
Lecture 5: Omitted Variables, Dummy Variables
and Multicollinearity

R.G. Pierse

1 Omitted Variables

Suppose that the ‘true’ model is

Yi = β1 + β2X2i + β3X3i + ui , i = 1, · · · , n (1.1)

where β3 6= 0 but that the researcher mistakenly omits the variable X3 and esti-
mates the model

Yi = β1 + β2X2i + ui . (1.2)

What is the effect of omitting X3? The OLS estimator of β2 in (1.2) is

β̂2 =

∑n
i=1 x2iyi∑n
i=1 x

2
2i

and, substituting into (1.1)

β̂2 = β2 +

∑n
i=1 x2ix3i∑n
i=1 x

2
2i

+

∑n
i=1 x2iui∑n
i=1 x

2
2i

.

Taking expectations,

E(β̂2) = β2 +

∑n
i=1 x2ix3i∑n
i=1 x

2
2i

.

In general, the second term will not be zero so that E(β̂2) 6= β2 and the estimator
is biased. Only in the special case that

ĉov(X2, X3) =

∑n
i=1 x2ix3i
n− 1

= 0

will β̂2 be unbiased. This is where the omitted variable is completely uncorrelated
with the included regressors.
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Consider the residuals from the regression (1.2) which are

ei = yi − β̂2x2i

= x3iβ3 −
x2i
∑n

i=1 x2ix3i∑n
i=1 x

2
2i

+
x2i
∑n

i=1 x2iui∑n
i=1 x

2
2i

.

Note that E(ei) 6= 0, even in the special case that
∑n

i=1 x2ix3i = 0.
Misspecification due to omitting a variable leads to biased estimators and to

residuals which will exhibit a systematic pattern. This will often be reflected in
evidence of significant serial correlation.

2 Including Redundant Variables

Suppose the reverse situation to that of the last section. The ‘true’ model is now

Yi = β1 + β2X2i + ui (2.1)

but the researcher mistakenly includes the redundant variable X3 and estimates
the model

Yi = β1 + β2X2i + β3X3i + ui . (2.2)

What is the effect of including X3 when in fact β3 = 0 ? Estimating (2.2) results
in the estimators

β̂2 =

∑
yix2i

∑
x23i −

∑
yix3i

∑
x2ix3i∑

x22i
∑
x23i − (

∑
x2ix3i)

2

and

β̂3 =

∑
yix3i

∑
x22i −

∑
yix2i

∑
x2ix3i∑

x22i
∑
x23i − (

∑
x2ix3i)

2 .

and it is easy to show that

E(β̂2) = β2 and E(β̂3) = β3 = 0 .

In this case, the estimators are unbiased. However, because a redundant variable
has been included, the estimated variances will be larger than those of the BLUE
estimators from the ‘true’ model (2.1) and estimated standard errors will be larger
than they should be.

Thus including an irrelevant variable is far less serious an econometric problem
than excluding a relevant variable.
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3 Dummy Variables

Sometimes there may be variables that affect the dependent variable but that
cannot be readily quantified. One way of incorporating such effects into the re-
gression model is by the use of dummy variables. The non-quantifiable effect is
represented by a variable that takes the value either of one or zero; one repre-
senting the presence of the effect and zero its absence. Examples of effects that
are often proxied by dummy variables are wars, seasonal effects or dichotomous
variables such as gender.

3.1 Dichotomous dummies

Suppose a researcher suspects that the relationship between earnings and age is
affected by a person’s sex. This could be tested by running the regression:

Yi = β1 + β2Xi + β3Di + ui

where Yi is earnings, Xi is age, and Di is a dummy variable taking the value 1 for
a woman, and 0 for a man. Then a significant t-ratio for β̂3 would indicate that
gender is a significant factor in the relationship. Considering the two groups of
observations Di = 1 and Di = 0 separately, we have that:

Yi = (β1 + β3) + β2Xi + ui , Di = 1

and
Yi = β1 + β2Xi + ui , Di = 0 .

Thus the dummy coefficient β3 allows a different intercept term for women and
for men. If the estimated coefficient β̂3 were found to be significantly positive it
would indicate that, on average, women earn β̂3 more than men at all ages. (Vice
versa for a significant negative coefficient.)

Suppose instead, that the researcher suspected that gender affects, not the
intercept but the slope of the relationship between age and earnings. Consider
the alternative regression

Yi = β1 + β2Xi + β3DiXi + ui

where DiXi is the product of the dummy variable and age, and is treated as a
separate variable. Considering the two groups of observations Di = 1 and Di = 0
separately, we have that:

Yi = β1 + (β2 + β3)Xi + ui , Di = 1

and
Yi = β1 + β2Xi + ui , Di = 0 .

Now a significant value for the dummy coefficient β3 represents a different slope
term for the two groups.
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3.2 One-off dummies

Dummies are also used to pick up the effects of one-off events such as wars or
strikes. A dummy variable that takes a non-zero value in only one single obser-
vation, allows the regression to explain that observation perfectly, so that ei = 0
for the dummy observation. That observation will have no influence on the other
estimated parameters. One-off dummies can thus be used to eliminate the effect
of outliers on the regression.

3.3 Interactive dummies

When there is more than one dummy variable, then it is possible that the com-
bined effect of both dummies is more than the sum of the individual effect of each
alone. This can be allowed for by considering interactive dummies. Suppose there
are two dummies D1 and D2. Then the product D1D2 represents the interaction
between the two and is only non-zero when both D1 and D2 are non-zero. If this
product is significant in addition to the individual dummies, then this means that
interactive effects are important.

3.4 Seasonal dummies

Many economic variables are highly seasonal. The seasonal effects in the depen-
dent variable are often proxied by a set of seasonal dummies for the s seasons

Di = 1 in season i , i = 1, · · · , s− 1

= 0 otherwise

Note that only s− 1 seasonal dummies are needed. This is because
∑s

i=1Di = 1
and so would be perfectly collinear with the intercept. In general, when there are
q categories into which the dependent variable can fall, then only q − 1 dummy
variables are needed. This avoids the so-called dummy variable trap.

3.5 Pooled Time Series-Cross-Sectional data

Dummy variables are very useful in dealing with data sets that combine time-series
with cross-sectional data such as the model

Yit = β1 + β2Xit + uit , i = 1, · · · , n t = 1, · · · , T.

This model assumes that the parameters β1 and β2 are the same over all time
periods and all cross-sectional units. Suppose we suspect that the intercept term
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may differ over cross-sectional units. Then we can estimate the model

Yit = β1 + β2Xit +
n−1∑
j=1

δjD
j
it + uit

where the n− 1 variables Dj, j = 1, · · · , n− 1 take the value 1 where i = j, and
zero otherwise. The hypothesis that the intercept is the same for all cross-sections
can be tested by a joint test of

H0 : δ1 = δ2 = · · · = δn−1 = 0 .

4 Multicollinearity

One of the assumptions of the Classical model is that

The variables Xj are not perfectly collinear. (A4′)

Perfect collinearity occurs when there is one or more variables Xm such that

Xmi =
∑
j 6=m

cjXji , i = 1, · · · , n

where cj are fixed constants. Consider the special case where k = 3:

X3i = c1 + c2X2i

or, subtracting sample means,
x3i = c2x2i

so that ∑
x2ix3i = c2

∑
x22i =

1

c2

∑
x23i

and the squared sample correlation coefficient between X2i and X3i is

r223 =
(
∑
x2ix3i)

2∑
x22i
∑
x23i

= 1 .

What happens if we attempt to estimate the model by OLS ? The formulae for
the variances of the OLS estimators can be written as

V ar(β̂2) =
σ2∑

x22i(1− r223)
and V ar(β̂3) =

σ2∑
x23i(1− r223)

so that, in this case, the variance is infinite and the OLS estimators cannot be
computed.

What happens if the collinearity is ‘high’ but less than perfect? Then clearly
the variance of OLS estimator will also be ‘high’. This is known as the problem
of multicollinearity. However, as Kmenta (1986) has stated
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Multicollinearity is a question of degree and not of kind. The
meaningful distinction is not between the presence and the absence of
multicollinearity, but between its various degrees.

4.1 Recognising Multicollinearity

Two accepted symptoms of multicollinearity are (i) ‘High R2 but few significant
t ratios’ and (ii) ‘High correlations among regressors’. However, both these mea-
sures can be affected by a simple renormalisation of the regression. For example,
consider the simple model

Ŷ = â1X1 + â2X2

where [
â1
â2

]
=

[
2
1

]
, V ar

[
â1
â2

]
=

[
1 −0.9
−0.9 1

]
so that t(â1) = 2 and t(â2) = 1 and the latter is insignificant. This model can be
renormalised as

Ŷ = b̂1(X1 −X2) + b̂2X2

where [
b̂1
b̂2

]
=

[
â1

â1 + â2

]
=

[
2
3

]
, V ar

[
b̂1
b̂2

]
=

[
1 0.1

0.1 0.2

]
and both renormalised coefficients now have significant t-ratios. The renormalisa-
tion has no effect on R2 but reduces the correlation between the regressors from
−0.9 to 0.22. This example shows that neither of the standard ways of recognising
multicollinearity is foolproof.

Multicollinearity is essentially a sample problem. The theoretical properties
of OLS estimators are not affected by multicollinearity. In practice, however, it
may make inference difficult in a particular sample. For example it will be very
difficult to find a significant coefficient on an economic variable in a sample in
which that variable is not changing significantly. The reason is that the variable
will appear highly collinear with a constant. Similarly, if all regressors are moving
in a similar way, it will be hard to attribute the effects of each one individually
even though, jointly, they should be significant.

4.2 Degrees of Freedom

A related problem to that of multicollinearity is that of insufficient degrees of
freedom. In the limit
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