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1 Introduction

Definition 1.1. Weak stationarity
A variable Yt is weakly stationary if its mean and its variance are constant

over time, and its autocovariances cov(YtYt−s) are a function solely of s and not
of t.

The assumption of stationarity is necessary for econometric estimators and
tests to have the standard distributions. Most economic variables do not satisfy
the conditions of weak stationarity. In this case they need to be transformed in
order to make them stationary.

1.1 The Autoregressive model

Consider the autoregressive model from lecture 6 with the addition of an intercept
term:

Yt = c+ ρYt−1 + ut , t = −∞, · · · , 0, 1, · · · , T (1.1)

where
−1 < ρ < 1 .

Note that instead of defining an initial condition Y0 as previously, we now assume
that the process has been running indefinitely from t = −∞. The error process
ut retains all the usual assumptions of the classical model. The parameter ρ is
known as the root of the autoregressive process. Substituting for lagged Yt, we
get

Yt = c(1 + ρ+ ρ2 + ρ3 + · · · ) + ut + ρut−1 + ρ2ut−2 + ρ3ut−3 + · · ·
so that

E(Yt) = c(1 + ρ+ ρ2 + ρ3 + · · · )
=

c

1− ρ
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and

cov(YtYt−s) = σ2ρs(1 + ρ2 + ρ4 + ρ6 + · · · )

=
σ2ρs

1− ρ2
, s ≥ 0 .

This model satisfies the conditions of weak stationarity since both mean and
autocovariances are constant over time.

1.2 The Random Walk Model

Now consider what happens to the properties of the model if ρ = 1. We now revert
to assuming that the process started at time t = 0 with fixed initial condition
Y0 = 0. Then

Yt = c+ Yt−1 + ut , t = 1, · · · , T (1.2)

so that, substituting for lagged Yt

Yt = tc+
t∑

i=1

ui + Y0 .

In this model E(Yt) = tc so that it is not constant over time and

E(Y 2
t ) =

t∑
i=1

E(u2i ) = tσ2 .

so that the variance increases as t increases. This process (1.2) is thus no longer
stationary and is known as a random walk model with drift. The drift term is
the intercept c and if c = 0 then the process is known as a pure random walk
model without drift. In this case, the mean is constant although the variance still
increases over time. Note that if we had assumed that the random walk process
had been running indefinitely since t = −∞, then the mean and the variance
would be infinite. The random walk model is an example of a unit root process
because the dynamic root ρ in the autoregressive model takes the value of unity.

Note that the random walk process can be made stationary by transforming
the dependent variable by first differencing since

∆Yt = Yt − Yt−1 = c+ ut

is a stationary process.
A series that can be made stationary by differencing is said to be integrated,

or to possess a unit root.

Definition 1.2. A time series Yt is integrated of order d, denoted I(d), if ∆dYt
is stationary. The series Yt is said to have d unit roots.
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1.3 Two Alternative Models

1.3.1 Deterministic Trend

Yt = γ + βt+ ut , ut ∼ iid(0, σ2) (1.3)

This model has a non-constant mean, and a constant variance. Stationarity caan
be achieved by detrending.

1.3.2 Random walk with drift

Yt = c+ Yt−1 + ut , ut ∼ iid(0, σ2) (1.4)

This model has a non-constant mean, and a non-constant variance. Stationarity
can be achieved by first differencing.

These two models have very different implications for the effect of a one-off
shock to ut occurring in period t∗. In the deterministic trend model, the shock has
no long run effect and the process continues on its former path in period t∗ + 1.
In the random walk with drift model however, the process switches to a new path
and the effect of the shock is permanent.

2 Testing for Unit Roots

We want to be able to discriminate between the two alternative models (1.3) and
(1.4). Because the model (1.4) is non-stationary, however, we cannot use standard
t-tests to test the hypothesis that ρ = 1. Instead, new tests with non-standard
distributions have had to be developed.

The framework for testing unit roots is the model

Yt = γ + βt+ ut (2.1)

and
ut = (1− α)ut−1 + εt εt ∼ iid(0, σ2) . (2.2)

A unit root test is then a test of the null of

H0 : α = 0 against H1 : α > 0

in this model.
Note that on H0 :

∆Yt = β + εt

which is the random walk with drift model, whereas, on H1:

Yt = (1− α)Yt−1 + αβt+ (γα + (1− α)β) + εt (2.3)
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or
∆Yt = −αYt−1 + bt+ c+ εt (2.4)

which is an autoregressive model (with autoregressive root ρ = (1 − α)) with
intercept and deterministic trend.

2.1 The Dickey-Fuller (DF) Test

Fuller (1976) and Dickey and Fuller (1979, 1981) propose a test based on the t-ratio
t(α) in the OLS regression (2.4). The distribution of this statistic is non-standard
and depends on the presence of the nuisance parameters, β and γ. Two special
cases need to be considered: (i) β = 0⇒ b = 0 and (ii) β = γ = 0⇒ b = c = 0.
In the case (i), there is no drift term under the null H0 and no trend term under
the alternative H1. In the case (ii) there is no drift term under the null H0 and
neither intercept nor trend term under the alternative H1.

The general case and the two special cases have different distributions and so
have different critical values. Critical values of the statistic for all three cases are
given in Fuller (1976) Table 8.5.2 and in Banerjee et al. (1993).

2.2 The Durbin-Watson test

Sargan and Bhargava (1983) develop an alternative test for a unit root based on
the Durbin-Watson statistic in the equation (2.3). They show that, on the null
hypothesis of a unit root, then

DW → 0

and construct a test using this statistic. Note that although this test uses the same
statistic as the Durbin-Watson test it is a completely different test with a different
null hypothesis. In particular it is designed for equations with a lagged dependent
variable where the conventional Durbin-Watson test is not valid. Critical values
for the test are given in Table 1 of Sargan and Bhargava (1983).

2.3 Dealing with autocorrelation

The tests in the previous section are based on the assumption that εt is ‘white
noise’ i.e. serially uncorrelated. If εt is serially correlated then the serial correla-
tion needs to be corrected before the unit root test is performed.

2.3.1 The Augmented Dickey-Fuller Test

Assume that the serial correlation in εt can be represented by an AR(p) process.
Then it can be corrected by adding the p lagged terms ∆Yt−1, · · · ,∆Yt−p to the
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regression (2.4) to give

∆Yt = −αYt−1 + bt+ c+ γ1∆Yt−1 + · · ·+ γp∆Yt−p + εt . (2.5)

The distribution of the test statistic is unaffected by the addition of these
lagged differences.

3 Spurious Regression

Suppose that two variables Yt and Xt both follow random walk processes with
drift:

Yt = c+ Yt−1 + ut , ut ∼ iid(0, σ2) (3.1)

and
Xt = d+Xt−1 + ut , vt ∼ iid(0, ω2) (3.2)

where the error processes ut and vt are uncorrelated.
Suppose that an investigator runs the regression

Yt = a+ bXt + ηt . (3.3)

What would we expect to happen? We might expect to find that b̂ was insignificant
since the two processes X and Y are completely unrelated. However, Granger
and Newbold (1974) showed that in fact this regression will most likely produce

a significant coefficient for b̂ and a very high explanatory power R2. It will also
have a very low DW statistic. Such regressions are known as spurious regressions.
The reason for the misleading results is that in general the conventional statistical
tests are just not valid in a regression with non-stationary variables since the error
process ηt will also be non-stationary which violates the basic assumptions.

How can spurious regressions be spotted? Granger and Newbold suggest using
a rule of thumb that R2 > DW is indication of spurious regression. However, a
better strategy for avoiding spurious regression is to test the order of integration
of all series in a regression and, if they are found to be integrated, then test for
cointegration among the variables.

4 Cointegration

Suppose that Y1t, Y2t, · · · , Ykt are a set of I(1) variables. In general, any linear
combination of them such as

k∑
i=1

wiYit
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will also be I(1) for all set of weights wi 6= 0. However, suppose there exists some
linear combination such that

k∑
i=1

w∗
i Yit is I(0) , w∗

i 6= 0 .

Then we say that the variables Yit are cointegrated and that the weights w∗
i form

a cointegrating vector.

Definition 4.1. If

Yit ∼ I(d) and
k∑

i=1

w∗
i Yit ∼ I(d− b) , w∗

i 6= 0

then
{Y1t, Y2t, · · · , Ykt} ∼ CI(d, b) , d ≥ b > 0 .

There can be r different cointegrating vectors, where 0 ≤ r < k. Note that r
must be less than the number of variables k.

4.1 The Meaning of Cointegration

If I(1) variables are cointegrated, this means that although they are individually
non-stationary, they are moving together so that there is some long run relation-
ship between them. Consider again the static equation between two I(1) variables
which now may possibly be cointegrated:

Yt = a+ bXt + ηt . (4.1)

. If Yt and Xt are not cointegrated then there is no possible value of the parameters
a and b such that ηt can be stationary. If they are cointegrated however, then
there is a single value for the two parameters such that the linear combination
Yt − a + bXt is stationary. This is when the parameters are the weights of a
cointegrating vector. For this unique value of the parameters, (4.1) is a valid
econometric equation with stationary error term ηt. It represents the long run
equilibrium relationship between the two variables and this can only exist when
there is cointegration.

Cointegration can thus be seen as the existence of a long run relationship be-
tween variables and economic theory leads us to expect that cointegration should
exist. Cointegration is a long run property of variables. In the short-run, the
variables can be moving in different ways, driven by different dynamic processes.
However, cointegration ties the variables together in the long run.
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4.2 Testing Cointegration

If a set of variables are cointegrated, then the residuals from a static regression
of any one of the variables on all the others will be stationary. If not, then the
residuals will be integrated. Thus Dickey-Fuller tests on the OLS residuals et
from a static regression provide a way of testing cointegration. This was proposed
by Engle and Granger (1987).

The critical values will be different from those from the standard Dickey-
Fuller tests because et is based on estimated parameters. The null hypothesis in
the test is that et ∼ I(1), i.e. zero cointegrating vectors, and the alternative is
that et ∼ I(0), i.e. one cointegrating vector. Critical values for the ADF tests are
given in MacKinnon (1991).

The unit root Durbin-Watson test can also be used to test cointegration in the
residuals from a static regression and is described in Sargan and Bhargava (1983).

5 Error Correction Mechanisms

The cointegrating vector represents the long run relationship between two coin-
tegrated variables. What about the short-run relationship? Granger and Engle
(1987) show that this can be represented by an error correction model or ECM.

Suppose that two I(1) variables Yt and Xt are cointegrated with cointegrating
relationship

ηt = Yt − a− bXt . (5.1)

Then the short run relationship can be represented by

∆Yt = a0 + a1∆Yt−1 + · · ·+ ap∆Yt−p + b0∆Xt + · · ·+ bl∆Xt−l + γηt−1 + ut (5.2)

which is an ECM representation. Note that all the terms in the representation
(5.2) are I(0) so that the coefficients in the equation will all have standard distri-
butions.

The ECM can be given an economic interpretation as an adjustment mecha-
nism whereby deviations from the equilibrium relationship in the previous period,
as measured by ηt−1, lead to adjustments in Yt. This is the reason why it is known
as an error correction mechanism.

It can be shown that the ECM representation (5.2) is simply a reparameteri-
sation of the general dynamic model

Yt = a0 +a1Yt−1 + · · ·+ap+1Yt−p−1 +β0Xt +β1Xt−1 + · · ·+βl+1Xt−l−1 +ut (5.3)

but one that makes explicit the long-run cointegrating relationship (5.1) and which
is expressed entirely in terms of stationary variables.
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