 .0110 3.76(6) .36 1.91 .62 .03 .20 3.46
28. Timber .9864 .0138 4.24(4) .00 2.56 1.34 .30 .41 2.85
29. Paper .9927 .0192 2.86(4) 1.09 1.32 1.74 4.41∗∗ 1.93 2.30
30. Books .9306 .0123 4.69(4) 1.70 .00 .14 .44 1.01 2.38
31. Rubber� .9570 .0193 .67(5) .11 3.34∗ .56 2.48 3.71∗∗ 3.43
32. Other manufacturing .9570 .0137 7.18(5) .37 .21 1.12 .00 .91 3.45
33. Construction .9689 .0179 5.54(3) 5.00∗∗ 2.13 1.62 1.00 .43 3.83
34. Distribution .9589 .0143 5.44(4) .49 .00 .94 2.06 2.12 3.61
35. Hotels� .9202 .0316 .38(2) .03 6.48∗∗ 2.21 1.77 3.18∗ 1.01
36. Rail .9960 .0230 2.36(6) .28 .00 1.27 1.98 .12 7.10
37. Land transportation .9747 .0163 4.04(5) .02 1.75 .64 2.71∗ .95 4.00
38. Sea transportation .9155 .0229 7.87(4)∗ .27 6.06∗∗ .39 2.75∗ .22 8.64
39. Communications� .9232 .0203 .33(4) 1.87 1.48 1.01 2.75∗ 6.39∗∗ 1.17
40. Business .9940 .0128 1.81(5) .98 2.01 1.98 .17 .49 2.90
41. Services .9512 .0222 3.21(6) .06 .53 .39 1.91 .34 6.63

Note: Equations are estimated using the OLS method, except in the case of
industries denoted � (i.e. industries numbered 15, 17, 31, 35 and 39), in which

the IV method was employed. See footnotes to Table 11.1. GR
2

refers to the
generalised R2 statistic (cf. Pesaran and Smith (1994)). σ̂ is the estimate of
the of the equation’s standard error. χ2

R(r) is the chi-squared statistic for the
Lagrange multiplier test for r linear restrictions imposed on the parameters of
the unrestricted equation (where r is given in parentheses). χ2

SC(1), χ2
FF (1),

χ2
N(2) and χ2

H(1) are diagnostic statistics, distributed approximately as chi-
squared variates (with degrees of freedom in parentheses) for tests of residual
serial correlation, functional form misspecification, nonnormal errors, and het-
eroscedasticity, respectively. (See Pesaran and Pesaran (1991b)). FWH(3, 16)
is the Wu-Hausman test for the exogeneity of LY it, LWit and LY at carried
out on the unrestricted version of the model (cf. F (3, 16)). χ2

MS(4) is Sar-
gan’s general misspecification test carried out on the unrestricted version of
the model. This latter statistic is the same as the J statistic in the generalised
method of moments proposed by Hansen (1982). ∗∗ denotes significance at
the 5% level and ∗ denotes significance at the 10% level.
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the unrestricted labour-demand equations in (11.3.1) to obtain the specifications given
in Table 11.1 are below their 95% critical values in all industries other than office goods
(16), thus reaffirming the plausibility of our search procedure. In summary, the results
of Tables 11.1 and 11.2 indicate that, although there may be room for improving the
results—by including industry-specific variables, for example—the specifications consid-
ered here provide a reasonable model of labour-demand determination at the sectorally
disaggregated level.

Consider now the aggregate employment equation obtained as an analogue of (11.3.1):

LEat = b1 + b2Tt + b3LEa,t−1 + b4LEa,t−2 + b5LYat

+ b6LYa,t−1 + b7LWat + b8LWa,t−1 + uat, (11.3.2)

where

LEat =
41∑

i=1, i6=4

LEit , LYat =
41∑

i=1, i6=4

LYit and LWat =
41∑

i=1, i6=4

LWit.

Here the dependent variable of interest is assumed to be LEat—that is, the sum of the
logarithms of industry employment (in man-hours). Clearly, this is not the dependent
variable usually considered in aggregate labour-demand equations (which tend to consider
the logarithm of the sum of industry employment). The issue of consistent aggregation in
the context of log-linear models has been discussed in the literature (e.g., Lovell (1973);
van Daal and Merkies (1981)), and here we simply note that the aggregates employed
in (11.3.2) may have some theoretical advantages over standard aggregate measures (i.e.,
the logarithm of the sum of sectoral employment, wages, or output) when the issue of
interest is the analysis of sectoral employment growths. Of course, for our purposes, the
specification (11.3.2) also has the advantage of fitting directly within the linear framework
of the article.

A restricted version of (11.3.2) was estimated by the IV method using the instrument
set Zat = {1, LEa,t−1, LEa,t−2, LYa,t−1, LYa,t−2, LWa,t−1, LWa,t−2}, and the following
results were obtained:

LEat = −137.01 +0.6840LEa,t−1 +0.4745LYat −0.3830LWat + ûat
(20.70) (0.0569) (0.0708) (0.0540)

σ̂ = 0.3487, s(LEat) = 5.75, Sample = 1956− 1984 (n = 29)

χ2
SC(1) = 0.56, χ2

FF (1) = 0.07, χ2
N(2) = 4.15, χ2

H(1) = 2.18, χ2
MS(3) = 2.68.

(11.3.3)
Here, standard errors of the estimated parameters are given in brackets, σ̂ is the estimate
of the equation’s standard error, s(LEat) is the standard deviation of the dependent
variable, and the remaining diagnostic statistics are as described in relation to Table
11.1. These IV estimates differ only marginally from those previously obtained using the
OLS procedure and reported by PPK, and indeed the Wu-Hausman test fails to reject
the exogeneity of the regressors LWat and LYat in this equation. While this finding might
appear to suggest that the use of the OLS estimation method would be acceptable, it is in
fact most important that the presence of simultaneity is taken into account here. If there
is simultaneity in any of the sectoral equations, then it is clear that the aggregate model
will be affected by such simultaneity so long as the matrix of regressors in the aggregate
model includes aggregated values of the Xi’s. The IV method will be the appropriate
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estimation procedure for the aggregate model in these circumstances, even if tests of
exogeneity of regressors in the aggregate model fail to reflect this, possibly because of
lack of power. Given the presence of simultaneity in the determination of employment,
wages, and output in 5 of the 40 sectors, it is not appropriate to estimate the aggregate
equation using OLS methods, and the IV results reported here are the relevent ones for
use in comparison of the aggregate and disaggregate models.

For the two models (11.3.1) and (11.3.2), the statistics s2
d and s2

a of Section 11.1 were
computed in both the uncorrected form and the modified form making an adjustment
for degrees of freedom. (These calculations, as with all those described in this section,
were carried out using the GAUSS programming language. Copies of the procedures as
well as the data used for this analysis, are available from the authors on request.) For
the disaggregated model, the uncorrected and modified values of s2

d were found to be
0.0742 and 0.1000, respectively, whereas for the aggregate model, the uncorrected and
corrected values of s2

a were 0.3584 and 0.4158, respectively. It is clear that the criteria
favour the disaggregate model, both in the uncorrected forms of (11.1.3) and (11.1.4) and
in the corrected forms of (11.1.18) and (11.1.19), which include the degrees-of-freedom
adjustments. These results are consistent with the findings of PPK based on the OLS
estimates.

Models (11.3.1) and (11.3.2) were also used to test for aggregation bias in the estimates
of the long-run elasticities of UK labour demand with respect to wages and output. (For
this analysis sectors 20 and 25 had to be excluded because the restricted specifications
estimated for these sectors do not seem to possess long-run solutions. The two sectors
were consequently also removed from the definition of the aggregate variables entering
equation (11.3.2).) For the ith sector, the long-run elasticities of interest are defined by

εiw =
βi7 + βi8

1− βi3 − βi4
, εiy =

βi5 + βi6 + βi9 + βi10

1− βi3 − βi4
,

and in considering aggregation bias, we aim to compare the average of each of these sec-
toral elasticities with the corresponding estimates based on the aggregate specification.
As noted previously, these elasticities have been the subject of considerable interest be-
cause of their implications for macroeconomic policy. Various aggregate studies (many of
which were reviewed by Treasury (1985)), have found a significant effect for real wages
on employment demand, although the estimated size of the effect has varied considerably
across studies, depending on the coverage of the data and on the specification of the
employment equation that is considered. A consensus view has emerged on the basis
of these aggregate studies, however, that the elasticity is close to −1, and hence this is
the figure employed in the test of aggregation bias when comparison is made with an
aggregate measure that is assumed known a priori. Similarly, a unit elasticity is used as
the consensus figure for the output elasticity. Note that the wage and output elastici-
ties obtained based on the aggregate model of (11.3.3) are −1.2792 (0.2121) and 1.5189
(0.2676), respectively. (Asymptotically valid standard errors are in parentheses.) These
estimates are consistent with the hypothesis of wage and output elasticities of −1 and
+1, respectively.

To examine whether these estimates for the aggregate wage and output elasticities
are subject to aggregation bias, we use the restricted versions of IV models (11.3.1) and
(11.3.2) and apply the tests defined by the statistics (11.2.6) and (11.2.10) of Section
11.2. A value of −0.5112 was obtained for the average of the sectoral wage elasticities
estimated in Model (11.3.1), but the average of the sectoral output elasticities is found to
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be 0.9094. The q∗1 statistics of (11.2.6) that correspond to these figures, testing the null
hypotheses that the wage and output elasticities are equal to their ‘consensus’ values of
−1 and +1 respectively, are 29.25 and 0.48. Since both statistics are compared to the χ2

1

distribution, these results provide strong evidence with which to reject the null hypothesis
of no aggregation bias in the case of the wage elasticity but no evidence to reject the null
in the case of the output elasticity. In contrast, when the q∗2 test statistics of (11.2.10) are
calculated in which aggregation bias is defined with respect to the aggregate elasticities
obtained from the estimated version of (11.3.2), the test statistic takes the value of 6.82
in the case of the wage elasticity, and 3.36 in the case of the output elasticity. Again each
statistic is to be compared to the χ2

1 distribution, so that there remains strong evidence
with which to reject the null hypothesis of no aggregation bias in the case of the wage
elasticity, and there is now some marginal evidence with which to reject this hypothesis
for the output elasticity. These findings are also in line with those reported by Lee et al.
(1990b), using the OLS method.

The results just described, obtained using the statistics appropriate for models esti-
mated using the IV method derived in the previous sections of the article, confirm the
findings of PPK and Lee et al. (1990b) that a disaggregate model of employment demand
in the United Kingdom outperforms an aggregate model in terms of its predictive power
and that there is significant aggregation bias in the estimation of the key wage elasticity
of employment demand. The results substantiate the conclusions drawn previously by
demonstrating that they cannot be attributed simply to some neglected simultaneity bias.
The implications of those findings may be important for policy formulation, and certainly
the results indicate that further work at the disaggregate level may be worthwhile.
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Dréze, J. H. and J.-F. Richard (1983). Bayesian analysis of simultaneous equations
systems. In Z. Griliches and M. D. Intriligator (Eds.), Handbook of Econometrics.
Amsterdam: North Holland.

Durbin, J. (1954). Errors in variables. Review of International Statistical Institute 22,
23–32.

Durbin, J. (1970). Testing for serial correlation in least squares regression when some of
the regressors are lagged dependent variables. Econometrica 38, 410–421.

Durlauf, S. N. (1989). Output persistence, economic structure and the choice of stabi-
lization policy. Brookings Papers on Economic Activity 2, 69–116.

Durlauf, S. N. (1990). Spectral based testing of the martingale hypothesis. Stanford, CA
and NBER: Stanford University.

Durlauf, S. N. and P. C. B. Phillips (1986). Trends versus random walks in time series
analysis. New Haven, CT. Unpublished manuscript.

Edwards., J. B. and G. H. Orcutt (1969). Should aggregation prior to estimation be the
rule? Review of Economics and Statistics 51, 409–420.

Engle, R. F. (1982a). Autoregressive conditional heteroscedasticity, with estimates of the
variance of United Kingdom inflations. Econometrica 50, 987–1008.



218

Engle, R. F. (1982b). A general approach to Lagrange Multiplier diagnostics. Journal of
Econometrics 20, 83–104.

Engle, R. F. and C. W. J. Granger (1987). Co-integration and error correction: repre-
sentation, estimation and testing. Econometrica 55, 251–276.

Engle, R. F., D. F. Hendry, and J.-F. Richard (1983). Exogeneity. Econometrica 51,
277–304.

Evans, G. (1989). Output and unemployment dynamics in the United States 1950-85.
Journal of Applied Econometrics 4, 213–237.

Fernandez, R. (1981). A methodological note on the estimation of time series. Review of
Economics and Statistics 63, 471–475.

Fisher, D. (1968). The demand for money in britain: quarterly results 1951 to 1967.
Manchester School 36, 329–344.

Fisher, D. (1970). The instruments of monetary policy and the generalised trade-off
function for Britain, 1955–1968. Manchester School 38, 209–222.

Florens, J. P., M. Mouchart, and J.-F. Richard (1974). Bayesian inference in errors-in-
variables models. Journal of Multivariate Analysis 4, 419–452.

Florens, J. P., M. Mouchart, and J.-F. Richard (1979). Specification and inference in
linear models. CORE Discussion paper 7984.

Fuller, W. (1976). lntroductlon to Statlstical Time Series. New York, NY: Wiley.

Gardner, G., A. C. Harvey, and G. D. A. Phillips (1980). An algorithm for exact maximum
likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics 29, 311–322.

Geweke, J. (1981). The approximate slopes of econometric tests. Econometrica 49,
1427–1442.

Godfrey, L. G. (1978). Testing against general autoregressive and moving average error
models when the regressors include lagged dependent variables. Econometrica 46,
1293–1302.

Godley, W. A. H. and J. R. Shepherd (1964). Long-term growth and short-term policy.
National Institute Economic Review 29, 26–38.

Goodhart, C. A. E. (1980a). Monetary policy in the United Kingdom. In K. Holbik (Ed.),
Monetary Policy in Twelve Industrial Countries, Chapter 12. Boston, MA: Federal
Reserve Bank of Boston.

Goodhart, C. A. E. (1980b). Problems of monetary management: the U.K. experience.
In S. C. A (Ed.), Inflation, Depression and Economic Policy in the West, Lessons from
the 1970’s. Oxford: Basil Blackwell.

Goodhart, C. A. E. and A. D. Crockett (1970). The importance of money. Bank of
England Quarterly Bulletin 10, 159–198.



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 219

Granger, C. W. J. (1969). Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37, 424–438.

Granger, C. W. J. (1987). Implications of aggregation with common factors. Econometric
Theory 3, 208–222.

Granger, C. W. J. (1990). Aggregation of time-series variables: a survey. In T. S.
Barker and M. H. Pesaran (Eds.), Disaggregation in Econometric Modelling. London:
Routledge.

Granger, C. W. J. and R. F. Engle (1985). Dynamic model specification with equilibium
constraints: cointegration and error-correction. Discussion paper 85-18.

Granger, C. W. J. and M. J. Morris (1976). Time series modelling and interpretation.
Journal of the Royal Statistical Society A 139, 246–257.

Gregory, A. W. and M. R. Veall (1985). Formulating Wald tests of nonlinear restrictions.
Econometrica 53, 1465–1468.

Gregory, A. W. and M. R. Veall (1987). Formulating Wald tests of the restrictions implied
by the rational expectations hypothesis. Journal of Applied Econometrics 2, 61–68.

Grunfeld, Y. and Z. Griliches (1960). Is aggregation necessarily bad? Review of Eco-
nomics and Statistics 42, 1–13.

Gupta, K. L. (1971). Aggregate bias in linear economic models. International Economic
Review 12, 293–305.

Hacche, G. (1974). The demand for money in the United Kingdom: experience since
1971. Bank of England Quarterly Bulletin 14, 284–305.

Hall, R. E. (1978). Stochastic implications of the life cycle-permanent income hypothesis:
theory and evidence. Journal of Political Economy 86, 971–987.

Hansen, L. P. (1982). Large sample properties of generalised method of moments esti-
mators. Econometrica 50, 1029–1054.

Hansen, L. P. and K. J. Singleton (1982). Generalised instrumental variables estimation
of nonlinear rational expectations models. Econometrica 50, 1269–1286.

Harvey, A. C. (1981a). Finite sample prediction and overdifferencing. Journal of Time
Series Analysis 2, 221–232.

Harvey, A. C. (1981b). Time Series Models. New York: John Wiley.

Harvey, A. C. (1985). Trends and cycles in macroeconomics time series. Journal of
Business and Economic Statistics 3, 216–27.

Harvey, A. C., S. G. B. Henry, S. Peters, and S. Wren-Lewis (1986). Stochastic trends
in dynamic regression models: an application to the employment-output equation.
Economic Journal 96, 975–985.

Harvey, A. C. and C. R. McKenzie (1983). Missing observations in dynamic economet-
ric models. In E. Parzen (Ed.), Proceedings of Symposium on Time Series Analy-
sis of Irregularly Observed Data, Texas A&M University, February 1983. New York:
Springer-Verlag. (forthcoming).



220

Harvey, A. C. and G. D. A. Phillips (1979). Maximum likelihood estimation of regression
models with autoregressive-moving average disturbances. Biometrika 66, 49–58.

Harvey, A. C. and R. G. Pierse (1982). Estimating missing observations in economic time
series. London: LSE. Econometrics Programme Discussion Paper A33.

Harvey, A. C. and R. G. Pierse (1984). Estimating missing observations in economic time
series. Journal of the American Statistical Association 79, 125–131.

Haubrich, J. G. and A. W. Lo (1989). The sources and nature of long-term memory in
the business cycle. NBER: Working Paper Series. No. 2951.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica 46, 1251–1271.

Heckman, J. J. and G. Sedlacek (1988). Heterogeneity, aggregation, and market wage
functions: an empirical model of self-selection in the labour market. Journal of Political
Economy 93, 1077–1125.

Hendry, D. F. (1978a). GENRAM. A generalised maximum likelihood estimation program
for economertic systems. London School of Economics Computer Unit.

Hendry, D. F. (1978b). Technical manual for GIVE. London School of Economics Com-
puter Unit.

Hendry, D. F. (1979). The behaviour of inconsistent instrumental variables estimators in
dynamic systems with autocorrelated errors. Journal of Econometrics 9, 295–314.

Hendry, D. F. (1980). Predictive failure and econometric modelling in macroeconomics:
the transactions demand for money. In P. Ormerod (Ed.), Economic Modelling, pp.
217–242. London: Heinemann.

Hendry, D. F. and G. E. Mizon (1979). Serial correlation as a convenient simplification,
not a nuisance. Economic Journal 88, 549–563.

Hendry, D. F. and J.-F. Richard (1982). On the formulation of empirical models on
dynamic econometrics. Journal of Econometrics 20, 3–33.

Hendry, D. F. and J.-F. Richard (1983). The econometric analysis of economic time
series. International Statistical Review 51, 111–163.

Hotta, L. K., R. G. Pierse, and P. L. V. Pereira (1993). The effect of overlapping aggre-
gation in time series models. London: London Business School. Unpublished paper.

Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic
Dynamics and Control 12, 231–54.

Johansen, S. (1989). Likelihood based inference on cointegration: theory and applications.
Bagni di Lucca, Italy: Centro Interuniversitario di Econometria. Lecture notes.

Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with
missing observations. Technometrics 22, 389–395.

Kaldor, N. (1957). A model of economic growth. Economic Journal 67, 591–624.

Kaldor, N. (1961). Capital accumulation and economic growth. In F. A. Lutz and D. C.
Hague (Eds.), The Theory of Capital. London: Macmillan.



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 221

Kaldor, N. and J. A. Mirlees (1962). A new model of economic growth. Review of
Economic Studies 29, 174–192.

Keane, M., R. Moffitt, and D. Runkle (1988). Real wages over the business cycle: esti-
mating the impact of heterogeneity with micro data. Journal of Political Economy 96,
1232–1266.

Kelejian, H. H. (1980). Aggregation and disaggregation of non-linear equations. In
J. Kmenta and J. B. Ramsey (Eds.), Evaluation of Econometric Models. New York:
Academic Press.

Kennan, J. (1979). The estimation of partial adjustment models with rational expecta-
tions. Econometrica 47, 1441–1455.

Kiefer, N. and J.-F. Richard (1979). A Bayesian approach to hypothesis testing and
evaluating estimation strategies. CORE Discussion paper 7927.

King, R. G., C. I. Plosser, J. H. Stock, and M. Watson (1987). Stochastic trends and
economic fluctuations. NBER: Discussion Paper Series. No. 2229.

Kiviet, J. (1985). Model selection test procedures in a single linear equation of a dynamic
simultaneous system and their defects in small samples. Journal of Econometrics 28,
327–362.

Klein, L. R. (1953). A Textbook of Econometrics. Evanston, IL: Row Peterson and
Company.

Kloek, T. (1961). Note on convenient matrix notations in multivariate statistical analysis
and in the theory of linear aggregation. International Economic Review 2, 351–360.

Lafontaine, F. and K. J. White (1986). Obtaining any Wald statistic you want. Economics
Letters 21, 35–40.

Laidler, D. and M. Parkin (1970). The demand for money in the United Kindom 1956-
1967: preliminary estimates. Manchester School 38, 187–208.

Lancaster, K. J. (1966). Economic aggregation and additivity. In S. R. Krupp (Ed.), The
Structure of Economic Science. Englewood Cliffs, NJ: Prentice-Hall.

Layard, P. R. G. and S. J. Nickell (1985a). The causes of British unemployment. National
Institute Economic Review 111, 62–85.

Layard, P. R. G. and S. J. Nickell (1985b). Unemployment, real wages, and aggregate
demand in Europe, Japan, and the United States. Carnegie-Rochester Conference
Series on Public Policy 23, 143–202.

Layard, P. R. G., S. J. Nickell, and R. Jackson (1991). Unemployment: Macroeconomic
Performance and the Labour Market. Oxford: Oxford University Press.

Leamer, E. E. (1978). Specification Searches: Ad hoc Inference with Non-experimental
Data. New York: Wiley.

Lee, K. C., M. H. Pesaran, and R. G. Pierse (1989). Aggregation bias in labour de-
mand equations for the U.K. economy. In T. S. Barker and M. H. Pesaran (Eds.),
Disaggregation in Economic Modelling. London: Routledge. (forthcoming).



222

Lee, K. C., M. H. Pesaran, and R. G. Pierse (1990a). Aggregation bias in labour de-
mand equations for the U.K. economy. In T. S. Barker and M. H. Pesaran (Eds.),
Disaggregation in Economic Modelling, Chapter 6, pp. 113–49. London: Routledge.

Lee, K. C., M. H. Pesaran, and R. G. Pierse (1990b). Testing for aggregation bias in
linear models. Economic Journal (Supplement) 100, 137–150.

Lee, K. C., M. H. Pesaran, and R. G. Pierse (1991). Persistence of shocks and their
sources in a multisectoral model of UK output growth. Cambridge: DAE Discussion
Paper. No. 9114.

Lee, K. C., M. H. Pesaran, and R. G. Pierse (1992). Persistence of shocks and its sources
in a multisectoral model of U.K. output growth. Economic Journal 102, 342–356.

Lewbel, A. (1992). Aggregation with log-linear models. Review of Economic Studies 59,
635–642.

Lippi, M. and L. Reichlin (1991). Trend-cycle decompositions and measures of persistence;
does time aggregation matter? Economic Journal 101, 314–323.

Long, J. and C. I. Plosser (1987). Sectoral vs. aggregate shocks in business cycles. Amer-
ican Economic Review 77, 333–337.

Lovell, C. A. K. (1973). A note on aggregation bias and loss. Journal of Econometrics 1,
301–311.

Lubrano, M. and J.-F. Richard (1981). Specification of the prior density in single equation
errors-in-variables models: an application to a U.K. money demand equation. CORE
Discussion paper 8101.

Lucas, R. F. (1976). Econometric policy evaluation: a critique. In K. Brunner and A. M.
Meltzer (Eds.), The Phillips Curve and Labor Markets. Amsterdam: North Holland.
(Carnegie-Rochester Conference Series on Public Policy), Vol. 1.

MacKinnon, J. G. (1990). Critical values for cointegration tests. Kingston. Ont. and
University of California, San Diego. CA: Queen’s University. Unpublished manuscript.

Maddala, G. S. and F. D. Nelson (1974). Maximum likelihood methods for models of
markets in disequilibrium. Econometrica 42, 1013–1030.

Mankiw, N. G. and M. D. Shapiro (1985). Trends, random walks, and tests of the
permanent income hypothesis. Journal of Monetary Economics 16, 165–174.

Mankiw, N. G. and M. D. Shapiro (1986). Do we reject too often? small sample properties
of tests of rational expectations models. Economics Letters 20, 139–145.

McFadden, D. and F. Reid (1975). Aggregate travel demand forecasting from disaggregate
demand models. Transportation Research Board Records 534, 24–37.

Mills, T. C. (1991). Are fluctuations in U.K. output transitory or permanent? Manchester
School 59, 1–11.

Molana, H. (1991). The time series consumption function: error correction, random walk
and the steady-state. Economic Journal 101, 382–403.



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 223

Nelson, C. R. and H. Kang (1983). Pitfalls in the use of time as an explanatory variable
in regression. NBER: Technical Working Paper. No. 30.

Nelson, C. R. and G. J. Plosser (1982). Trends and random walks in macroeconomic time
series. Journal of Monetary Economics 10, 139–162.

Nickell, S. J. (1984). An investigation of the determinants of manufacturing employment
in the United Kingdom. Review of Economic Studies 51, 529–558.

Nijman, T. E. and F. C. Palm (1990). Predictive accuracy gain from disaggregate sam-
pling in ARIMA models. Journal of Business and Economic Statistics 8, 405–415.

Orcutt, G. H., H. W. Watts, and J. B. Edwards (1968). Data aggregation and information
loss. American Economic Review 58, 773–787.

Pagan, A. (1984). Econometric issues in the analysis of regressions with generated re-
gressors. International Economic Review 25, 221–247.

Pagan, A. (1986). Two stage and related estimators and their applications. Review of
Economic Studies 53, 517–538.

Palm, F. C. and T. E. Nijman (1994). Missing observations in the dynamic regression
model. Econometrica 52, 1415–1435.

Pearlman, J. G. (1980). An algorithm for the exact likelihood of a high-order
autoregressive-moving average process. Biometrika 67, 232–233.

Perron, P. (1988). Trends and random walks in macroeconomic time series: further
evidence from a new approach. Journal of Economic Dynamics and Control 12, 297–
332.

Perron, P. (1989a). The great crash, the oil price shock, and the unit root hypothesis.
Econometrica 57, 1361–1401.

Perron, P. (1989b). Testing for a random walk: a simulation experiment of power when the
sampling interval is varied. In B. Raj (Ed.), Advances in Econometrics and Modelling.
Dordrecht: Kluwer Academic Publishers.

Perron, P. (1991). Test consistency with varying sampling frequency. Econometric The-
ory 7, 341–368.

Pesaran, B. (1988a). Exact maximum likelihood estimation of regression models with
invertible general order moving average disturbances. London: National Institute of
Economic and Social Research. Discussion paper no. 36.

Pesaran, B. and M. H. Pesaran (1991a). Microfit 3.0: An Interactive Econometric Soft-
ware Package. Oxford: Oxford University Press. (forthcoming).

Pesaran, M. H. (1973). The small sample problem of truncation remainders in the esti-
mation of distributed lag models with autocorrelated errors. International Economic
Review 14, 120–131.

Pesaran, M. H. (1982). A critique of the proposed tests of the natural rate-rational
expectations hypothesis. Economic Journal 92, 529–554.



224

Pesaran, M. H. (1987). The Limits to Rational Expectations. Oxford: Basil Blackwell.

Pesaran, M. H. (1988b). Costly adjustment under rational expectations: a generalisation.
Los Angeles,. CA: UCLA. Working paper No. 480.

Pesaran, M. H. (1988c). On the policy ineffectiveness proposltion and a Keynesian alter-
native: a rejoinder. Economic Journal 98, 505–508.

Pesaran, M. H. (1991a). Costly adjustment under rational expectations: a generalisation.
Review of Economics and Statistics 73, 353–358.

Pesaran, M. H. (1991b). Estimation of a simple class of multivariate rational expectations
models: a test of the new classical model at a sectoral level. Empirical Economics 16,
211–232.

Pesaran, M. H. and B. Pesaran (1987a). Data-FIT: An Interactive Econometric Software
Package. Oxford: Oxford University Press.

Pesaran, M. H. and B. Pesaran (1987b). Microfit: An Interactive Econometric Software
Package. Oxford: Oxford University Press.

Pesaran, M. H. and B. Pesaran (1991b). Microfit 3.0: An Interactive Econometric Soft-
ware Package. Oxford: Oxford University Press.

Pesaran, M. H. and R. G. Pierse (1989). A proof of the asymptotic validity of a test for
perfect aggregation. Economic Letters . (forthcoming).

Pesaran, M. H., R. G. Pierse, and M. S. Kumar (1989a). Econometric analysis of aggre-
gation in the context of linear prediction models. Econometrica. (forthcoming).

Pesaran, M. H., R. G. Pierse, and M. S. Kumar (1989b). Econometric analysis of aggre-
gation in the context of linear prediction models. Econometrica 57, 861–888.

Pesaran, M. H., R. G. Pierse, and K. C. Lee (1991). Persistence, cointegration and aggre-
gation: a disaggregated analysis of output fluctuations in the U.S. economy. Journal
of Econometrics . (forthcoming).

Pesaran, M. H. and R. J. Smith (1989). A unified approach to estimation and orthog-
onality tests in linear single equation econometric models. Journal of Econometrics .
(forthcoming).

Pesaran, M. H. and R. J. Smith (1994). A generalised R2 and non-nested tests for
regression models estimated by the instrumental variable method. Econometrica. (in
press).

Pesaran, M. H. and R. P. Smith (1992). Esimating long run relationships from dynamic
heterogenous panels. Cambridge: University of Cambridge. DAE DP Series no. 9215.

Pesaran, M. H. and A. G. Timmerman (1990). The statistical significance of the pre-
dictability of excess returns on common stocks. CA: UCLA. Programme in Applied
Econometrics Discussion Paper no. 26.

Peterson, A. W. A. (1988). Employment. In T. S. Barker and A. W. A. Peterson (Eds.),
The Cambridge Multisectoral Dynamic Model, Chapter 10. Cambridge: Cambridge
University Press.



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 225

Phillips, P. C. B. (1987a). Time series regression with unit roots. Econometrica 55,
277–302.

Phillips, P. C. B. (1987b). Towards a unified asymptotic theory for autoregression.
Biometrika 74, 535–547.

Phillips, P. C. B. and P. Perron (1988). Testing for a unit root in time series regression.
Biometrika 75, 335–346.

Pierce, D. A. (1971). Distribution of residual autocorrelations in the regression model
with autoregressive-moving average errors. Journal of the Royal Statistical Society,
Series B 33, 140–146.

Pierse, R. G. (1982). PERSEUS: a user’s guide. Program manual available from the
author on request.

Powell, J. L. and T. M. Stoker (1985). The estimation of complete aggregation structures.
Journal of Econometrics 30, 317–344.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications. New York: Wiley.
(2nd Ed.).

Report, R. (1959). The Report of the Radcliffe Committee on the Working of the Monetary
System. London: Her Majesty’s Stationary Office. Cmnd. 827.

Reynolds, R. A. (1982). Posterior odds for the hypothesis of independence between
stochastic regressors and disturbances. International Economic Review 23, 479–490.

Richard, J.-F. (1979). Models with several regimes and changes in exogeneity. Review of
Economic Studies . (forthcoming).

Richard, J.-F. (1980). Models with several regimes and changes in exogeneity. Review of
Economic Studies 47, 1–20.

Richard, J.-F. (1984). Classical and Bayesian inference in incomplete simultaneous equa-
tion models. In D. F. Hendry and K. F. Wallis (Eds.), Econometrics and Quantitative
Economics. Oxford: Basil Blackwell.

Richard, J.-F. and H. Tompa (1980). On the evaluation of poly-t density functions.
Journal of Econometrics 12, 335–351.

Rosenberg, B. (1973). Random coefficient models: the analysis of a cross-section of
time series by stochastically convergent parameter regression. Annals of Economic and
Social Measurement 2, 399–428.

Rush, M. and D. Waldo (1988). On the policy ineffectiveness proposition and a Keynesian
alternative. Economic Journal 98, 498–503.

Ruud, P. A. (1984). Tests of specification in econometrics. Econometric Reviews 3,
211–242.

Said, S. E. and D. A. Dickey (1984). Testing for unit roots in autoregressive-moving
average models of unknown order. Biometrika 71, 599–607.



226

Sargan, J. D. (1964). Wages and prices in the United Kingdom; a study in econometric
methodology. In P. E. Hart, G. Mills, and J. K. Whitake (Eds.), Econometrics Analysis
for National Economic Planning, pp. 25–54. London: Butterworths.

Sargent, T. J. (1978). Estimation of dynamic labour demand schedules under rational
expectations. Journal of Political Economy 86, 1009–1044.

Sasaki, K. (1978). An empirical analysis of linear aggregation problems. the case of
investment behavior in Japanese firms. Journal of Econometrics 7, 313–331.

Schankerman, M. (1984). Comment on beggs’ paper. In Z. Griliches (Ed.), R&D, Patents
and Productivity. Chicago, Il: University of Chicago Press.

Schmidt, P. (1976). Econometrics. New York: Marcel Dekker Inc. Statistics: textbooks
and monographs Volume 18.

Schmookler, T. (1966). Invention and Economic Growth. Cambridge, MA: Harvard
University Press.

Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of
Business and Economic Statistics 7, 147–159.

Shapiro, M. D. and M. W. Watson (1988). Sources of business cycle fluctuations. NBER
Macroeconomics Annual .

Shiller, R. J. and P. Perron (1985). Testing the random walk hypothesis: power versus
frequency of observation. Economics Letters 18, 381–386.

Smyth, D. (1984). Short-term employment functions when the speed of the adjustment
depends on the unemployment rate. Review of Economics and Statistics 63, 138–142.

Stock, J. M. and M. W. Watson (1988). Journal of economic perspectives. Economet-
rica 2, 147–174.

Stoker, T. M. (1984). Completeness, distribution restrictions, and the form of aggregate
functions. Econometrica 52, 887–907.

Stoker, T. M. (1986a). Aggregation, efficiency and cross-section regression. Economet-
rica 54, 171–188.

Stoker, T. M. (1986b). Simple tests of distributional effects on macroeconomic equations.
Journal of Political Economy 94, 763–795.

Symons, J. S. V. (1985). Relative prices and the demand for labour in British manufac-
turing. Economica 52, 37–49.

Theil, H. (1954). Linear Aggregation of Economic Relations. Amsterdam: North-Holland.

Tompa, H. (1973). The iterative Simpson method of numerical integration. CORE Dis-
cussion paper 7336.

Treasury, H. M. (1985). The Relationship Between Wages and Employment; A Review
by Treasury Officials. London: Her Majesty’s Stationary Office.

van Daal, J. and A. H. Q. M. Merkies (1981). A simple proof of the Nataf theorem on
consistent aggregation. Economics Letters 7, 145–150.



M. H. Pesaran, R. G. Pierse, K. C. Lee / Choice between aggregate and disaggregate 227

Wallis, K. F. (1974). Seasonal adjustment and relations between variables. Journal of
the American Statistical Association 69, 18–31.

Watson, M. W. (1986). Univariate trending methods with stochastic trends. Journal of
Monetary Economics 18, 49–75.

White, H. (1984). Asymptotic Theory for Econometricians. Orlando, FL: Academic
Press.

Winters, L. A. (1980). Aggregation in logarithmic models: some experiments with UK
exports. Oxford Bulletin of Economics and Statistics 42, 36–50.

Wold, H. and L. Jurlen (1953). Demand Analysis. New York: Wiley.

Wren-Lewis, S. (1986). An econometric model of U.K. manufacturing employment using
survey data on expected output. Journal of Applied Econometrics 1, 297–316.

Wu, D.-M. (1973). Alternative tests of independence between stochastic regressors and
disturbances. Econometrica 41, 733–750.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and
tests for aggregation bias. Journal of the American Statistical Association 57, 348–368.

Zellner, A. (1969). On the aggregation problem: a new approach to a troublesome
problem. In K. A. Fox, J. K. Sengupta, and G. V. L. Narasimham (Eds.), Economic
Models, Estimation, and Risk Programming: Essays in Honour of Gerhard Tinter, pp.
365–378. London: Springer-Verlag.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York:
John Wiley & Sons.


	Front Matter
	Contents
	List of Figures
	List of Tables
	Preface
	I Exogeneity and Switching Regimes
	Multiple Regime Models with Switches in Exogeneity
	Introduction
	Exogeneity in Simple Models
	Exogeneity in a Single Regime
	FIML Estimation
	A Model of the Money Market

	Stability of a U. K. Money Demand Equation: a Bayesian Approach to Testing Exogeneity
	Introduction
	Single Equation Analysis of the Demand for Money
	The institution background: competition and credit control
	Specification search
	The data
	Notation
	Results

	Bivariate Instrumental Variables Analysis and Exogeneity
	Introduction
	Sampling theory analysis
	Bayesian analysis
	Elicitation of the prior density
	Shifts of regime

	Bivariate Analysis of the Demand for Money
	Specification of the reaction functions
	IVML estimation and exogeneity tests
	Elicitation of the prior densities
	Posterior densities

	Conclusions
	The Data Sources
	Notation for Density Functions
	Derivation of Formulae (2.3.24) and (2.3.25)
	Derivation of Formulae (2.3.25) and (2.3.26)
	Implementation of the Bayesian Analysis in Section 2.3.3


	II Temporal Aggregation
	Estimating Missing Observations in Economic Time Series
	Introduction
	Stationary Processes
	State space formulation of an ARMA model
	Missing observations on a stock variable
	Temporal aggregation of a flow variable

	Nonstationary Process
	Levels formulation
	Difference formulation

	Predicting Future Observations and Estimating Missing Observations
	Logarithmic Transformations
	Example
	Regression
	Conclusion

	Temporal Aggregation and the Power of a Unit Root
	Introduction and summary
	Asymptotic local power and temporal aggregation
	Power against fixed alternatives
	Monte Carlo simulation
	The cointegration of consumption and wealth


	III Sectoral Disaggregation
	Econometric Analysis of Aggregation in the Context of Linear Prediction Models
	Introduction
	The Basic Econometric Framework
	The Small Sample Bias of the Grunfeld-Griliches Criterion
	A Generalised Goodness-of-fit Criterion for Discriminating Between Aggregate and Disaggregate Models
	Tests of Aggregation
	A test of perfect aggregation

	Disaggregation and Specification Error
	Applications: Employment Demand Functions in the UK
	Results for the economy as a whole
	Results for the Manufacturing Industries

	Concluding Remarks
	Data Appendix: Data Sources and Definitions

	A proof of the asymptotic validity of a test for perfect aggregation
	Introduction
	The perfect aggregation test
	A proof of the asymptotic validity of the test

	Testing for Aggregation Bias in Linear Models
	Framework and Assumptions
	Direct Tests of Aggregation Bias
	A Misspecification Test of the Disaggregate Model
	An Application
	Mathematical Appendix

	Aggregation Bias in Labour Demand Equations for the UK Economy
	Industrial employment functions: theoretical considerations
	Modelling and measurement of technological change
	The aggregation problem: econometric considerations
	Empirical results
	Initialization of the dt() process
	Estimation of the decay rate parameter, 
	The estimated equations
	Comparison with the aggregate relations
	Predictive performance and aggregation bias

	Concluding remarks
	Appendix

	Persistence of Shocks and their Sources in a Multisectoral Model of UK Output Growth
	Measuring the persistence effects of different types of shocks in a multisectoral model
	Empirical results; an analysis of sectoral output growth in the UK economy

	Persistence, cointegration, and aggregation: a disaggregated analysis of output fluctuations in the U.S. economy
	Introduction
	Persistence measures in univariate models
	Measurement of persistence in a multisectoral model
	Cointegration and persistence
	Aggregation and persistence
	Measurement of persistence in models with macroeconomic shocks

	Empirical results: Measures of sectoral and aggregate persistence for the U.S. economy
	Testing for unit roots at the sectoral levels

	Estimates of the persistence measures
	Persistent effects of `monetary' and `other' shocks

	Proof of Proposition 1
	Derivation of the variance of the persistence measures
	Data

	Choice Between Disaggregate and Aggregate Specifications Estimated by Instrumental Variables Methods
	A Choice Criterion under IV Estimation
	Testing for Aggregation Bias under IV Estimation
	An Application to Sectoral Labour-Demand Determination


	Bibliography

