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1 Introduction

This tutorial illustrates a few of the new features available in WinSolve
Version 4 (Pierse 2007). The model used in the tutorial is a simple dy-
namic stochastic general equilibrium (DSGE ) model, specifically the stochas-
tic growth model considered in Taylor and Uhlig (1990) and the papers imme-
diately following in the same issue of the Journal of Business and Economic
Statistics, where alternative solution techniques for this model are discussed.
There are two broad solution approaches to this class of models. Firstly
they can be solved directly using non-linear deterministic methods, either
first order methods such as Fair-Taylor (as discussed in Gagnon (1990)) or
derivative methods such as the stacked-Newton method (as in Pierse (2002)).
Alternatively, they can first be approximated by a simpler problem and then
the simpler problem solved using an appropriate method. Many alterna-
tive approximation methods have been suggested. The most popular in-
volves the linearisation (or log-linearisation) of the model, followed by the
solution of the linearised problem by the method of Blanchard and Kahn
(1980) or the more general methods of Klein (2000), Sims (2002) or King
and Watson (1998) and (2002). Applications of a linearisation approach to
the stochastic growth model are discussed in the papers of McGratten (1990)
and Christiano (1990). Other approximation approaches include the param-
eterised expectations approach of den Haan and Marcet (1990) and (1994)
that is implemented in WinSolve Version 3. This approach explicitly approx-
imates decision rules by power functions of arbitrary order, the coefficients of

∗Parts of this paper were prepared for presentations at City University, London in
February 2005 and at a HKMA workshop in Hong Kong in April 2006. I am grateful for
comments received from participants at these presentations.
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which are estimated from the model. A related approach is the perturbation
method. This also approximates decision rules but is based on the appli-
cation of Taylor’s theorem and the implicit function theorem. Perturbation
methods have been advocated by Judd (1996, 1998) and used by Jin and
Judd (2002), Collard and Julliard (2001), Schmitt-Grohé and Uribe (2004)
and Kim and Kim (2003) among others.

Version 3 of WinSolve (Pierse (2001)) provided non-linear solution meth-
ods (Fair-Taylor and stacked-Newton) and one approximation method, the
method of parameterised expectations. Version 4 of WinSolve (Pierse (2007))
now provides, in addition, linear and log-linear approximation methods. A
key feature of the implementation of these methods in WinSolve is that the
linear or log-linear approximation is done automatically by the software, and
the model transformed into a generalised state space form. This eliminates
the need for the user to derive the approximation by hand as is necessary in
order to use the matlab code of Klein, Sims or King and Watson. The lin-
earised form is then solved using the generalised real Schur decomposition (qz
algoirithm) and decision rules are computed. This method corresponds ex-
actly with the first-order perturbation method. (A later release of WinSolve
will also compute higher order perturbation approximations).

Another new feature of WinSolve Version 4, illustrated in this tutorial, is
the ability to produce ‘true’ fan charts by stochastic simulation. Fan charts
have been popularised by the Bank of England and the National Institute
of Economic and Social Research among others, as a way of displaying the
uncertainty around model forecasts in the form of quantiles from a distribu-
tion. However, the way that this is usually done is by imposing an ad hoc
skewed distribution (e.g. a two-part normal) around a central point forecast
that is deterministic. WinSolve by contrast, can estimate the quantiles of the
true empirical distribution of the forecast variables through stochastic simu-
lation of the model. The tutorial illustrates the construction of a fanchart for
the time path of consumption from stochastic simulation of the non-linear
equations of the stochastic growth model.

Section 2 of this paper briefly describes the model to be used and derives
some analytic results. Then the tutorial follows in Section 3, illustrating the
use of both non-linear and linear (and log-linear) solution methods and the
production of fancharts.

2 The model

In this tutorial, a simple stochastic growth model will be used to illustrate
some of the different methods of solution of DGSE models. This model is
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of interest because: (a) although it is extremely simple, it does not admit to
analytic solution and (b) it has been extensively discussed in the literature,
in particular in a special issue of the Journal of Business and Economic
Statistics (see Taylor and Uhlig (1990) and subsequent articles).

The problem to be solved is:

maxE0

∞∑
t=0

βt(1− τ)−1c1−τt (2.1)

subject to

ct + kt = θtk
α
t−1 + µkt−1 (2.2)

ln θt = ρ ln θt−1 + εt, (2.3)

where ct is consumption, kt is the end of period capital stock, and θt is tech-
nology. Technology θt is assumed to be stochastic, following an autoregressive
process with coefficient ρ, |ρ| < 1, where the shock εt is a serially uncorrelated
normally distributed random variable with zero mean and constant variance
σ2. The other parameters of the model are: τ , the coefficient of relative risk
aversion 0 < τ < 1, µ, (one minus) the rate of capital depreciation, 0 ≤ µ ≤ 1
and β, the rate of time discount, 0 < β < 1.

The Lagrangian of the problem is

L = maxE0

∞∑
t=0

βt
[

(1− τ)−1c1−τt + λ1t(ct + kt − θtkαt−1 − µkt−1)
+λ2t(ln θt − ρ ln θt−1 − εt)

]
. (2.4)

and first order conditions for a maximum are

∂Lt
∂ct

= βt(c−τt + λ1t) = 0 (2.5)

∂(Lt + Lt+1)

∂kt
= βtλ1t − βt+1Et[λ1t+1(θt+1αk

α−1
t + µ)] = 0 (2.6)

∂(Lt + Lt+1)

∂θt
= βt(λ2tθ

−1
t − λ1tkαt−1)− βt+1λ2t+1ρθ

−1
t = 0 (2.7)

∂Lt
∂λ1t

= ct + kt − θtkαt−1 − µkt−1 = 0 (2.8)

∂Lt
∂λ2t

= ln θt − ρ ln θt−1 − εt = 0 (2.9)

Substituting (2.5) into (2.6) and rearranging gives the Euler equation

c−τt = βEt[c
−τ
t+1(θt+1αk

α−1
t + µ)]. (2.10)
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Solving the model is achieved either by explicitly solving the optimisation
problem (2.4) or by solving the first order conditions defined by equations
(2.8), (2.9) and (2.10) . (Note that the other first order condition (2.7) simply
serves to determine λ2t and so can be neglected).

The solution of the optimisation problem will be a pair of nonlinear de-
cision rules

ct = h1(kt−1, θt)

kt = h2(kt−1, θt).

The deterministic steady state of the model can be derived analytically
and is given by

c∗ = (
αβ

1− βµ
)α/(1−α) + (µ− 1)(

αβ

1− βµ
)1/(1−α)

k∗ = (
αβ

1− βµ
)1/(1−α) (2.11)

θ∗ = 1.

2.1 Linear and log-linear decision rules

Christiano (1990) discusses solving the stochastic growth model by linear
and log-linear approximation. For this simple model, he is able to derive
explicit formulae for the linear (2.12) and log-linear (2.13) approximations
to the decision rule for kt taken around the deterministic steady state values
k∗ and c∗:

b0 = (1− λ)k∗, b1 = λ, b2 =
qλ

1− βρλ
kt = b0 + b1θt + b2kt−1 (2.12)

a0 = (1− λ) log k∗, a1 =
q

k∗

λ

1− βρλ
, a2 = λ

log kt = a0 + a1 log θt + a2 log kt−1 (2.13)

where

q = β

[
(1− ρ)

(
c∗
k∗

+ 1− µ
)

+
ρβ

τ
(β−1 − µ)

c∗
k∗

]
k∗

ψ = 1 + β−1 +
(1− α)(1− βµ)

τ

c∗
k∗

and

λ =
ψ −

√
ψ2 − 4/β

2
.
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2.2 Non-linear solution methods

Non-linear solution methods solve the first order conditions (2.8) - (2.10)
directly over a finite time horizon t = 1, · · · , T . The assumption of perfect
foresight is made to reduce the problem to a deterministic one.

First-order non-linear solution methods such as Fair-Taylor require that
the equations are normalised, with a different endogenous variable on the
left-hand side of each equation. One such normalisation is

ct = [βc−τt+1(θt+1αk
α−1
t + µ)]−1/τ (2.14)

kt = θtk
α
t−1 + µkt−1 − ct

but an alternative normalisation is

ct = θtk
α
t−1 + µkt−1 − kt

kt = kt+(θt−1k
α
t−1+µkt−1−kt)−τ−β(µ+θtαk

α−1
t )(θtk

α
t +µkt−kt+1)

−τ . (2.15)

where θt−1 = θt. Note that in the first normalisation, ct is the jump variable
while in the second, kt is the jump variable.

One important consideration in the solution of finite horizon non-linear
RE models, is the setting of terminal conditions for the jump variables.
In the first normalisation, a value needs to be set for cT+1. In the second
normalisation, a terminal value is needed for kT+1. Terminal conditions can
help pin down a solution, even in cases where no steady state or multiple
steady states may exist.

3 Solving the model in WinSolve

WinSolve Version 4 provides several algorithms for solving DSGE models
such as the stochastic growth model. Direct non-linear solution methods
include the stacked-Newton and Fair-Taylor algorithms or the expectations
can be parameterised using the den Haan and Marcet algorithm. By stochas-
tic simulation, the empirical distribution of the time paths of variables ct
and kt can be derived and these can be displayed in the form of fancharts.
Alternatively, WinSolve can compute an automatic linear or non-linear ap-
proximation of the model and then solve the approximated model using the
qz algorithm. This tutorial demonstrates these different solution methods
on the stochastic growth model described in the previous section. It is rec-
ommended that the reader follow this tutorial while running WinSolve. The
necessary equation files, rbcnl.txt and rbclin.txt can be found in the dat sub-
directory of the main WinSolve installation.
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3.1 Non-linear methods

In the WinSolve model definition language the stochastic growth model can
be written as

ltheta = rho*ltheta(-1)+norm(sigma*sigma); theta=exp(ltheta);

c = (beta*c(1)ˆ(-tau)*(theta(1)*alpha*kˆ(alpha-1)+mu))ˆ(-1/tau); (3.1)

k = theta*k(-1)ˆalpha + mu*k(-1) - c;

where the model parameters ρ, α, β, µ, τ , and σ have been coded as WinSolve
parameters rho, alpha, beta, mu, tau and sigma respectively. The equation
on the second line corresponds to the Euler condition (2.10). The model
parameters have been set to the values ρ = .95, α = .33, β = .95, µ = 1.0,
τ = 0.5, and σ = 0.1 corresponding to case 1 in Taylor and Uhlig (1990),
which is a high variance case.

Figure 3.1: The model object

The model file to be opened is rbcnl.txt. The equations can seen by double
clicking on the icon in the model object window (Figure 3.1) or selecting Edit
model from the File menu, which opens the text editor.

3.1.1 Finding the deterministic steady state

The first step is to solve numerically for the deterministic steady state of the
model. In order to do this, a new data file of 2500 undated observations
needs to be created that will be replaced by the steady state solution. Click

on the Create new data file icon , or select the Create new data file...
option from the Data menu.

In the dialog box, select frequency Undated and data period 1 to 2500.
Finally, check the Initialise data box to initialise all observations to zero.
These option selections are illustrated in Figure 3.2. Click on the OK box
to exit.
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Figure 3.2: Create new data file dialog box

Before solving for the steady state, the variables c and k must be reset
to a positive value, otherwise, the solution will fail. Go into the Edit data /
adjustments dialog box and reset the data values for c and k to 1.

Now we can solve for the deterministic steady state of the model. Click

on the Solve model icon or select Solve model ... from the Solve menu.
Choose Steady state solution from the Solution mode list as in Figure 3.3 and
click OK. Viewing the results, it will be seen that the deterministic steady
state values of k and c are 15.4864 and 2.46993 respectively. It can be verified
that these values indeed correspond to the analytic solutions given in (2.11).
Having found the deterministic steady state, this will now be used as the
data base for further runs of the model. From the Solve menu, select the
option Set last solution as base. A popup box will warn you that ”this will
overwrite your current base values”. Click on Yes to agree to the change.

3.1.2 Dynamic solutions of the model

The model can now be solved dynamically, using the deterministic steady

state as initial base values. Click on the Solve model icon or select
Solve model ... from the Solve menu. This time, choose Dynamic model
solution from the Solution mode list. The non-linear model equations will be
solved dynamically using the stacked Newton algorithm and the assumption
of perfect foresight.

The model will now be solved again, this time using the parameterised ex-
pectations algorithm of den Haan and Marcet (1990). WinSolve implements
the parameterised expectations algorithm through a function defined in the
model definition language. For the case of the stochastic growth model, the

7



Figure 3.3: Model solution dialog box

expected value c(1) can be parameterised by replacing the original equation
for c in (3.1) with

cexp=cˆtau*(alpha*theta*k(-1)ˆ(alpha-1)+mu);

c = (beta*parexp(cexp(1),k(-1),theta,1,2))ˆ(1/tau); (3.2)

The WinSolve function parexp() takes arguments defined by

parexp(y, x1, · · · , xp [, δ1, · · · , δk] , n, p)

where y is the expectation to be parameterised, x1, · · · , xp are the state
variables, n is the order of the power function and p is the number of state
variables. δ1, · · · , δk represent optional initial values for the parameters of the
power function. Good initial values will improve the speed of convergence of
the method. Once a model has been solved with parameterised expectations,
WinSolve will save the solution values of the parameter vector δ and will
use these as starting values in subsequent solutions. This will speed up
convergence in these subsequent runs.

Note that parameterising expectations does not require a separate solu-
tion algorithm in WinSolve. The Fair-Taylor method will be automatically
selected but the parameterised expectations algorithm will be doing all the
work since, apart from the function parexp(), the model is completely back-
ward looking.

The equations (3.2) have already been included in the file rbcnl.txt as
an alternative equation for c. To activate the parameterised expectations
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algorithm, all we need to do is to switch to the alternative equation. Select the
Switch alternative equations option in the Assumptions menu which brings
up the dialog box in Figure (3.4). Choose the equation with description ‘1st

Figure 3.4: Switch alternative equations dialog box

order parameterised equation’ from the Description list box, and click Done.
Now the model must be solved again. WinSolve will automatically select

an appropriate solution method for the parameterised expectation equation.

Simply click on the Solve model icon or select the Solve model option
from the Solve menu, and then click on OK to commence model solution.

Figure 3.5: Nonlinear solutions of stochastic growth model

The three solutions to the model for variable c are graphed in Figure 3.5.
It can be seen that there is very little difference between the stacked Newton
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and parameterised expectations solutions. (Both were solved using the same
drawing of shocks to technology).

3.1.3 Stochastic simulation

The two dynamic solutions considered so far have been based on a single
drawing of the random shock to technology. Stochastic simulation solves the
model repeatedly using different drawings of technology shocks. The average
of these replications is then a consistent estimator of the expected value of
the model variables and higher order moments such as variance, skew and
kurtosis can also be computed. If desired, quantiles of the distribution can
also be computed and these can be displayed graphically in the form of a
fan chart. Note that this is a true fanchart of the empirical distribution of
variables from a stochastic model This is in contrast to the more familiar
fancharts (as produced by the Bank of England for instance) in which an
ad hoc skewed distribution is imposed around a central deterministic point
forecast.

Figure 3.6: Stochastic simulation dialog box

To start stochastic simulation, click on the Stochastic simulation icon
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or select the Stochastic simulation option from the Solve menu. This

opens the stochastic simulation dialog box (Figure 3.6). This dialog box
is quite complicated and is worthy of some detailed explanation. The key
selection is the shock generation method, which here should be specified as
User covariance matrix. This option allows you to specify variances and
covariances for the shocks to be applied to each equation. This is the only
sensible choice here since only one equation, that for ltheta, is stochastic
with known variance is σ2 = 0.01. Other shock generation methods, such as
Cholesky and bootstrap are available for empirically estimated models.

It is possible to restrict the period over which stochastic shocks are ap-
plied. This is particularly useful for models such as this with rational ex-
pectations where the terminal condition is a long run steady state condition
since, if shocks are applied right up to the terminal date, it is difficult for the
model to satisfy the terminal condition and convergence may be a problem.
In this case it is sensible to reztrict the period to apply shocks to be 2 (the
first solution period) to 2400.

The number of replications has been set to 1000. This is a reasonable
number of replications for this simulation, although greater precision could be
achieved by increasing the replications at the cost of greater execution time.
The option to use antithetic variables box has been checked. This forces the
distribution of generated shocks to be (exactly) symmetric. However, in a
non-linear model, it does not guarantee that the distribution of the model
variables will be symmetric.

The random number seed initialises the random number generator used
for generating pseudo-random shocks. Two stochastic simulations, over the
same period and using the same random number seed, will generate the same
results. This is useful when a simulation needs to be repeated at a later date.
Changing the seed will result in a new set of random drawings. It is useful
to make a note of the random number seed used in important simulations.

The stochastic simulation box has an option to specify that simulation
quantiles are to computed. This allows a complete probability distribution
to be estimated (and graphed in a fan chart). This option is unset by default
because it can be expensive since it necessitates that all replications are
written to a temporary file and then read back in order to compute the
necessary quantiles. The input box specifies the number of quantiles to be
computed. The value of 20 allows quantiles in 5% intervals from 5% to 95%.
The save replications to a file option may be used in conjunction with the
quantiles option to save replications permanently for use outside WinSolve.
Note that if only a single variable is required, it is considerably cheaper to
specify the variable name than accept the default of saving all variables.Once
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Figure 3.7: Stochastic shock covariance dialog box

all the desired options have been set in the dialog box, click the OK button
to exit. Another dialog box will open (Figure 3.7) in which values should
be entered for the non-zero elements of the shock covariance matrix. Select
the variable ltheta from both row and column lists and and enter the value
0.01. Then click the OK button, which opens the status box and starts the
simulation. WinSolve will allow a maximum number of failed replications
before giving up on a stochastic simulation. By default this number is set to
10 but it can be increased if necessary using the maximum errors control in
the solution options dialog box. (This dialog is accessible from the stochastic
simulation dialog box through the Options button.)

When the stochastic simulation has finished, the results are available to
view in the usual way through the New table/graph box on the Results menu.
After a stochastic simulation, various additional statistics are available to
view: the simulation mean, standard deviation, skewness, mode and the
±5% simulation bands. In addition to these, if quantiles were requested,
these are also available (the median of course is the 50% quantile) as well
as two fan chart options. The quantile fanchart is a standard fanchart of
quantiles, centred on the median of the distribution. The modal fanchart is
an alternative fanchart, centred on the estimated mode of the distribution
(as in the (ad hoc) fancharts reported by the Bank of England). Figure
?? presents a quantile fanchart for consumption. The bands represent 5%
quantile intervals with the darkest central band showing the 45% to 55%
interval including the median and the outermost bands the 5% and 95%
bands. Note that the distribution is considerably skewed and that the median
of the distribution (the centre of the darkest central band) is somewhat higher
than the deterministic steady state for consumption in this model.
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Figure 3.8: Consumption fan chart

3.2 Approximation methods

An alternative approach to solving the stochastic growth model is to find a
linear or log-linear approximation of the non-linear model equations (3.1) and
then use linear solution methods to solve this approximation to the model.
This alternative solution method is a new feature of WinSolve Version 4. The
approximation is done automatically by the program and can be computed
at any desired data value for the model variables (usually the deterministic
steady state). Then the resulting linear problem is solved using a generalised
Schur decomposition (the qz algorithm) and the resulting decision rules dis-
played. It will be demonstrated that the decision rules computed automati-
cally by WinSolve replicate exactly the decision rules computed analytically
by Christiano (1990) for this model.

In order to proceed, we rewrite the model in a slightly different way, based
on equation (2.15), where the variable c has been substituted out so that the
only variables are k and θ. The rewritten model is given by

log(theta) = rho*log(theta(-1)) + norm(sigma*sigma);

k = k+(theta(-1)*k(-1)ˆalpha + mu*k(-1)-k)ˆ(-tau)

-beta*(mu+theta*alpha*kˆ(alpha-1))*(theta*kˆalpha+mu*k-k(1))ˆ(-tau);
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and these model equations are defined in file rbclin.txt.
As before, the first step is to solve for the deterministic steady state. Open

the model and create a new data file of 2500 undated observations, initialised
this time to 1. Then solve for the steady state and set this solution as the
data base. It should be verified that the steady state solution for k is 15.4864
as before.

Figure 3.9: Model linearisation dialog box

To compute a linearisation around the deterministic steady state, select
Linear solution options... from the Solve menu. The Model linearisation
dialog box shown in Figure 3.9 will open. Choose Data base as the run to
use and choose observation 4 (3 or greater) as the point at which to linearise.
Select linearise or log-linearise as appropriate and uncheck all boxes except
Compute Blanchard-Kahn solution.Then click OK to finish.

The output is presented in a table. Firstly, the (generalised) eigenvalues of
the state space representation are shown and the Blanchard-Kahn conditions
checked. Then the decision matrices are displayed. For the linear case, the
eigenvalues are

1.14, 0.95, 0.92

so that there is one unstable eigenvalue and two stable eigenvalues and the
conditions for a unique solution are satisfied. In this case there are no infinite
eigenvalues so that the state space representation is non-singular. The slope
coefficients of the decision rule are given in the table:

θt kt−1
kt 1.88723 0.923547

These slope coefficients are identical with those computed from the ana-
lytical formulae derived by Christiano in (2.12) which gives the rule as

kt = 1.18398 + 1.88723θt + 0.923547kt−1.
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Similarly, for the log-linear approximation, the eigenvalues are

1.14, 0.95, 0.92

as before and the coefficients of the decision rule are

θt kt−1
kt 0.121863 0.923547

The Christiano decision rule in this case is

log kt = 0.209478 + 0.121863 log θt + 0.923547 log kt−1

so that, as before, the slope coefficients produced by WinSolve are identical
with those derived by Christiano. Note that it is only possible to derive deci-
sion rules analytically in very simple cases, whereas the numerical procedure
used by WinSolve can be applied to any model, however large.
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