
Lecture 7: Common Factor Tests and Stability
Tests

R.G. Pierse

1 Common factor Tests

Consider again the regression model with first order autoregressive errors from
lecture 4:

Yt = β1 + β2X2t + · · ·+ βkXkt + ut , t = 1, · · · , T (1.1)

and
ut = ρut−1 + εt , t = 1, · · · , T (1.2)

where
−1 < ρ < 1 .

The transformed version of this equation is

Yt − ρYt−1 = (1− ρ)β1 + β2(X2t − ρX2,t−1) + · · ·+ βk(Xkt − ρXk,t−1) + εt (1.3)

where εt obeys all the assumptions of the classical model. Note that this model
has k + 1 parameters.

Compare this with the unrestricted dynamic model:

Yt = γ1 + ρYt−1 + β2X2t + · · ·+ βkXkt + γ2X2,t−1 + · · ·+ γkXk,t−1 + εt . (1.4)

which has 2k parameters. Equation (1.3) is a special case of equation (1.4) that
satisfies the k − 1 nonlinear restrictions

γj = −ρβj , j = 2, · · · , k .

This suggests that the autoregressive model can be viewed as a restricted form
of a dynamic model, satisfying a particular type of parameter restriction known
as common factor restrictions. Evidence of serial correlation from the residuals
from estimating equation (1.1) may indicate omission of any or all of the variables
Yt−1, X2,t−1, · · · , Xk,t−1 rather than indicating the AR(1) model (1.3).
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Sargan (1964) and Hendry and Mizon (1978) suggest a test of common factor
restrictions in the model (1.4). This test is based on the statistic

T log

(
RSSr

RSSu

)
where RSSu is the residual sum of squares from the unrestricted model (1.4) and
RSSr is the residual sum of squares from the restricted model (1.3). This test
statistic is a form of Likelihood Ratio or LR test and it can be shown that

T log

(
RSSr

RSSu

)
∼a χ

2
k−1 (1.5)

This is a test of the restrictions implicit in the autoregressive errors hypothesis.
Sargan and Hendry and Mizon suggest the following testing procedure on finding
significant autocorrelation in OLS estimation of (1.1)

(a) Estimate the unrestricted model (1.4)
(b) Test for common factors using the test (1.5)
(c) Only if the null hypothesis is not rejected then estimate the AR(1)

model (1.3) by Cochrane-Orcutt.

2 Stability tests

Consider the classical regression equation

yt = β1 + β2X2t + · · ·+ βkXkt + ut , t = 1, · · · , T . (2.1)

When this equation is estimated, it is assumed that the model parameters β
are constant over the entire sample period. This is the assumption of parameter
constancy or stability. Two different tests relating to this hypothesis have been
proposed.

2.1 F -Test for coefficient stability

Split the data period into two sub-samples: 1, · · · , T1 and T1 + 1, · · · , T with T1
and T2 = T −T1 observations respectively. Then, as long as T1 > k and T2 > k so
that the two sub-samples are both long enough to permit estimation, the equation
can be estimated separately for each sub-sample giving regression equations

yt = β1
1 + β1

2X2t + · · ·+ β1
kXkt + ut , t = 1, · · · , T1 (2.2)

and
yt = β2

1 + β2
2X2t + · · ·+ β2

kXkt + ut , t = T1 + 1, · · · , T (2.3)
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respectively.
A test for stability is then a test of the hypothesis that

H0 : β1
i = β2

i , i = 1, · · · , k .

In this case, pooling the two sub-samples to create the regression equation (2.1)
is justified.

A test of the hypothesis of parameter constancy can be based on the residual
sum of squares from the two regressions (denoted as RSS1 and RSS2 respectively),
and the residual sum of squares of the regression on the pooled data (RSS). On
the assumption that the two sub-samples are independent, then

(RSS −RSS1 −RSS2)

(RSS1 +RSS2)

T − 2k

k
∼ Fk,T−2k .

This test is known as the F-test for coefficient stability. An important maintained
assumption in this analysis is that the error variance of ut in the two-sub-samples
is equal. If this is not the case then the pooled regression equation will be het-
eroscedastic and the test will be invalid. Note that this test is sometimes confus-
ingly referred to as a ‘Chow’ test although it is quite different from the test in the
next section.

2.2 Chow test of predictive failure

Chow (1960) proposes a test for predictive failure. The test is based on estimation
of the model on the first sub-sample, and over the complete sample. Thus it can
be computed even when T2 < k so that there are two few observations in the
second sub-sample to permit separate estimation.

Chow shows that

(RSS −RSS1)

RSS1

T − k
T2

∼ FT2,T−k

This test is equivalent to a joint test on the dummies D1 to DT2 being equal to
zero in the model

yt = β1 + β2X2t + · · ·+ βkXkt + γ1D1 + · · · γT2DT2 + ut , t = 1, · · · , T . (2.4)

where Dj is a dummy variable taking the value 1 in period T1 + j and zero
elsewhere. Pesaran, Smith and Yeo (1985) provide a useful interpretation of the
Chow test.

The two hypotheses tested in the coefficient stability test and the predictive
failure test are quite different. The first tests whether the estimated parameters in
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the two sub-samples are significantly different from each other. The Chow test, on
the other hand tests whether the parameters estimated over the first sub-sample
continue to predict over the second sub-sample.

Failure of either coefficient stability or predictive failure test may be inter-
preted as evidence of a structural break in the data. The Great Crash, the oil
price shocks of the 1970s and exchange rate revaluations in a fixed exchange rate
regime, are all examples of events which might be expected to cause such struc-
tural breaks at specific points in time. However, unless there is good a priori
reason to expect that such a structural break has occurred, then failure of these
tests is more likely to be evidence of misspecification of the equation. Conversely,
evidence of coefficient stability and predictive power outside the sample period is
encouraging evidence in favour of the estimated equation.

3 Diagnostic Tests in EViews

The econometrics package EViews makes available several standard diagnostic
tests after running any OLS regression. Some of these tests are presented in
two forms: an LM form which is asymptotically distributed as chi-squared with
appropriate degrees of freedom, and an F version which is derived from the chi-
squared form by the relationship:

F (p) =
T − k
p

χ2(p)

n− χ2(p)
∼a Fp,T−k

where χ2(p) is the original chi-squared statistic with p degrees of freedom, T
is the number of observations, and k is the number of regressors in the auxil-
iary regression from which the chi-squared statistic is calculated. The F version,
sometimes known as a ‘modified’ LM statistic, will generally have more power is
small samples.

3.1 Serial Correlation

EViews provides the Breusch-Godfrey Lagrange Multiplier test for autocorrela-
tion, Breusch (1978) and Godfrey (1978), as a serial correlation diagnostic statis-
tic, based on the regression of the OLS residuals et on the k regressors and the
lagged residuals et−1,et−2,· · · ,et−p. The choice of p is left to the user but, conven-
tionally, we would choose p = 4 for quarterly data, and p = 1 for annual data.
The LM form of the statistic, based on the R2 from this auxiliary regression, is
given by

(T − p)R2 ∼a χ
2(p) .
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The null hypothesis is that there is no serial correlation, the alternative hypothesis
that there is serial correlation of pth order. In EViews, this test is selected from
the Residual tests menu on the View button in the equation window.

3.2 Heteroscedasticity

EViews provides the White (1980) statistic as a test for general heteroscedasticity
of unknown form. It is based on a regression of the squared residuals e2i on all
(non-redundant) cross-products of the regressors XjiXli, for all j = 1, · · · , k, and
l = 1, · · · , k. The auxiliary regression takes the form:

e2i = γ1X
2
1i + γ2X1iX2i + · · ·+ γkX1iXki

+γk+1X
2
2i + γk+2X2iX3i + · · ·+ γ2k−1X2iXki + · · ·+ γk(k+1)/2X

2
ki + ui.

The test statistic is based on the R2 from this auxiliary regression and is given by

nR2 ∼a χ
2
k(k+1)/2−1.

An alternative version of the test, dropping the cross-products XjiXli, l 6= j, is
based on the regression

e2i = γ1X
2
1i + γ2X

2
2i + · · ·+ γkX

2
ki + ui.

and is given by
nR2 ∼a χ

2
k−1.

The null hypothesis of these tests is that there is no heteroscedasticity so that
errors are homoscedastic. In EViews, this test is selected from the Residual tests
menu on the View button in the equation window. Both forms of the test (either
including or excluding cross–product terms) are available.

3.3 Functional Form

EViews provides Ramsey’s RESET test, Ramsey (1969), which is a statistic for
testing for functional form misspecification. The test is is based on the R2 from
an an auxiliary regression of et on the k regressors and ŷ2t , the squared fitted
values from the original regression. The null hypothesis of this test is that the
equation has the correct functional form, and the alternative hypothesis that there
is functional misspecification. The statistic is is given by

(T − 1)R2 ∼a χ
2(1) .

In EViews, this test is selected from the Stability tests menu on the View button
in the equation window.
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3.4 Normality

EViews provides the Jarque-Bera test, Jarque and Bera (1980), as a test for
normality of the residuals. This test is based on the estimated moments of the
residuals, given by

µj =
1

T

T∑
t=1

ejt , j = 1, 2, · · · .

Note that µ1 is the estimated mean of the residuals and µ2 their estimated vari-
ance. The third moment µ3 measures skewness and the fourth moment µ4 mea-
sures kurtosis. The test is based on the fact that, for a normal distribution, these
moments have a particular form. The test is given by

T

[
µ2
3

6µ3
2

+
1

24

(
µ4

µ2
2

− 3

)2

+
3µ2

1

2µ2

− µ3µ1

µ2
2

]
∼a χ

2(2) .

The null hypothesis of the test is that the residuals are normally distributed,
against the alternative that the distribution is non-normal. In EViews, this test is
selected from the Residual tests menu on the View button in the equation window.
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