Lecture 2: Simple Linear Regression

R.G. Pierse

1 The Classical Linear Regression Model

Yi=a+bX; 4w , i=1---.n (1.1)

1.1 Assumptions of the Model

E(u)=0 , i=1,---,n (A1)
Ew) =0 , i=1,---,n (A2)
E(uuj) =0 , d,j=1,---.n j#i (A3)
X values are fized in repeated sampling (A4)

Y; is a random variable with the following properties:

2 The Ordinary Least Squares Estimator

Yi=a+bX;+e , i=1-n (2.1)
The OLS estimator is the estimator that minimises the sum of squared resid-
uals s = > " €2
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Differentiating this expression with respect to @ and b gives the two first order
conditions:
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Rearranging (2.2) gives
a 1Zn:Y len:X Y -bX (2.4)
a = — ;i — 0— ;= —_ .
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where Y =1 3™V, and X = 1 3" X; are the sample means of ¥ and X respec-
tively.
Substituting this expression into (2.3) and cancelling the factor of 2 gives

S XY -V X X~ XP=0
i=1 i=1

which can be rearranged as:

SroXY, —nY X

b= —2
> X —nX

or

Z?:l (Xi — X) (Yi — ?)
n <\ 2 )
Zi:l (Xi - X )
Alternatively, using lower case characters to denote deviations from sample means,
we can write

b=

(2.5)
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3 Properties of the OLS Estimator

Summing (1.1) and dividing by n gives

Y=a+bX+T



and, subtracting from (1.1),

or
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3.1 The OLS Estimators a and /b\ are Unbiased

EG)=b , E@=a

Proposition 3.1. E(b) =b
Proof. Substituting (3.1) into (2.6)
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where the second equality follows because )" x; =0 .
Taking expectations,
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but, from assumption (A1), the second term is zero so that
E®)=b
and the estimator b is unbiased.
Proposition 3.2. E(a) =a

Proof. Substituting (1.1) into (2.4)
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and, taking expectations,

n n

E@) =a+ (b— E(B))l > X+ % > B(w)

n
i=1 i=1
and the last two terms are zero, by (3.4) and (A1), so that
E(@) =a

and the estimator a is unbiased. O

3.2 The Variance of OLS Estimators

From (3.3)
b— E(b) = Liz Till L
Die1 T
so that

Var(d) = EG— ED)? = E (%)2

Expanding the numerator gives
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and from (A2) and (A3) it follows that
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Var(b) = ——= = =5 (3.6)
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Similarly, for @, from (3.5)
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It can be proved (although here the result will only be stated) that
2
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3.3 The OLS estimator of o2

The error variance o2 that appears in formulae (3.7) and (3.6) is itself unknown
and so in practice we need to estimate it. We now show that the estimator
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is an unbiased estimator of 2.
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Yo = Y (vi-a-bx,)?
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from (2.4). Substituting from (3.1)

n n

Ze? = Z(blﬁi—i‘ui—ﬂ—/b\l’i>2
=1 i=1

= =02 @+ (-0 —20-b) z(u;—7). (3.9)
i=1 i=1 i=1
Consider the last term in equation (3.9). Note that Y » | z;(u; — ) = >0 | zu,

o~

since wy ., x; = 0 and, from equation (3.3) > | xu; = Y i, 27(b—b), so that,
substituting and taking expectations,

n

E (i eg) = E(b— b)?iaﬁ + iE(ui —a)? —2E(b—b)?> 2. (3.10)
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From the expression for Var(b) (3.6) the first and third terms in (3.10) are o2 and
—20? respectively. Expanding the second term

Z E(u —u)? = Z E(u;)? — QEZ (usw) + nE(w?)

= Y E(w)’ - 2nE (w) + nE(@’)

=1

= Z E(u;)? — nE(@?) (3.11)

5



but

E(ﬂ%zE(%;ul) = Zu +ZZuu]

j#i i=1

so that, substituting into (3.11),

Z E(u; —u)* = Z E(u;)? —nE(u?®) = no® —o® = (n — 1)o?

Finally, substituting these expressions back into (3.10), we have

<Ze>—a + (n—1)0* — 20% = (n — 2)0?

so that 5 0 o
E(a\.Q) — (Zi:l ei) — 0,2
(n—2)

which shows that &2 is an unbiased estimator of the error variance 2.

4 The Gauss-Markov Theorem

Definition 4.1. A linear estimator is one that can be written in the form

where w; are fived weights.

Note that the OLS estimator b is a linear estimator since
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where the weights k; are given by
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Theorem 4.1. The OLS estimator b is the Best Linear Unbiased FEstimator
(BLUE) of the classical regresssion model. By best we mean the estimator in
the class that achieves minitmum variance.

k’i:



Proof. Taking expectations
E() = Y wE(Y;

so the conditions for unbiasedness of b are that

Xn:w,- =0 and Xn:w,-Xi =1 (4.1)

The variance of the estimator b is given by

Var Z w2Var =0 Z w;

We now use a trick and add and subtract the OLS Welghts k; from this expression
to give

Var(b) = O'Z i — ki + ki)?

but the third term in (4.2) is zero from the unbiasedness conditions (4.1) since
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Thus
Var(h) = aQZ(wi—ki)%ka?
_ Z Z
= o Z(wi — ki)? + Var(b) (4.3)

and the first term in (4.3) is greater than or equal to zero, achieving its lower
bound for the OLS estimator where

I
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w; = k; or equivalently b



5 Hypothesis Testing

In order to make statistical inferences on the parameter estimates @ , b and %we
must make a further assumption:

u; ~iid N(0,0%) |, i=1,---,n (A5)

that the errors u; are distributed as independent normal variables. It then follows
that, since y;, @ and b are all linear combinations of u;, they are also distributed
normally with

yi ~N(a+bX;,0%) , i=1,--,n
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To make this practical we need to replace the unknown parameter o2 with the
estimator 52 defined in (3.8). Then, defining

and
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and
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it can be shown that R
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where t,,_5 is the Student t distribution with n — 2 degrees of freedom. o and o
are known as the standard errors of the estimators @ and b respectively.
It can also be shown that

(-2 ~ X (55)

where x2_, is the Chi-squared distribution with n — 2 degrees of freedom. @ is
known as the equation standard error.



