
Chapter 4

Small Analytical Models and
WinSolve

4.1 Introduction

Many problems in economics are based on agents maximising an objective
function subject to constraints. These typically lead to discounted dynamic
programming problems for which Euler conditions can be derived but which
in general are not amenable to analytic solution. To solve these models
therefore requires numerical methods. In principle, any algorithm for solving
nonlinear models involving both leads and lags of variables can be used to
solve these models. In practice, however, the most commonly used solution
algorithms such as Fair-Taylor have di¢culty in solving them. In conse-
quence, specialised algorithms have been proposed such as the parameterised
expectations algorithm of den Haan and Marcet (1990). In addition, as these
analytical models tend to be small, powerful solution methods such as the
Stacked Newton method are feasible.

WinSolve now implements both a general Stacked Newton method and
the den Haan and Marcet parameterised expectations algorithm. This makes
it a powerful tool for solving small analytical models.

4.2 The Optimal Growth model

This section sets out a version of the optimal growth model originally de-
veloped by Ramsey (1928) and Koopmans (1965) inter alia. This model is
developed in continuous time. A discrete time approximation is then made
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so that the model can be coded up in WinSolve.1

We assume that households are in…nitely lived and that population grows
at an exogenous rate n. Households solve the problem:

max
Z 1

t=0
u[C(t)]ente¡½tdt

where ½ is the rate of time preference with ½ > n, subject to a resource
constraint. Assuming that production technology is labour augmenting and
growing at an exogenous rate x, then this constraint can be written as

_k = f (k)¡ (n+ x+ ¹)k ¡ c

where lower case denotes variables de‡ated by the e¤ective labour supply, so
that f(k) is the production function in terms of capital per e¤ective worker,
and ¹ is the rate of depreciation of capital.

Assuming a utility function in the class of constant elasticity of intertem-
poral substitution (CEIS) utility functions

u[C(t)] =
C1¡¿ ¡ 1
1¡ ¿

where ¿ = ¾¡1 and ¾ is the the elasticity of intertemporal substitution, then
the …rst order condition leads to a consumption function

_c

c
=
1

¿
(f 0(k)¡ ¹¡ ½ ¡ ¿x) .

In steady state, _c = _k = 0 so that

f 0(k¤) = ¹ + ½+ ¿x

and
c¤ = f(k¤)¡ (n + x+ ¹)k¤

where c¤ and k¤ are the steady state values of c and k respectively.
The model can be discretised by the approximation

_z »= zt+1 ¡ zt
h

where h is the discretisation factor. Assuming a Cobb-Douglas production
function

f (k) = k®

1The WinSolve formulation of this model was originally developed by Michael Chui. I
am grateful to him for providing me with the coded equations and for useful discussions.
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and taking h = 1 leads to the discrete equations

kt+1 ¡ kt = k®t ¡ (n+ x+ ¹)kt ¡ ct
and

ct+1 ¡ ct
ct

=
1

¿
(®k®¡1t ¡ ¹¡ ½ ¡ ¿x) .

This model can be coded in WinSolve as

k = k(¡1) + k(¡1) ^alpha ¡ (n+x+mu) * k(¡1) ¡ c(¡1) ;

c = c(1) / (1 + (alpha*k^(alpha¡1)¡mu¡rho¡tau*x)/tau) ;

Note that the …rst equation has been lagged while the second equation
has been renormalised on ct and so incorporates a lead. This normalisation
re‡ects the saddlepath stability conditions in the model. The model can then
be solved in WinSolve over any …nite time horizon using the Stacked Newton
solution method.

4.3 A Stochastic Growth Model

In this model agents are assumed to be in…nitely lived and to maximise life-
time expected utility subject to a budget constraint. We assume a constant
relative risk aversion (CRRA) utility function

u(ct) = (1¡ ¿ )¡1c1¡¿t

where ct is consumption and ¿ is the coe¢cient of relative risk aversion
0 < ¿ < 1.

Then formally agents solve the following problem:

maxE0
1X

t=0

(1¡ ¿ )¡1c1¡¿t ¯t (4.1)

subject to the resource constraint

ct + kt = µtkt¡1® + ¹kt¡1 (4.2)

where kt is the end of period capital stock, and µt is technology. 1¡ ¹ is the
rate of capital depreciation, 0 · ¹ · 1 and ¯ is the rate of time discount,
0 < ¯ < 1.

Technology µt is assumed to be stochastic, following the process

ln µt = ½ ln µt¡1 + "t (4.3)
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where "t is a serially uncorrelated normally distributed random variable with
zero mean and constant variance ¾2.

The Euler equation for this model is given by

c¡¿t = ¯Et[c
¡¿
t+1(µt+1®k

®¡1
t + ¹)] (4.4)

The solution to this problem is a decision rule for consumption and for
the capital stock given by ct = f (kt¡1; µt) and kt = g(kt¡1; µt) respectively.
However, the exact form of f(¢) and g(¢) is not known analytically as there is
no closed-form solution to this model. Solutions must be found by numerical
solution of the equations (4.4), (4.2) and (4.3).

Taylor and Uhlig (1990) and the subsequent papers in the same issue of
the Journal of Business and Economic Statistics compare di¤erent numerical
techniques for solving this model.

4.3.1 A special case: Brock-Mirman model

In the special case where the utility function is logarithmic (¿ = 1) and there
is full depreciation (¹ = 0), then the model simpli…es to

maxE0
1X

t=0

ln ct¯
t

subject to

ct + kt = µtkt¡1®

and the Euler condition becomes

c¡1t = ¯Et[c
¡1
t+1(µt+1®k

®¡1
t )] :

This model is described in Brock and Mirman (1972) and known as the
Brock-Mirman economy. In this case there is a simple closed-form solution
(see for example Sargent (1987) p122) given by

kt = ®¯k
a
t¡1µt

and

ct = (1¡ ®¯)kt¡1®µt :
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4.4 Parameterised Expectations
The problem in solving the stochastic growth model is in …nding the expec-
tation

Et[yt+1] (4.5)

in (4.4) where
yt = c

¡¿
t (µt®k

®¡1
t¡1 + ¹) :

This expectation is a function of the state variables xt = fkt¡1; µtg but its
form is unknown. Note that on the assumption of model consistent expecta-
tions,

Et[yt+1] = yt+1 :

den Haan and Marcet (1990) propose a general method for solving models
by approximating expectations such as (4.5) using a functional form

Ãt(xt;±)

where xt is a p £ 1 vector of state variables and ± is a k £ 1 vector of
parameters. These parameters are chosen such as to minimise the sum of
squared residuals

min
±

TX

t=1

(yt+1 ¡ Ãt(xt; ±))2 :

This is simply a nonlinear least squares problem and can be solved using
Newton’s method by iterating on

±s = ±s¡1 + (ª0
s¡1ªs¡1)

¡1ª0
s¡1(y+1 ¡Ã(x; ±s¡1))

where
ªs¡1=

@Ã

@±0

is the T £ k matrix of derivatives of Ã with respect to the parameters ±
evaluated at iteration s¡ 1.

The functional form of Ã should be chosen so as to be able to approximate
the expectation as closely as possible. den Haan and Marcet suggest the class
of power functions

expPn(ln(x))

where Pn is a polynomial function of degree n. With large enough n, this
class of functions can approximate any function Rp+ ! R+ arbitrarily well.
For the stochastic growth model they suggest

Ãt(kt¡1; µt; ±) = ±1k
±2
t¡1µ

±3
t = expP1(ln kt¡1; ln µt)
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but also consider higher order power functions.
den Haan and Marcet (1994) propose a test of solution accuracy that can

be applied to the method of parameterised expectations. This is implemented
by increasing the degree of the power function and testing the signi…cance of
the additional coe¢cients.

4.5 Parameterised expectations in WinSolve

WinSolve implements the den Haan and Marcet algorithm for parameter-
ising expectations as a function within the model de…nition language. The
stochastic growth model can be written as

log(theta) = rho*log(theta(¡1)) + norm(sigma2) ;

c = (beta * cexp(1)) ^ (1 / tau) ;

k = theta * k(¡1) ^ alpha + mu * k(¡1) ¡ c ;

cexp = C ^ tau * (alpha * theta * k(¡1) ^ (alpha ¡ 1) + mu);

The second equation corresponds to the Euler condition (4.4) where
cexp(1) is the forward expectation of cexp which is de…ned by the fourth
equation. This expectation can be parameterised by replacing the second
equation by

c = (beta * parexp(cexp(1) , k(¡1) , theta, 1 , 2) ) ^(1 / tau) ;

The WinSolve function parexp() takes arguments de…ned by

parexp(y; x1; ¢ ¢ ¢ ; xp [; ±1; ¢ ¢ ¢ ; ±k] ; n; p)

where y is the expectation to be parameterised, x1; ¢ ¢ ¢ ; xp are the state vari-
ables, n is the order of the power function and p is the number of state
variables. ±1; ¢ ¢ ¢ ; ±k represent optional initial values for the parameters of
the power function. Good initial values will improve the speed of conver-
gence of the method.

Note that parameterising expectations does not require a separate solu-
tion algorithm in WinSolve and either the Fair-Taylor or Stacked Newton
methods may be used. In particular, the model may include some expec-
tations that are parameterised and others that are not. However, when all
model expectations are parameterised, then apart from the function parexp(),
the model is backward looking, so that the parameterised expectations algo-
rithm will be doing all the work. Iteration will continue until a …xed point
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is found when the output from parexp() will stop changing. Convergence
criteria can be set as for any other model.

Once a model has been solved with parameterised expectations, WinSolve
will save the solution values of the parameter vector ± and will use these as
starting values in subsequent solutions. This will speed up convergence in
these subsequent runs.

4.6 The Stacked Newton method

Consider the general nonlinear set of equations

f(yt;yt+1; ¢ ¢ ¢ ;yt+k;yt¡1; ¢ ¢ ¢ ;yt¡p;Xt;ut;µ) = 0 ; t = 1; ¢ ¢ ¢ ; T

where yt is an n £ 1 vector of endogenous variables in time period t, Xt is
an m £ 1 vector of current and lagged exogenous variables, f is an n £ 1
vector valued function and µ is a vector of parameters. This represents a set
of n nonlinear equations over T time periods. Stacking the equations over
all time periods produces a set of nT equations. The Jacobian matrix of this
stacked system has a special structure and looks like

J¤ =

2
6666666666666666664

J1 F11 ¢ ¢ ¢ Fk1

B12 J2 F12 ¢ ¢ ¢ . . .
... B13

. . . . . . ¢ ¢ ¢ . . .

Bpp ¢ ¢ ¢ . . . . . . . . . ¢ ¢ ¢ . . .
. . . ¢ ¢ ¢ . . . . . . . . . ¢ ¢ ¢ FkT¡k

. . . ¢ ¢ ¢ . . . . . . . . . ...
. . . ¢ ¢ ¢ . . . JT¡1 F1T¡1

BpT ¢ ¢ ¢ B1T JT

3
7777777777777777775

where

Jt =
@f

@y0t
; Fit =

@f

@y0t+i
; Bit =

@f

@y0t¡i

are all matrices of dimension n£ n.
The Stacked Newton method applies Newton’s method to the stacked

system. This involves, in iteration s, solving the set of nT equations

J¤(ys ¡ ys¡1) = ¡f(ys¡1) (4.6)

where y is the nT £ 1 vector of stacked values of the endogenous variables.
These equations can be solved e¢ciently, taking account of the special form
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of the Jacobian matrix J¤ and minimising storage requirements, following
the approach suggested by La¤argue (1990) and Boucekkine (1995).

One important issue is that of terminal conditions. Solution requires
values of the variables yT+1; ¢ ¢ ¢ ;yT+k which are outside the solution period.
When these are set to …xed exogenous values, then they are analogous to
initial conditions and do not a¤ect the Newton algorithm. However, terminal
conditions are often set according to an equation, either an automatic rule
such as constant level yT+j = yT , j = 1; ¢ ¢ ¢ ; k or constant growth rate
yT+j = y

j+1
T y¡jT¡1, j = 1; ¢ ¢ ¢ ; k, or a user-de…ned equilibrium condition.

In this case, the set of equations to be solved (4.6) needs to be supple-
mented by nk rows of the form

JT+j(y
s
T+j ¡ ys¡1T+j) = ¡f (ys¡1T+j) ; j = 1; ¢ ¢ ¢ ; k

where

JT+j =
h
0n£(T+j¡q¡1)n B

q
T+j ¢ ¢ ¢ B

1
T+j In 0n£(k¡j)n

i

is of dimension n£ n(T + k) with

B
i

T+j =
@f

@y0T+j¡i
:

Note that the terminal condition equations must be predetermined so that
only lagged variables can appear in f .

WinSolve implements the Stacked Newton algorithm using analytic deriv-
atives evaluated automatically and taking into account any terminal condi-
tions de…ned by equations.

4.7 Further reading
Pierse (1997) is a concise review of solution methods for nonlinear models.
Taylor and Uhlig (and the following 10 papers in the same volume) is an in-
teresting comparison of di¤erent ways of solving the stochastic growth model
set out here. Obstfeld and Rogo¤ (1996) has a good discussion of the discrete
time version of the Ramsay-Koopmans model.



Bibliography

[1] Boucekkine, R. (1995), ‘An alternative methodology for solving nonlin-
ear forward-looking models’, Journal of Economic Dynamics and Con-
trol, 19, 711–734.

[2] Brock, W.A. and L. Mirman (1972), ‘Optimal economic growth and
uncertainty: the discounted case’, Journal of Economic Theory, 4, 479–
513.

[3] den Hann, W.J. and A. Marcet (1990), ‘Solving the stochastic growth
model by parameterizing expectations’, Journal of Business and Eco-
nomic Statistics, 8, 31–34.

[4] den Haan, W.J. and A. Marcet (1994), ‘Accuracy in simulations’, Review
of Economic Studies, 61, 3–17.

[5] Koopmans, T.C. (1965), ‘On the concept of optimal economic growth’,
in The Econometric Approach to Develoment Planning, North Holland,
Amsterdam.

[6] La¤argue, J-P. (1990), ‘Résolution d’un modèle macroéconomique avec
anticipations rationnelles’, Annales d’Economie et Statistique, 17, 97–
119.

[7] Obstfeld, M. and K. Rogo¤ (1996) Foundations of International Macro-
economics, The MIT Press, Cambridge, MA.

[8] Pierse, R.G. (1997), ‘Solution methods for nonlinear models’, lecture
notes, Department of Economics, University of Surrey.

[9] Ramsay, F.P. (1928), ‘A mathematical theory of savings’, Economic
Journal, 38, 543–559.

[10] Sargent, T.J. (1987), Dynamic Macroeconomic Theory, Harvard Univer-
sity Press, Cambridge MA.

9



10 BIBLIOGRAPHY

[11] Taylor, J.B. and H. Uhlig (1990), ‘Solving nonlinear stochastic growth
models: a comparison of alternative solution methods’, Journal of Busi-
ness and Economic Statistics, 8, 1–17.


