
Lecture 4: Relaxing the Assumptions of the
Linear Model

R.G. Pierse

1 Overview

1.1 The Assumptions of the Classical Model

E(ui) = 0 , i = 1, · · · , n (A1)

E(u2i ) = σ2 , i = 1, · · · , n (A2)

E(uiuj) = 0 , i, j = 1, · · · , n j 6= i (A3)

X values are fixed in repeated sampling (A4)

The variables Xj are not perfectly collinear. (A4′)

ui is distributed with the normal distribution (A5)

In this lecture we look at the implications of relaxing two of these assumptions:
A2 and A3. Assumption A2 is the assumption of homoscedasticity, that the error
variance is constant over all observations. If this assumption does not hold then
the errors are heteroscedastic and

E(u2i ) = σ2
i , i = 1, · · · , n

where the subscript i on σ2
i indicates that the error variance can be different for

each observation.
Assumption A3 is the assumption that the errors are serially uncorrelated. If

this assumption does not hold then we say that the errors are serially correlated,
or equivalently, that they exhibit autocorrelation. Symbolically

E(uiuj) 6= 0 j 6= i
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2 Autocorrelation

Here we consider relaxing Assumption A3 and allowing the errors to exhibit au-
tocorrelation. Symbolically

E(uiuj) 6= 0 j 6= i . (2.1)

Autocorrelation really only makes sense in time-series data where there is a natural
ordering for the observations. Hence we assume for the rest of this section that
we are dealing with time-series data and use the suffices t and s, rather than i
and j to denote observations.

2.1 The First Order Autoregressive Model

The assumption (2.1) is too general to deal with as it stands and we need to have
a more precise model of the form that the autocorrelation takes. Specifically, we
consider the hypothesis that the errors follow a first-order autoregressive or AR(1)
scheme

ut = ρut−1 + εt , t = 1, · · · , T (2.2)

−1 < ρ < 1

where ut and εt are assumed to be independent error processes and εt has the
standard properties:

E(εt) = 0 , E(ε2t ) = σ2
ε , t = 1, · · · , T

and
E(εtεs) = 0 , t, s = 1, · · · , T s 6= t .

By successive substitution in (2.2) we can write

ut = εt + ρεt−1 + ρ2εt−2 + · · ·+ ρt−1ε1 + u0

where the initial value u0 is taken as fixed with u0 = 0. Hence it follows that
E(ut) = 0.

Consider the variance of ut where ut follows a first order autoregressive process:

E(u2t ) = E(ρut−1 + εt)
2

= ρ2 E(u2t−1) + E(ε2t ) + 2ρE(ut−1εt)

but the final term is zero since ut and εt are assumed independent and, in the first
term, E(u2t−1) = E(u2t ) since assumption A2 is still assumed to hold, so that

E(u2t ) =
σ2
ε

1− ρ2
.
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Similarly, the first order covariance

E(utut−1) = E(ρut−1 + εt) ut−1

= ρE(u2t−1) + ρE(ut−1εt)

=
σ2
ερ

1− ρ2

and, more generally,

E(utut−s) =
σ2
ερ

s

1− ρ2
, s ≥ 0 .

The autocorrelation between ut and ut−s decreases as the distance between the
observations, s, increases. If ρ is negative, then this autocorrelation alternates in
sign.

2.2 Generalised Least Squares

Consider the multiple regression model

Yt = β1 + β2X2t + · · ·+ βkXkt + ut , t = 1, · · · , T (2.3)

Lagging this equation and multiplying by ρ gives

ρYt−1 = ρβ1 + ρβ2X2,t−1 + · · ·+ ρβkXk,t−1 + ρut−1 (2.4)

and, subtracting from the original equation,

Yt − ρYt−1 = (1− ρ)β1 + β2(X2t − ρX2,t−1) + · · ·+ βk(Xkt − ρXk,t−1) + ut − ρut−1
or

Y ∗t = β∗1 + β2X
∗
2t + · · ·+ βkX

∗
kt + εt , t = 2, · · · , T (2.5)

where Y ∗t = Yt − ρYt−1 and X∗jt = Xjt − ρXj,t−1 are transformed variables known
as quasi-differences. By transforming the equation, the error process has been
tranformed into one that obeys all the classical assumptions so that, if the value
of ρ is known, estimation of (2.5) gives the BLUE of the model. This estimator is
known as the Generalised Least Squares or GLS estimator. Note that by quasi-
differencing we lose one observation from the sample, because the first observation
cannot be quasi-differenced. As long as T is large enough, we don’t need to worry
about this. For the simple regression model with only one explanatory variable

b̃ =

∑T
t=2(xt − ρxt−1)(yt − ρyt−1)∑T

t=2(xt − ρxt−1)2

is the GLS estimator and

V ar(̃b) =
σ2
ε∑T

t=2(xt − ρxt−1)2
.
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2.3 Estimating ρ: The Cochrane-Orcutt Procedure

In practice, the autoregressive coefficient ρ is unknown and so has to be estimated.
The Cochrane-Orcutt (1949) method is an iterative procedure to implement a
feasible GLS estimator and estimate both ρ and the regression parameters β
efficiently.

Step 1: Estimate the regression equation

Yt = β1 + β2X2t + · · ·+ βkXkt + ut , t = 1, · · · , T

by OLS and form the OLS residuals et.
Step 2: Run the regression

et = ρet−1 + vt .

to give the OLS estimator

ρ̂ =

∑T
t=2 etet−1∑T

t=2 e
2
t

Step 3: Form the quasi-differenced variables Y +
t = Yt − ρ̂Yt−1, and X+

j,t =
Xj,t − ρ̂Xj,t−1, j = 2, · · · , k and run the regression

Y +
t = β+

1 + β2X
+
2t + · · ·+ βkX

+
kt + ε+t , t = 2, · · · , T

This gives a new set of estimates for the β parameters, and a new set of residuals,
e+t .

Steps 2 and 3 are then executed repeatedly to derive new estimates of β and
ρ and this process continues until there is no change in the estimate of ρ obtained
from successive iterations. This is the full Cochrane-Orcutt iterative procedure.
However, a simplified version is the two-step procedure which stops after the second
step when the OLS estimator of ρ has been obtained.

2.4 Properties of OLS

In the presence of autocorrelation, OLS is no longer BLUE. However, it remains
unbiased since

E(̂b) = E

(∑T
t=1 xtyt∑T
t=1 x

2
t

)
= b+ E

(∑T
t=1 xtut∑T
t=1 x

2
t

)
= b

where the last equality uses the result that E(ut) = 0.
Because OLS is no longer BLUE, it follows that the OLS variance must be

larger than that of the BLUE GLS estimator. Hence, in hypothesis testing,
standard errors will be larger than they should be, so that coefficients will appear
less significant than they truly are. This will lead to incorrect inference.
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2.5 Testing for Autocorrelation

In practice we do not know whether or not we have autocorrelation. If autocorre-
lation is ignored, then although parameter estimates remain unbiased, inference
based on those estimates will be incorrect. It is thus important to be able to test
for autocorrelation in the OLS model. If autocorrelation is detected, then we can
re-estimate the model by GLS.

2.5.1 The Durbin-Watson test

This is the most famous test for autocorrelation. It is an exact test, in that
the distribution of the test statistic holds for all sizes of sample. However, it
is only valid when (a) the regressors X are fixed in repeated samples and (b) an
intercept is included in the regression. Note in particular that the first assumption
is violated if the regressors include any lagged dependent variables. The Durbin-
Watson (1951) statistic is given by the formula

d =

∑T
t=2(et − et−1)2∑T

t=2 e
2
t

. (2.6)

Expanding the numerator gives

d =

∑T
t=2 e

2
t +

∑T
t=2 e

2
t−1 − 2

∑T
t=2 etet−1∑T

t=2 e
2
t

' 2

(
1−

∑T
t=2 etet−1∑T

t=2 e
2
t

)
= 2(1− ρ̂)

since
∑T

t=2 e
2
t−1 ≡

∑T−1
t=1 e

2
t '

∑T
t=2 e

2
t . Note that 0 ≤ d ≤ 4, with E(d) = 2,

and d < 2 indicative of positive autocorrelation, and d > 2 indicative of negative
autocorrelation.

In general, the distribution of d is a function of the explanatory variables X,
so to compute the exact distribution of the statistic is very complicated. However,
Durbin and Watson were able to show that the distribution of d is bounded by
the distributions of two other statistics dL and dU which do not depend on X.
Critical values of the distributions of dL and dU were tabulated by Durbin and
Watson.

The procedure for applying the Durbin-Watson test for testing positive auto-
correlation is as follows:

d < dL : reject the null hypothesis of no positive autocorrelation

dL ≤ d ≤ dU : inconclusive region

d > dU : do not reject the null hypothesis of no autocorrelation
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Similarly, to test for negative autocorrelation:

d > 4− dL : reject the null hypothesis of no negative autocorrelation

4− dU ≤ d ≤ 4− dL : inconclusive region

d < 4− dU : do not reject the null hypothesis of no autocorrelation

In both cases, there is an inconclusive region where the test does not allow us to
say whether or not there is autocorrelation. For example, with T = 25 and k = 2,
the 5% critical values are dL = 1.29 and dU = 1.45 so that, for any value of d in
this range, the result of the test is indeterminate.

The inconclusive region in the Durbin-Watson test is clearly a nuisance. One
solution is to adopt the modified d test, where test values in the inconclusive region
are treated as rejections of the null hypothesis. The justification for this is that,
in general, with the types of variable encountered in economics, dU is likely to be
closer to the true distributionof d than dL. It can also be regarded as adopting a
cautious strategy with respect to autocorrelation.

2.5.2 Testing for Higher Order AR Processes: An LM test

Suppose that the error term ut is generated by the pth order autoregressive process

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + εt , t = 1, · · · , T

A test of the null hypothesis:

H0 : ρ1 = ρ2 = · · · = ρp = 0

can be constructed by the following procedure:
1. Estimate the regression model by OLS and obtain the residuals et.
2. Regress the residuals et on all the regressors, plus the lagged residuals,

et−1, et−2, · · · , et−p.
3. Obtain the R2 from this auxiliary regression.

Then it can be shown that

(T − p)R2 ∼a χ
2
p

is a test of H0 that is valid asymptotically, i.e. as T → ∞. In practice, this test
will be approximately valid as long as the sample size is ‘large’. Note that, in
order to perform the auxiliary regression in step 2, the first p observations need
to be dropped.

This test was derived independently by Breusch (1978) and Godfrey (1978)
and is sometimes called the Breusch-Godfrey or the Lagrange Multiplier (LM)
test for pth order autocorrelation. Note that this test does not depend on the
assumption of fixed regressors and so is still valid when the regressors include
lagged dependent variables.
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2.6 Other Models of Autocorrelation

So far we have considered only autoregressive models of autocorrelation. One
other important model of autocorrelation is the qth order moving average model
MA(q):

ut = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q , t = 1, · · · , T
This model has the property that

E(utut−s) = σ2
ε

q∑
j=s

θjθj−s , 0 ≤ s ≤ q

= 0 , s > q

so that there is no autocorrelation after the qth order. MA models of autocorre-
lation are generally more difficult to estimate than AR models. It can be shown
that the Breusch-Godfrey Lagrange Multiplier test of the previous section is also
a valid test of the hypothesis of no autocorrelation in the MA(p) model.

Finally, one other model of autocorrelation is the mixed autoregressive-moving
average model, or ARMA(p, q) model. This is a very general model of autocor-
relation.

3 Heteroscedasticity

Where autocorrelation is a problem of time-series data, heteroscedasticity is pri-
marily a problem of cross-sectional data. Here we consider relaxing assumption
A2 to allow the error variance to differ between observations, or symbolically,

E(u2i ) = σ2
i = k2i σ

2 , i = 1, · · · , n

where ki are fixed constants.

3.1 Generalised Least Squares

Consider again, the multiple regression model

Yi = β1 + β2X2i + · · ·+ βkXki + ui , i = 1, · · · , n (3.1)

Dividing through by ki gives

Yi
ki

=
β1
ki

+ β2
X2i

ki
+ · · ·+ βk

Xki

ki
+
ui
ki

(3.2)

or
Y ∗i = β∗1 + β2X

∗
2i + · · ·+ βkX

∗
ki + u∗i , i = 1, · · · , n (3.3)
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where Y ∗i = Yi/ki and X∗ji = Xji/ki are transformed variables and

V ar(u∗i ) = E

(
ui
ki

)2

=
1

k2i
E(u2i ) = σ2

so that the transformed error process is homoscedastic and obeys all the classical
assumptions. As long as the weights ki are known, estimation of (3.3) gives the
BLUE estimator of the heteroscedastic model. This estimator is the Generalised
Least Squares or GLS estimator. It is also known as the Weighted Least Squares
or WLS estimator.

3.2 The Properties of OLS

In the presence of heteroscedasticty, OLS is no longer BLUE. However, it is still
unbiased since E(ui) = 0. As with autocorrelation, the effect of heteroscedasticity
is that the estimated variance is larger than that of the ‘correct’ model so that
inference based on OLS estimates will be incorrect.

3.3 Testing for Heteroscedasticity

There are several tests of heteroscedasticity available, based on different assump-
tions about the form that the heteroscedasticity takes.

3.3.1 The Goldfeld-Quandt Test

Suppose that the heteroscedasticity is proportional to the square of one of the
regressors Xj:

σ2
i = σ2X2

j,i

The Goldfeld-Quandt (1972) test is based on the following procedure:
1. Order the observations by the variable Xj.
2. Omit the central c observations and divide the sample into two groups,

each of (n− c)/2 observations.
3. Fit separate regressions to the two sub-samples, obtaining the Residual

Sum of Squares RSS1 and RSS2 respectively, where RSS2 is the sub-sample
corresponding to the largest observations of Xj.

Then on the null hypothesis of homoscedasticity

RSS2

RSS1

∼ F(n−c−2k)/2,(n−c−2k)/2

This test is an exact test. When there is more than one regressor, then the
choice of the variable on which to order: Xj is arbitrary, and the assumption that
heteroscedasticity is related to a single regressor is less appealing.
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3.3.2 The Breusch-Pagan-Godfrey Test

This test is based on the assumption that the heteroscedasticity takes the form

σ2
i = σ2 + α1Z1i + · · ·+ αmZmi

where the Zj’s are non-stochastic variables. Some or all of the Xj’s may be
included in Z. The null hypothesis of homoscedasticity is equivalent to a test of
the hypothesis that

H0 : α1 = · · · = αm = 0 .

The test is based on the following procedure:
1 Estimate the regression model by OLS and obtain the residuals ei.
2. Construct the variables pi = e2i / σ̃

2where σ̃2 =
∑n

i=1 e
2
i /n.

3. Run the regression

pi = α0 + α1Z1i + · · ·+ αmZmi + vi

and obtain the explained sum of squares ESS.
Then, it can be shown that

ESS

2
∼a χ

2
m

is a test of H0 that is valid asymptotically, i.e. as n → ∞. In practice, this test
will be approximately valid as long as the sample size is ‘large’.

3.3.3 The White test for general heteroscedasticity

This is a test for general heteroscedasticity of unknown form developed by White
(1980). It is based on a regression of the squared residuals e2t on all (non-
redundant) cross-products of the regressors XjiXli, for all j = 1, · · · , k, and
l = 1, · · · , k. The auxiliary regression takes the form:

e2i = γ1X
2
1i + γ2X1iX2i + · · ·+ γkX1iXki

+γk+1X
2
2i + γk+2X2iX3i + · · ·+ γ2k−1X2iXki + · · ·+ γk(k+1)/2X

2
ki + ui.

Note that since X1i is an intercept, X2
1i = X1i and the first k terms are just

the original equation regressors. The test statistic is based on the R2 from this
auxiliary regression and is asymptotically valid. White (1980) showed that, on
the null hypothesis of no heteroscedasticity,

nR2 ∼a χ
2
k(k+1)/2−1.
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When there are a large number of regressors, the number of regressor cross-
products k(k + 1)/2 can quickly become very large and this test may be inprac-
ticable. An alternative version of the test using only the squared regressor terms
X2

ji is also available and takes the form

e2i = γ1X
2
1i + γ2X

2
2i + · · ·+ γkX

2
ki + ui.

For this case we can show that, on the null hypothesis of no heteroscedasticity,

nR2 ∼a χ
2
k−1.

3.4 White heteroscedasticity-consistent standard errors

The problem with OLS estimation under heteroscedasticity is that the estimated
standard errors are incorrect so that inference is invalid. Efficient estimation
requires knowing the form of the heteroscedasticity. White (1980) derived an
estimator for the variance of the OLS coefficients which remains consistent under
the hypothesis of general heteroscedasticity. It does not require that the form of
the heteroscedasticity be known. White standard errors are computed by most
regression packages. The formula, for the simple regression case, is

Ṽ ar(̂b) =

∑n
i=1 x

2
i e

2
i

(
∑n

i=1 x
2
i )

2

3.5 ARCH: Heteroscedasticity in Time Series Models

As a rule, heteroscedasticity is a cross-sectional, rather than a time-series problem.
However, Engle (1982) has proposed the following model for heteroscedasticity in
a time-series model:

V ar(ut) = σ2
t = α0 + α1u

2
t−1 + · · ·+ αpu

2
t−p

This is known as the pth order Autoregressive Conditional Heteroscedastic model
or ARCH(p) model. A test for homoscedasticity in this model is based on the R2

from the following regression of the squared OLS residuals

û2t = α̂0 + α̂1û
2
t−1 + · · ·+ α̂pû

2
t−p .

It can be shown that
TR2 ∼a χ

2
p

This is another example of a Lagrange Multiplier test whose distribution is valid
asymptotically.
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4 Autocorrelation as a Symptom of Misspecifi-

cation

Both autocorrelation and heteroscedasticity lead to a systematic pattern in the
OLS residuals. The tests developed above are based on looking for particular
systematic patterns in the residuals as evidence for autocorrelation or for het-
eroscedasticity. However, finding such a pattern may be evidence of something
else. In particular, omitting a variable from a regression, the most common form
of misspecification, will often lead to autocorrelation in the equation residuals,
if the omitted variable is itself autocorrelated, and this is generally the case in
economic variables. This suggests that tests for autocorrelation can also be inter-
preted as more general tests of misspecification, and that finding evidence of serial
correlation should not necessarily lead to the automatic adoption of the GLS es-
timator but to a more general reconsideration of the specification of the equation.
An apposite quotation reflects the current view among econometricians:

There is no universally effective way of avoiding misinterpreting
misspecification of the regression function as the presence of serially
correlated errors. R. Davidson and J.G. MacKinnon (1993)
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